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1. Introduction
413
414 This work extends the general waveguide circuit the-

414 ory of Ref. [1] to multiple modes of propagation. The

414  resulting equivalent-circuit theory mimics the low-
415 frequency theory while rigorously accounting for loss.
416 Unlike earlier treatments, the theory is constructed from

418 the standard modal voltages and currents of Ref. [1],

which are normalized so that the product of the modal

419 voltage and current gives the power carried by a single

mode in the absence of other modes in the guide [2] and

419 so that they carry the conventional units volt and

ampere. This approach easily and consistently general-
izes the symmetry relations for reciprocal junctions
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reported in Refs. [1] and [3] and the noise results of Ref. determined from the constraint on the power. It is also
[4], and maintains all of the conventional modal normal- possible to define the modal current to correspond to the
izations, units, and definitions. We present new condi- actual current in a particular conductor; in this case the
tions for lossless and passive devices, impedance matrixmodal voltage is determined from the constraint on the
representations for multimode transmission lines, and power.
Thevenin-equivalent voltage representations for the Models of the embedded circuit elements can be
internal sources and thermal noise of a circuit, complet- further simplified in the equivalent-circuit analogy by
ing the multimode equivalent-circuit theory. representing them as an interior circuit connected to
Maxwell's equations are separable in the longitudinal lines with lengths equal to those physically connected to
and transverse directions of uniform waveguides and the element. This approach results in simple lumped-
transmission lines. This leads to a natural description of element circuit models for the interior circuits that
the electromagnetic fields in the line in terms of the correspond closely to those predicted from physical
eigenfunctions of the two-dimensional eigenvalue prob- models. While these models are not exact, they are
lem. These eigenfunctions form a discrete set of forward extremely important for circuit design.
and backward modes which propagate independently When multiple modes of propagation are excited in a
with an exponential dependence along their lengths; in transmission line, the total voltage across a given con-
open guides, this discrete set of modes is augmented byductor pair will in general be a linear combination of all
a continuous set of radiation modes. This modal de- of the modal voltages and currents. Thus the circuit
scription has a natural equivalent-circuit representation, elements, which are usually connected between pairs of
even in the presence of loss [1]. In this representation transmission-line conductors, will in general both excite
each unidirectional mode is described by a modal and be excited by all of the modes propagating down the
voltage and current that propagate independently of transmission line. As a result, the voltage across even the
those associated with the other modes of the line; this is simplest of circuit elements, such as a resistor connected
the simplest equivalent-circuit representation of a lossy between a particular conductor pair, will not correspond
multimode transmission line from a physical point of to any one of the modal voltages but rather to a linear
view. combination of all of them. This illustrates that the
When a circuit can be partitioned into elements that modal voltages and currents, which are associated with
communicate with each other through transmission the modes rather than with the connection points of the
lines supporting, in each case, only a single bidirec- circuit elements, do not correspond in even an approxi-
tional mode, the modal description of Ref. [1] mimics mate sense to those across or entering into the device
closely the low-frequency theory, in which the complex terminals.
powerp is given byvy, in*, wherevy, is the modal voltage A number of authors, including those of Refs. [5], [6],
andiy, is the modal current. This allows the construction [7], [8], and [9], have proposed models and equivalent-
of a low-frequency equivalent-circuit analogy and the circuit theories for lossless multimode transmission
straightforward application of the methods of nodal lines. In Ref. [10] Jansen introduced the notion of a
analysis familiar to electrical engineers and commonly “partial power” characteristic impedance matrix for
used for electrical design. To create the analogy, we lossless coupled lines, which Tripathi and Lee [11] later
specify reference planes far enough away from the endsextended to lossy coupled lines. Gardiol [12] considers
of the lines interconnecting the circuit elements to loss in his development of an equivalent circuit theory
ensure that only a single mode is present there. We thenand coupled transmission-line models but begins with
assign a node to each of these modes, setting the nodalhssumptions of symmetric transmission-line representa-
voltages and currents equal to the modal voltages andtions.
currents. The normalization of Brews [2], which fixes FacHeand De Zutter [13] proposed the first equivalent
the relationship between the modal voltages and circuit theory applicable to general lossy coupled lines.
currents, is used to ensure that the power in the actuallt is based on power-normalized voltages and currents
circuit corresponds to that in the equivalent-circuit constructed from linear combinations of unnormalized
analogy. modal voltages and currents. While these linear combi-
The normalization of Brews leaves open the normal- nations may not correspond exactly to physical voltages
ization of either the modal voltage or the modal current between conductor pairs or physical currents in a partic-
in each line, often chosen so as to simplify modeling of ular conductor, Ref. [13] calls them the “conductor” or
the circuit elements in the equivalent-circuit analogy. “circuit” voltages and currents. We will base our equiv-
Typically the modal voltage is defined to correspond to alent-circuit analogy on these power-normalized con-
the actual voltage between conductor pairs across whichductor voltages and currents.
circuit elements are attached and the modal current is
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Figure 1 illustrates the equivalent-circuit theory of conductor voltages to the second connection method of
Ref. [13]. In this theory the appropriate choice of the Fig. 1, we would select the first conductor current so that
conductor voltages and currents depends on the way init is equal to the integral of the total magnetic intensity
which circuit elements are connected to the transmission around a path enclosing the left signal conductor and the
line. Figure 1 shows several ways in which discrete second conductor current equal to that integral around a
devices might be connected to a symmetric pair of path enclosing the right signal conductor. In fact, this
microstrip lines. In the first, a single device is connected choice suffers the same ambiguities as the choice of
directly across the two signal conductors. The device conductor voltage. For example, if the conductors are
will mainly excite the mode of the transmission line embedded in a lossy dielectric, some real current will
with odd electric field symmetry; its even mode is con- flow there; it is no longer clear over which path we
sidered to be parasitic. Since the device communicatesshould integrate to define the conductor currents. Each
directly with one mode and parasitically with another, it new choice of integration path enclosing the conductors
would be appropriate to work directly with the modal will change the currents in the conductor representation
equivalent-circuit representation of Ref. [1]. while leaving their voltages fixed. This simple example

