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Abstract — We examine the performance of two on-wafer
multiline Thru-Reflect-Line (TRL) calibration algorithms:
the popular multiline TRL algorithm implemented in the
MultiCal software package, and a newly implemented
iterative algorithm designed to give optimal results in the
presence of measurement noise. We show that the iterative
algorithm outperforms the MultiCal software in the presence
of measurement noise, and verify its uncertainty estimates.

I. INTRODUCTION

We compare the multiline Thru-Reflect-Line (TRL)
vector-network-analyzer calibration algorithm of [1]
implemented in the MultiCal software package3 to a
multiline TRL calibration algorithm based on the less-
well-known iterative approach of [2]. We show that the
iterative approach of de-embedding on-wafer scattering-
parameter measurements not only outperforms the
MultiCal algorithm in the presence of measurement noise,
but also accurately estimates the uncertainty of its results.

The multiline TRL algorithm of [1] combines
compactness and speed with an effective weighting and
averaging strategy based on Gauss-Markov estimates. The
algorithm was optimized for on-wafer measurements, and
has been incorporated into the convenient and popular
MultiCal software package.

The iterative approaches of [2] and [3] offer alternative
solutions to the multiline TRL problem based on a
nonlinear least-squares solutions to the conventional VNA
and six-port calibration problems, respectively. While the
iterative approaches are slower and less compact than the
algorithm of [1], they are designed for optimal
performance in the presence of measurement noise.

Reference [4] extended the basic approach of [2] to a
16-term error model and developed error estimates.
Reference [5] applied the nonlinear least-squares approach
to nonlinear vector network analyzers.

We later adapted the nonlinear least-squares solution of
[2] to the characterization of planar coupled transmission
lines in [6-9]. In this case, the least-squares solution was
obtained using the orthogonal distance regression
algorithm implemented in ODRPACK [10]. The

algorithms of [6-9] took advantage of the ability of
ODRPACK to determine confidence intervals for the
results directly from measurement data.

In this work, we adapt the calibration algorithm of [2] to
the orthogonal distance regression algorithm of [10]. As in
[2], the new algorithm finds an optimal solution to the
multiline TRL on-wafer calibration problem in the
presence of random measurement errors. In addition, the
new algorithm determines confidence intervals for its
results.

In this paper, we demonstrate that this new adaptation of
[2] outperforms the multiline TRL calibration algorithm of
[1] in the presence of random measurement errors. We
also verify the accuracy of its uncertainty estimates.

II. THE CALIBRATION PROBLEM

Figure 1 shows a diagram of the two-tier on-wafer
measurement problem that we address with the new
calibration algorithm. The matrices [S1] and [S2] contain
the scattering parameters of two microwave ground-signal-
ground probe heads to be characterized. The matrix [SC]
contains the scattering parameters of the on-wafer
calibration standard contacted by the probes. The elements
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Fig. 1. The on-wafer calibration problem.



of [SM′] are the scattering parameters of the cascade of the
two probe heads with scattering-parameter matrices [S1]
and [S2] and the calibration standard with scattering-
parameter matrix [SC] measured by a network analyzer at
the coaxial reference plane indicated in the figure. Here
the prime indicates that [SM′] is a measured, rather than a
calculated, quantity. The objective of the calibration is to
determine the scattering-parameter matrices [S1] and [S2]
of two probe heads from measurements [SM′] of the probes
and on-wafer calibration standards.

In the multiline TRL calibration, the on-wafer standards
consist of a short “thru” line, a set of additional on-wafer
transmission lines of different lengths, and a symmetric
“reflect” [11]. In other on-wafer calibration methods, the
lines and/or reflect may be replaced by a variety of
previously characterized terminations or other on-wafer
calibration standards.

III. THE CALIBRATION ALGORITHM

The orthogonal distance regression algorithm implemented
in ODRPACK [10] finds an optimal solution for β of the n
equations

(1)

where the subscript i corresponds to the ith of the n
“observations.” The fi are functions relating the
measurements yi to the unknown vector β and the
explanatory variables xi. The εi and δi are the errors we
wish to minimize in yi and xi.

To solve the calibration problem of Fig. 1, we set
elements of the measurement vectors yi to the real and
imaginary parts of the elements of the measured scattering-
parameter matrices [SM′] of the two probes and calibration
standard. The vector β contains the unknowns we wish to
determine: we assigned elements of β to the real and
imaginary parts of the elements of the scattering-parameter
matrices [S1] and [S2] of the probe heads and, when
appropriate, the propagation constant γ of the on-wafer
transmission-line standards and the unknown reflection
coefficients of any symmetric on-wafer reflect standards.

The vectors xi contain sets of “explanatory” variables for
each observation. We use them to add previously
characterized standards to the calibration, setting elements
of the xi to the real and imaginary parts of the elements of
the scattering-parameter matrix [SC] of the calibration
standard. This strategy not only allows the algorithm to
accommodate imperfectly characterized calibration
standards, but it allows it to be applied to a broad range of
calibration problems, including TRL, open-short-load-thru
(OSLT) and line-reflect-match (LRM) calibrations.
However, since the TRL calibration does not rely on

previously characterized calibration standards, there is no
need for the explanatory variables xi or their associated
errors δi and weights wδ for that special case.

The optimal solution for β is found by minimizing

(2)

subject to the constraints in (1), where the matrices wε and
wδ are weights. In our implementation of the on-wafer
calibration algorithm, we set wε and wδ equal to estimates
of the inverse of the covariance matrices of errors in yi and
xi supplied by the user, which improves the estimate of the
unknowns in the vector β obtained with uniform weighting
[10].

IV. QUALITATIVE MEASUREMENT COMPARISON

We compared the performance of our new calibration
algorithm based on orthogonal distance regression to the
algorithm of [1] implemented in MultiCal. Figure 2
compares the magnitude of the transmission coefficient of
the first probe head estimated by the two algorithms for
one of our typical on-wafer calibrations. The figure shows
that the MultiCal estimates are close to the new calibration
algorithm’s estimates and, in fact, usually lie well within
the standard uncertainty s as estimated by the new
algorithm. We obtained similar results for both the
magnitudes and phases of all of the scattering parameters
of the probe head.

V. QUANTITATIVE MEASUREMENT COMPARISON

We developed a simulator to examine more closely the
performance of the two algorithms. The simulator began
with the measured scattering parameters [S1] and [S2] of
the two probe-heads and propagation constant of the lines,
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Fig. 2. Qualitative measurement comparison.



as determined from the experiment described in the last
section. We first used the simulator to generate the exact
values of [SM] corresponding to each of the standards used
in the calibration, and verified that the two algorithms did
solve for [S1] and [S2] exactly in the absence of
measurement errors.

We then used the simulator to add Gaussian noise with
standard deviation σR to the real and imaginary parts of the
reflection coefficients and with standard deviation σT to
the real and imaginary parts of the transmission
coefficients in [SM], creating 1000 “noisy” measurements
[SMk]. Finally, we used MultiCal and the new algorithm to
estimate the scattering parameters [S1k] and [S2k] of the
probes from the 1000 noisy measurements [SMk]. For each
simulation we set the diagonal elements of the weights wε
to -2

Rσ& or -2
Tσ& , as appropriate.

Figure 3 shows the distribution of the magnitude errors
|[S1k]21|-|[S1]21| in the estimates of the first error box’s
transmission coefficient we obtained with the two
algorithms. The figure shows that the new algorithms’s
error distribution is more concentrated around 0 than
MultiCal’s error distribution. This shows that the new
algorithm does a better job of estimating the true value of
|S21| than MultiCal does.

The solid line in the figure shows the estimated error
distribution generated from the mean of the 1000
uncertainties predicted by the new algorithm. The two
distributions show good agreement, giving us greater
confidence in the ability of the new algorithm to estimate
its own uncertainty.

Tables 1-3 investigate the linear errors of the two
algorithms and will quantify these observations for our
results at 50 GHz: we obtained similar results at 110 GHz.

A. Bias in the Algorithms

Let z∆ represent the differences of estimates of z from
the true value of z. The t statistic zszt /∆= is the ratio of
the mean of z∆ , which we write as z∆ , and the standard
uncertainty sz of z∆ . Large values of t indicate significant
bias in the estimates of z.