illustrates a difficulty with this strategy: the expression
for the power will depend on the choice of the conductor
TN voltages and currents and may not be compatible with
—’7////)// that of the nodal low-frequency theory that the equiva-
lent-circuit analogy is constructed to emulate. Expres-
sions for the power are further complicated since the
total power in the line is not generally the sum of the
powers carried by each mode alone: examples of this
behavior are discussed in Refs. [14] and [15].
In the single-mode case this difficulty is resolved by

Even Mode (v,,,=v,,.)

A\ NN\ AN the power normglization of Brews [2], also used in
First Connection Method Second Connection Method Ref. [1]. There either the modal voltage or the modal
W ~wm~ g~ E— current is fixed to correspond to an integral of the appro-

Vo o Conductors ~ Electric Field Lines priate field quantity. The other is then determined so

L N Ground Plane X‘(’%ﬁfa‘hs that the product of the voltage and the conjugate of the

“}\E}\E’Comcﬁon Method T Substrate Dev. Connect Paths current gives the complex power.

FacHeand De Zutter [13] developed a similar power-
normalization procedure for the lossy multimode case;
Fig. 1. A symmetric microstrip line, its two dominant modes, and  they picked either the conductor voltages or the conduc-
three methods of connecting devices between the conductors. tor currents to correspond to the appropriate field inte-
grals. As in the single-mode case, the undetermined

In the second connection method of Fig. 1, one device quantity is found from a condition fixing the relation
is connected between the left signal conductor and the P€tween the power and the conductor voltages and cur-
ground plane, while the other is connected between the rents. This approach allows the construction of a useful

right signal conductor and the ground. Here each device duivalent-circuit analogy to which we can apply
excites both the even and odd modes of the transmissionStraightforward low-frequency nodal analysis methods.

line. In this case it is easier to work with linear combina- _ Phaene and De Zutter [16], Fach®lyslager, and
tions of the modal voltages and currents, forming the D€ Zutter [17], and Olyslager, De Zutter, and de Hoop

first conductor voltage so that it corresponds to the inte- [18] clarify and extend the theory of Ref. [13] and
gral of the electric field between the left signal line and €XPlore alternatives to the power normalization used

the ground plane and the second so that it correspondsth€re and in this work. However, none of these works
to that integral between the right signal line and the Includes all of the symmetry, noise, and other expres-
ground. Of course, there is some ambiguity here: differ- SONS needed to complete the equwalent-cwcuf[ theory.
ent choices of paths between the conductors will give They also construct the conductor representation from

different voltages. This ambiguity, like its single mode unnormalized modal representations that do not result
counterpart, seems to be unavoidable. in the habitual units for the modal quantities and compli-

For the third connection method of Fig. 1 yet even Cate their frequency dependence.

another choice of the conductor voltages is appropriate. ' 1€ré we examine the power-normalized conductor
The conductor currents must be chosen as well. If Voltages and currents of Fecrend De Zutter [13]
we apply the same logic we used for our choice of constructed from general linear combinations of any