We compiled t statistics to look for bias in MultiCal and
the new algorithm in Table 1, where z corresponded to
estimates of elements of [S1] generated by the algorithms.
Here z∆ corresponds to the difference between (a) the
element of [S1k] listed in the first column of the table
determined from the noisy measurements [SMk] and (b) the
true value of the element in [S1], z∆ is the mean of the
1000 z∆ , and sz is the standard uncertainty of z∆ . From
the table we conclude that neither algorithm adds a
statistically significant bias into its estimates in the
presence of Gaussian noise.1

Table 1.
The t statistic for the algorithms. ( 01.0σσσσ TTRR ==== && )

z (∈ [S1]) MultiCal New Algorithm

Re(S11) 0.4 0.7
Re(S22) 0.02 0.02

|S21| 1.3 0.8
Angle S21 0.2 -0.3

B. Variance of the Algorithms

To further explore the performance of the two
algorithms, we estimated sMC, the uncertainty in the
MultiCal estimates, and sNEW, the uncertainty in the new
algorithm’s estimates. We estimated sMC and sNEW from the
standard deviation of the differences of the 1000 noisy
estimates [S1k] and the true values [S1]. We tabulated our
estimates of sMC and sNEW, as well as our estimate of
sMC/sNEW, in Table 2.

We also list the 95% lower confidence bound BL for the
ratio based on our estimate of sMC/sNEW in the last column
of Table 2, calculated from the F distribution with 999 and
999 degrees of freedom using ).(/ 95.0NEWMCL FssB ≡
There is a 95% certainty that the actual value of the ratio is
greater than BL.

Table 2 shows that the uncertainty sMC in the MultiCal
estimates is consistently greater than the uncertainty in the
estimates determined by the new algorithm. Furthermore,
the table shows that the new algorithm outperforms
MultiCal even when it is not supplied with accurate

1 From the t distribution with 999 degrees of freedom we see that
a value of |t| > 1.96 is required to conclude with 95% certainty
that the estimates have a statistically significant bias.
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Fig. 3. Distribution of the error in the estimates of |S21| of the
two algorithms with 01.0σσ RR == & and 03.0σσ TT == & .



estimates Tσ& of the noise in the measurements. Finally,
the table indicates that MultiCal has particular difficulty in
the presence of noise in transmission-coefficient
measurements.

Table 2.
Uncertainty of the two algorithms. ( 01.0σσ RR == & )

z
(∈ [S1])

σT Tσ&
sMC

(×10-3)
sNEW

(×10-3)
sMC /
sNEW

BL

Re(S11) 0.01 0.01 4.96 4.74 1.05 0.997
|S21| 0.01 0.01 5.50 4.40 1.25 1.19

Re(S11) 0.03 0.01 6.36 5.13 1.24 1.18
|S21| 0.03 0.01 11.8 7.43 1.58 1.50

Re(S11) 0.03 0.03 6.36 5.06 1.26 1.20
|S21| 0.03 0.03 11.8 7.32 1.61 1.53

C. Uncertainty Estimate Generated by the New Algorithm

The new algorithm uses the residual deviations of the
measurements from the electrical calibration model to
estimate the uncertainties in its own results.2 Table 3
investigates the accuracy of the standard-uncertainty
estimates s generated by the new algorithm. The table
compares the actual standard deviation σACTUAL of the
quantities in the first column of the table to the mean s of
the standard uncertainty estimates s generated by the new
algorithm. The nearly identical values of σACTUAL and s
indicate that, on average, the new algorithm accurately
estimates the uncertainty in its results due to random
measurement noise.

The quantity ssu /)( in the last column of Table 3
represents the ratio of the standard deviation u(s) of the
estimates s to their mean value s . The small values of

ssu /)( indicate that the new algorithm estimates the
uncertainty of its results with reasonable consistency.

V. CONCLUSION

We compared a new vector-network-analyzer multiline
TRL calibration algorithm based on the iterative approach
of [2] with the orthogonal distance regression method of
[9] to the TRL algorithm of [1] implemented in MultiCal.
We showed that the new calibration algorithm outperforms
the MultiCal algorithm in the presence of random
measurement error and estimates the uncertainty of its
results with reasonable accuracy.

2 MultiCal estimates only the relative uncertainty in its results as
a function of frequency.

Table 3.
Accuracy of s. ( 01.0σσσσ TTRR ==== && )

z (∈ [S1]) σACTUAL s ssu /)(

Re(S11) 0.0047 0.0046 0.12
Re(S22) 0.0055 0.0054 0.12

|S21| 0.0044 0.0044 0.12
Angle S21 0.324 0.297 0.30

SOFTWARE

Software implementing this method can be downloaded
at http://www.boulder.nist.gov/dylan/.
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