407



Volume 102, Number 4, July—August 1997
Journal of Research of the National Institute of Standards and dEgyn

number of the modal voltages and currents of Ref. [1], where the sums span all of the excited modes in the line
which carry conventional units and satisfy the power and we have added the dependence on the coordixates
normalization of Brews [2]. This straightforward ap- vy, andz for clarity. Here the subscript m stands for
proach incorporates the advances of Refs. [1], [3], and “mode” and signifies the fact that the indicated quantity
[4] into the theory in a natural way and results in a is associated with the modal, as opposed to the conduc-
complete equivalent-circuit theory for lossy multimode tor, representation. The introduction of the normalizing
transmission lines that clearly illustrates and differenti- factorsvox andio allows thevy andvy, to have units of
ates the modal and conductor representations. We de-voltage, the .« andio to have units of current, and the
velop concise definitions of impedance matrices and E;, H,, ex, andhy to have units appropriate to the fields.
other circuit quantities and, for the first time, provide Appendix A shows that this is not so in the formulation
explicit means of incorporating multimode transmission of Ref. [13], which uses unnormalized modal voltages
lines in conductor representations via their impedance and currents, and presents conversions between all of the
matrices: partial-power characteristic impedance ma- modal quantities in the conventional system of units used
trices or symmetric per-unit-length representations are here and the unconventional system of units used in Ref.
not required. We also present new symmetry and loss- [13].

less conditions and expressions for the thermal noise of We restrict the normalizing voltaggyx and currentoy
passive multiports. by

Vok iok* = Pok = f ex X hy* - zdS, 3

S

2. Modal Description
where Refyo) = 0. This normalizes the modal voltages
We assume a time-harmonic dependeri¢®, avhere and currents so that when only tkth mode is present,
wis the real angular frequency, and that the transmission the complex power carried by ttk¢h mode alone in the
lines are uniform ire. These restrictions ensure that the forward direction is given by im«*; this is the normal-
electromagnetic boundary-value problem is separable inization used in Ref. [1] and corresponds to the power
the longitudinalz coordinate and the transversandy condition suggested by Brews [2].
coordinates. They also ensure that each line supports a The characteristic impedance of tkth mode isZy
countable set of discrete forward and backward modes = Vou/i ok = Vo, 12 /pok* = Pox/ liok?; its magnitude is fixed
[19] and, if the line is open, a continuous set of addi- by the choice ofvy! or ligk! while its phase is fixed by
tional radiation modes [20]. All of these modes have, for (3). With this definition,Zy, corresponds to the ratio of
some vy, an exponentiak dependence "€~ We will the modal voltage to the modal current in the line when
restrict our attention to finite or countable sets of modes only the kth forward mode is present, has units of ohms,
excited in the line. In closed guides, we can account and corresponds to accepted definitions [1].
either for all of the modes or for just the subset of The transmission line equations for théh bidirec-
excited modes (usually the dominant modes) that enter tional mode are
into the problem. In open guides, the restriction of finite
or countable sets of modes requires that we restrict Vi _ _
ourselves to problems in which the continuous spectrum az (W Zow)imk = = Zinic imk
of radiation modes can be ignored.

We will also restrict our attention to lines constructed
entirely of materials with isotropic permittivity and per-
meability, in which case the total transverse electric
field E; and magnetic field strengt; in the line due to
the excited modes with modal voltages andix and di
transverse modal electric fields and magnetic field d_mzk = — (Y Zok) Virk = = Yink Vimk
strengthshy can be written as

— (R + jolmk) imk 4)

and

— Gk * j©Cri)Vimk 5
By 2=3 "D euy @ (Gt i ©
Kk 0Ok
and where thekth mode has propagation constanty, and
Lk, Rk, Cik, andGp are real [1] and have the conven-
< ik (2) tional units of inductance, resistance, capacitance, and
H(x,y, 2 = Ek: T Mt y) (2 conductance per unit length.
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For a transmission line in which modes propagate im(Z)  Zen Az ini(z+A2)
independently, we can express these transmission line & aan- =

equations in vector form as '
m(z)' Yo 82 l Vo (7+A2)
Ve - g
E - - Zm|m (6) .
sz(Z)l Yo Az l Vna(z+Az)
and
% ==YV . @) - = =
z in(2) i(z+Az)

Here v, and i, are column vectors of the modal
voltages and currents of the various modes: Fig. 2. Modal equivalent-circuit model per unit length of transmis-
sion line for two modes of propagation.
Vm = (lea Vm2; V3, - - )( (8)
3. Conductor Representation
and
o " , ) .
= (i, a2y Tm3, -+ 2) ©) The modal representation, upon which the preceding
discussion was based, is the simplest description of a
, o multimode transmission line: its impedance and admit-
Where the su'perscrlpt t indicates the transpose. Theiyce matrice€,, and Y., per unit length are not only
diagonal matrice&n andYn of modal impedances and - gy mmetric, but diagonal, and the voltages and currents

admittances per unit length of line are defined by corresponding to different modes are decoupled. How-
) ever, we have already argued that this representation is

m = diag@m, Znz, Zins, - - -) not the most convenient for circuit design, where
. devices are connected between transmission line con-

= diag (2o, v2Zoz, ¥3Zo3, - - *) (10) ductors. Following Ref. [13] we introduce the column

vectors of conductor voltageg and currents,, where

and the subscript ¢ denotes the conductor or circuit parame-
. ters. However we define, andi. to be arbitrary invert-
Y = diag (Y1, Yz, Yina, - - ) ible linear transformations of, andir, the convention-
ally normalized modal voltages and currents of Ref. [1]:
= diag(’yl/Zo]_, ’)/2/202, ')/3/203, - ) . (11)
Ve = My Vi (15)
Equations (6) and (7) imply that and
ic = |\/li im, (16)
P 2 Y Vi = 72 12
Gz2 " 4m Ym Vm = Y Vm (12) where bothM, andM,; are unitless.
Inserting these expressions into Egs. (6) and (7)
and results in the transmission line equations for the
conductor voltages and currents
& . . .
F:YmZmIm:ZmYmIm:')/2 Im, (13) ch_ .
o =~ Zele (17)
where the diagonal matriy is and _
i ?j—k =Y.V, (18)
y = diaglys, v2, ¥3, .. .) - (14) z

Figure 2 shows the equivalent-circuit model for a multi- Where the matrices of conductor impedances and admit-
mode transmission line in the modal representation. ~ tances per unit length are defined by
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Zc=R.+joL. =M, Z,M? (29) Reference [14] shows that the off-diagonal elements of
X are often large in lossy quasiTEM multiconductor
and oo ) :
transmission lines near modal degeneracies. The diago-
_ . _ 9 nal elements ofX are equal to 1 as a result of the
Yo= Gt ol =MYnM. ™, (20) normalization of (3), not used in Refs. [13], [16], [17],
or [18].
whereR,, L, G., and C, are the transmission line’s Equation (24) becomes
matrices of resistances, inductances, conductances, and
capacitances per unit length. Equations (15) and (16) p=ic (M) XM v (26)
imply that
v, in the conductor representation.
@ = Zc Yc Ve
=My Zn Yo My Ve = My 2 MY, (21) 5. Circuit Design
and It is not our intention to determine the best choice of
ki, , conductor voltages and currents for all situations: we
@:YCZC'CZ have already argued that this choice is application
dependent. However, we will formalize some of these
. S choices here and in the next section and explore their
Mi¥YmZm M7 e = Mi y"Mi™ e . (22) implications.
5.1 \oltage

The matrice<Z, Y. andY, Z. are related toy?(= Z,, Ym

= Ym Zm) by similarity transforms; thus all four matrices
have the identical eigenvalugd. M, diagonalize<, Y.
andM; diagonalizesy, Z.. The equivalent-circuit model

of Fig. 2 does not apply in the conductor representation
because&. and Y, are not in general diagonal.

The kth row of M, determines the conductor voltage
Ver. TheM,, can be chosen to set the conductor voltages
Vi equal to the integral of the total electric ficdgalong
any given patHy. The condition is

-1 .
4. Power kajzv—ofaydIVJD v0k:—fEt-dl, (27)
J
Ik Ik
The total complex power transmitted across a refer-

ence plane is given by the integral of the Poynting vector Where the symboll means implies. Fixing all of the
over the transmission-line cross sectl®n conductor voltages with Eq. (27) completely determines
M,. This voltage normalization is equivalent to that em-
loyed in Refs[13], [16], [17], and [18].
p= [ € -z ploy 113], [16], [17], and [18]
S

5.2 Current

Likewise, we can force the conductor curregtto
correspond to the integral of the total magnetic field
strengthH; around a closed path by fixing thekth row
of M;. The condition is

= Wl imikoki_z) j & X Myt - zdS.  (29)
S

ik Vo

This can be put into the form

P = im' XV, (24) Mikj:iiﬁghq-m vj O ickzngt-dI. (28)
o
where the superscrift indicates the Hermitian adjoint * *
(conjugate transpose) and the elements of the cross-
power matrixX are Again, fixing all of the conductor currents with (28)
completely determindsl;. This current normalization is
equivalent to that employed in Refs. [13], [16], [17],
f € X htk* -zdS. (25) and [18]

Xij = ———
i -
Voj o™
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5.3 Complex Power simplified as well. We will call representations for
which M;™ M, = X “power-normalized” conductor rep-
As we discussed in the introduction, one way to resentations.
choose the conductor voltages and currents is to fix both ~ The restriction of Eq. (29) leaves open the determina-
M, andM; with Egs. (27) and (28) for various choices of tion of eitherM, or M; (but not both) by Eqgs. (27) or
pathsl, andc, and then to determine the complex power (28). We could fix the conductor voltages, for example,
p from Eg. (26). However, Eq. (26) takes a form not to correspond to the integral of the total electric fields
found in the low-frequency nodal equivalent-circuit between the conductors to which we connect circuit
theory we want to emulate. This is because in conven- elements by choosing the elementdvfwith Eq. (27).
tional nodal analysis, which is used by all of the com- ThenM; would be given byM; = (X M, )" = (M, X
mercial circuit simulators of which these authors are This is the multimode analogy of selecting the voltage-
aware, the power flowing into a circuit element is deter- power normalization of characteristic impedance [1].
mined as>vy in*, Wherevy is the nodal voltage at the Alternatively, we could use Eg. (28) to fix the conduc-
kth node 'y is the nodal current flowing from that node tor currents. Then we would determini, from
into the circuit element, and the sum spans all of the M, = (M;")"X. This is the multimode analogy of select-
nodes connected to the element. If we assign a node toing the current-power normalization of characteristic
each pair of conductor voltages and currents with the impedance. Either of these power normalizations results
substitutions/y, = Vi andiy = i, this simple expression  in the conductor voltages and currents of Ref. [13].
does not agree with Eg. (26).
The expression for the powear in the conductor
representation can be simplified by imposing the 6. Determination of Modal Quantities
restrictionM;" M, = X: from z. and Y,

The matrices of impedance and admittance parame-
tersZ. andY. in the power-normalized conductor repre-
sentation can be used to determMeandM;, matrices
This form for p, which is also that of Refs. [13], [16], which relate any modal quantity to its corresponding
and [17], is useful because it mimics that of the low-fre- quantity in the conductor representation: we only need a
quency nodal equivalent-circuit theory. If we now assign single additional relation between each modal voltage
a node to each pair of conductor voltages and currentsand the conductor voltages or between each modal cur-
and make the substitutiong, = v andin = i, we find rent and the conductor currents to fix the modal voltage
that the powep flowing into any circuit element corre-  or current paths. For example, since the columnisipf
sponds exactly to that in the equivalent-circuit analogy; are proportional to the eigenvectors&fy,, we can fix
circuit simulators and computer aided design tools that them to within a constant. A single additional relation
determine power in the conventional way (i@s in" Vi) between one of the modal voltages and one of the con-
can be used without modification. We will show later ductor voltages then completely determines the corre-
that when this is done at all ports, it leads to some other sponding columns dfl,. If the paths definingy andve
conventional results, many of which are summarized in are equal, for exampleM,; must be equal to one,
Table 1. Reference [15] shows that device modeling is completely defining thécth column ofM,,.

MTM, =X 0O p=id v (29)

Table 1. Relations for the power-normalized conductor representation

Complex power pP=im X Vn p=id Ve
My - M, = (M) X
M; - Mi= (X MHT= (M) XT
Reciprocal junction Zt = Why Zon Wit Zd = WeZ(WH)™
Passive circuit XZn + (X Z)" pos. semidef. Z. + Z.' pos. semidef.
Lossless circuit XZn+(XZ)'=0 Z.+2Z' =0
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The columns oM; are proportional to the eigenvec-
tors of Y. Z., which also fixes them to within a constant:
the columns ofM; could also be fixed to within a con-
stant from Eqgs. (19) or (20). Equation (29) adds the
additional constraint required to completely determine
the columns ofM;, since it implies that the product of
each column oM, and the complex conjugate of the
corresponding column &fl; must be equal to a diagonal
element ofX, all of which are equal to 1.

Finally, the propagation constangsare the eigenval-
ues ofZ.Y., completing the modal description.

Relations between the modal and conductor voltages
can be used in place of relations between the modal and

conductor currents in this procedure. This procedure

{vmla iml

{Vm29 im2} 3

forms the basis for the calibration and measurement rig. 3. Linear network connecting two multimode transmission

algorithms described in [15], [21], and [22].

7. Impedance Matrix

Figure 3 shows a linear network connecting two mul-
timode transmission lines. We define the modal voltage
vector v,, and current vectoi, by

(30)

where v« and i are the modal voltage and current

vectors at portk. They are related by the network’s

modal impedance matriX,:
Vin = Zinm - (31)

We define the network’s conductor impedance matrix
Z; as

Zc = Mv Zm l\/li_1 ’ (32)

where M, and M; are the block diagonal matrices

le IVlil
Myz ; M Miz :|, (33)

and the matriceM,, andM are theM, andM;, respec-
tively, for the transmission line at pdkt These defini-
tions imply that

M

"

Ve=2Z e, (34)

wherev, and . are defined analogously ta, and .

412

lines.

8. Impedance Matrix of a Multimode

Transmission Line

The modal impedance matri,, of a section of mul-
timode transmission line of length is

Zosinh(’}’lo)_l
Zocoth(ylo) | (35)

whereZ, = diag ), coth(ylg) = diag(cothylo)), and
sinh(ylg)™ = diag(1/sinh{;lo)) are diagonal because
each mode propagates independently down the line.

Equation (32) shows that the conductor impedance
matrix Z of a section of multimode transmission line of
lengthl, is

th:|:

We have already seen that the matrices of impedance
and admittance parametefs and Y., in addition to a
single relation between each modal voltage and the
conductor voltages or between each modal current and
the conductor currents, can be used to determird,,
andM;. It is then possible to fin&,, andY,, and thus

Z, and Z, from Z. andY..

Zo Coth(’}/lo)
Zn = | Zosinh(ylo)™

MV ZO Coth (‘ylo) M i71

MVZoSinh(’ylo)_lM i_l

MVZOSinh (’ylo)il Mfl
MV Zo COth (’ylo) M i_l .

(36)
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Unlike Zscoth(yly) and Zssinh(ylo)™, the matrices References [3] and [24] calculate elementsvdf for
M, Zocoth(yg)M; ™ and M,Z ¢sinh(ylg)™* M are not some waveguides and Appendix B gives some cases for
diagonal; here again we see that the modal descriptionwhich W, is the identity matrix .
will provide the simplest view of multimode transmis- Substituting Eq. (32) into Eq. (38) gives the symme-
sion line behavior. Nevertheless, Eq. (36), which is try condition
useful in frequency-domain circuit simulations, pro-

vides a straightforward way to incorporate multimode Zi= W, Z. (W)™ (42)

transmission lines in the power-normalized conductor

representation whed, andY, are asymmetric. for a reciprocal junction in the conductor representa-
tion, where

9. Reciprocal Junctions Wo= (MO W M (42)

References [1] and [3] develop a symmetry relation
for the impedance matrix of a reciprocal junction (a
passive junction that is composed only of materials with
linear symmetric permittivity and permeability tensors)
connecting transmission lines, each of which supports a
single mode of propagation. This relation can be ex-
tended easily to the impedance matrix of a reciprocal ) )
junction connecting multimode transmission lines 10. Symmetric Impedance and Admit-
within the context of this theory. When none of the tance Matrices
modes at any given port of a closed guide are degener-
ate (7 # ¢ for j # k), then the basis fields at that port Olyslager, De Zutter, and de Hoop in Ref. [18]
satisfy the orthogonality condition [19] present conductor representations in whitzhand Y,
are always symmetric, in which case the equivalent-
circuit description per unit length transmission line of
Fig. 4 applies. There is, in fact, a hierarchy of symmetry
conditions, which are sometimes treated as being equiv-
alent in the literature.

In open guides, a similar orthogonality condition is Appendix C examines the weakest of these condi-
satisfied by the continuous spectrum of radiation modes tions, which simply ensures that, in the absence of de-
[20], [23]. These orthogonality conditions allow the generate modesy # y’ for j # k), Z. and Y, are
arguments of Refs. [1] and [3] to be applied directly, symmetric. The requirement is thisk; M; is diagonal:
with the result that, for reciprocal junctions,

The symmetry conditions for the impedance matrices of
one-port terminations can be derived as special cases of
Eqg. (38) and (41).

fajxhtk-zdS:O(h&k). 37)

S

M! M; diagonal= Z.=Z%: Y. = YL, 43
ZI"TI — Wm Zm Wm_l, (38) g C c C c ( )

where the diagonal matrii/;, is defined by

| Wim in(z+Az)
Wi, = Wi ' (39) g
. Yoy Az
| VCI(Z+AZ)
and where théV,,, defnedby 2. T .
' v, (z1+Az)
W= diag 2= [ & x hy-zas), (o)
Voi loj < —
i (z+Az)

are diagonal matrices of the reciprocity factors of rig. 4. conductor equivalent-circuit model per unit length for a
Appendix D of Ref. [1] for the modes at poK. two-mode transmission line witd. and Y. symmetric.
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where the symbolk means equivalent.
Appendix D examines two stronger conditions that

11. Passive and Lossless Junctions

ensure that the impedance matrices of passive junctions The real poweP flowing into a passive junction must

composed entirely of reciprocal materials are symmet-
ric; it shows that the condition ensuring symmetry of all
passive junctions embedded in a given line is
MiMi=aW, = We=al =« Z.=2¢, (44)
wherea is a scalar and; is the impedance matrix of

any passive reciprocal junction embedded in the line.
Appendix D also shows that there is a stronger condition

always be zero or positive for any external excitation.
That is, for any passive junction,

P = ReP) = Re(mXVn) = Re(im X Zn im)

iN(X Z + (XZ0)") i = O Vi,

NI =

(46)

which is equivalent to the Hermitian matriX Z, +

that not only ensures that these impedance matrices ardX Zm)" being positive semidefinite [25]. For a lossless
symmetric, but that the impedance matrices of junctions junction P = 0, which implies thatX Z, + (X Z,)" = 0

connecting the lines other lines satisfying the same con-
dition are symmetric as well. It is

MiMi =Wy = We=1 = Z = Ze, (45)

whereZ; is the impedance matrix @ny passive recip-
rocal junction embedded in the line or connecting it to
any other line withW, =1 . This condition is particularly
interesting because it is the analog of the condition of
Eq. (29): choosing either the conductor voltages or cur-
rents with Eq. (27) or Eg. (28) and applying the condi-
tion in Eq. (29) completely determines bdih, andM;.

It is also a natural choice faiV; in lossless lines.

All of these conditions require at ledst, M; diago-
nal, which is not always compatible with the condition
MT M, = X of the power-normalized conductor repre-
sentation [18]. Thus enforcing any of these symmetry
conditions will, at least in some cases, require abandon-
ing the analogy with low-frequency nodal equivalent-
circuit theory, in whichp =i} v,.

At first glance a lack of these conventional symmetry
conditions in the power-normalized conductor represen-
tation may seem problematic. However, in all lossless
lines, for which the cross-power matrix and modal
reciprocity matrixXW,, are the identity, the conditions of
Egs. (29) and (45) are compatible (see Appendix B). We
will also show that for the lossy quasi-TEM lines we
examine in Secs. 14 and 15 that is almost exactly
equal to the identity matrix in the power-normalized
conductor representation and so nearly satisfy the
strongest of these symmetry conditions.

If in the power-normalized conductor representation
we cannot achieve even the weakest condition repre-
sented by Eq. (43), with the result thaf and Y, are
asymmetric, we can still include a section of line in the
power-normalized conductor representation by way of
its conductor impedance matrix, concisely expressed by
Eq. (36).

414

[4].

In the power-normalized conductor representation we
obtain the conventional resultsZ. + Z." is positive
semidefinite for passive circuits ang + Z." = 0 for
lossless circuits.

12. Thevenin-Equivalent Voltage Sources

The vectorv,of modal Thevenin-equivalent voltage
sources of a linear network with impedance maifjx
is defined by

Vin = Zmim + VU . 47)
While the vector,, is general enough to describe elec-
trically any linear sources within the network, the ma-
trix Vm Vi’ conveniently expresses the essential proper-
ties of the sources from an external point of view when
their absolute phases are not of importance. Hergtthe
diagonal element of, V,,' is | Vi |* and itsjk th off-diag-
onal element i7y Vnc*. These off-diagonal elements
contain the relative phases of the source#,in

The Thevenin-equivalent sources in the conductor
representation aré;. = M, V,, and satisfy

VC = Zc ic + ‘7C . (48)
The matrixv, v.' is related tov,, v, by
VeV = My UV MLT (49)

13. Thermal Noise

The thermal noise properties of a network are conve-
niently expressed in the modal representation by the
matrix < Vy, Ve’ > [4], where the brackets indicate that
we have taken the spectral density. Ttk diagonal
element of <V, Vi,' > is <| Vi, | >, the Fourier transform
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of the auto-correlation of, while thejkth off-diago- < V0T >=2 e’“‘m—l [Z. M OM + (Z.M OM)].
nal element is G Viuc* >, the Fourier transform of the
cross-correlation of,; and V. [26], [27]. These fre- (51)

quency-domain quantities may be used to determine

noise power in a circuit from straightforward ac analyses ~ Equation (51) takes the conventional form wiwnis

in which the noise sources are replace with nonrandom the identity matrix. In that caséf' M, = M) M = Wi,

sinusoidal sources [26]. and in the power-normalized conductor representaiotn
Reference [4] gives an expression foWs Vi, > for we haveQ = M (M 7)™, and Eq. (51) gives the conven-

a passive network embedded deeply enough in a closedtional result

waveguide so that all but the dominant modes have de-

cayed at the reference planes where we define the W, = landM™ M, = X O

voltages and currents. The expression is

- hf
<OnVnl > = 2 gl [Z0Q *+ (Zn Q)] (50) <00 > =2 g 12+ 227) (52)

wherev,, contains all of the dominant modal voltagés,
is the frequencyk is the Boltzmann constanl is the
Planck constantT is the absolute temperature of the
system, and) = W, XY (W) . Reference [4] presents
practical lines in whichQ differs significantly from the
identity, which we will study further in Sec. 15.
Equation (50) in the conductor representation is

14. Symmetric Coupled Microstrip Lines

Table 2 illustrates the application of this theory to the
coupled symmetric microstrip lines of Fig. 1, for which
cross-power matrixX is the identity due to symmetry
(see Appendix B). The first row of the table lists thig
obtained by applying Eq. (27) to the paths appropriate
to the three connection methods of Fig. 1. For the first

Table 2. Circuit parameters for symmetric coupled lines of Fig. 1 in the power-normalized conductor representation specified by
Egs. (27) and (29). Her¥ = | anda, which is plotted in Fig. 5, is approximately equal to 1/2 at low frequencies.

Parameter First method Second method Third method
M [1 0} [1 —a} [1 —a]
v 01 1 a 01
-1
10 1 ’ a 1 0
2 1
M [0 1] — [a* J
7 [zme o} [zmeﬂa\zzmo zme—\a\zzmo] [zmeﬂa\zzmo —azmo}
¢ 0 Zmo Zme_‘ a ‘szo Zme+ ‘ a ‘szo _a* Zmo Zmo
1 1
v |:Yme 0 ] 1 Yme"'WYmo Yime _WYmo |: Yine aYie :|
c vl 2;
0 Ymo 4 Yme_izYmo Yme+ 1 2Ym0 a*Yme Ymo+ |a| Yme
EY EY
a* a*
+— R
W [Wme 0 ] 1 Wme a Wmo Wme a Wmo [Wme aWne—a*Wmo:|
Cc * *
0 W 2] WoemEWno Wit Sty 0 W
a a
o 1[wme|2+wm02 wme|2—wmo|2] Wl .
t me - me
Mi Q My [ 0 \wmo|-2] 2 | [ Wl = [Wino| [ W]+ Wi | [a*(\wmerZ—\wmor?) |wmo\-2}
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connection method\, is simply the identity matrixand  second device is connected, aWd,, = 1 because the
the conductor voltages are equal to the modal voltages.even mode and second connection paths coincide.

M, for the second connection method of Fig. 1 The table also lists th#l;, Z, Y., andW, obtained in
reflects the fact that both modes impress voltages on thethe power-normalized conductor representation. Here
device connection paths. Here the even mode impressesM, andM; are dimensionless, have only a slight depen-
the same voltage across the two connection paths. Sincedence on frequency, and are easily determined from
the path defining the even mode voltage corresponds tostraightforward arguments. This simplifies the determi-
that over which the devices are connected, 1's appear innation of the conductor parameters from the standard
the first column ofM,. The odd mode, on the other modal parameters, which may often be found from con-
hand, impresses voltages of opposite phase on the twoventional measurement methods or simple models. This
connection paths, and the odd mode voltage path doesconvenient form oM, andM; is a result of beginning
not correspond to the device connection path. We with the conventionally normalized modal voltages and
definedato be the ratio of the voltage impressed by the currents of Ref. [1]. Note that the matrices correspond-
odd mode between the ground plane and the right signaling to M, andM; in Ref. [13] carry the dimensions of
conductor and the modal voltagg, of the odd mode,  voltage and current and, even in this symmetric example,
which is defined as the total voltage between the two will be highly frequency dependent (see Appendix A).
signal conductors. This accounts for the factors afin
the second column d¥fl,. Figure 5 plots the magnitude
and phase o calculated by the full-wave mode-match- 15. Asymmetric  Coupled  Microstrip

ing method of Ref. [28] for a typical symmetric line and Lines
shows that in the low-frequency limé is about one-
half. Williams and Olyslager [14] show that the off-diago-

M, for the third connection method is defined nal elements oK are large in lossy quasi-TEM multi-
analogously. The values in the first row bf, are the conductor transmission lines near modal degeneracies.
same as those of the second method because the firskFigure 6 shows the asymmetric lines used in Ref. [14] to
connection path is the same in both cases. However,illustrate this phenomena. These asymmetric coupled
M,21 = O because the even mode does not impress anylines support two quasi-TEM dominant modes conven-
voltage between the two signal conductors where the tionally labeled the ¢ ane- modes. The ¢ and- modes

0.030 0.53
| &—=a phascof W_ .
- m——a phase of w . 1
0.015
0.52 N
Gy
g‘\ o
o e
2 0 R
> &
= - ] &
i 4051 =
-0.015F e
L ..-—_e__-- 4
L __‘_,@ - »
- o ]
emmmm T -7
_0030 oo, PR S . 1 ) ) ) | ! L ! ) 1 1 1 I 1 050
0 10 20 30 40
Frequency (GHz)

Fig. 5. Modal parameters for the symmetric microstrip line of Fig. 1 with twouf3 wide and 0.25.m
thick signal conductors separated by a gap ofu50. The 100um thick substrate has a relative dielectric
constant of 12.9 and the substrate ground plane jisr5thick. The metal conductivities are 3.6062 107
Q- m™. Our calculations show that the magnitudes\idf,, and W;,, depart from 1 by less than 10
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correspond to the even mode and the odd mode of the The lines of Fig. 6 are simply described in the power-

symmetric case, respectively. normalized conductor representation. Figure 8 shows
Appendix F gives a special form fot andW,, appro- that the elements df. are approximately constant, as

priate for the ¢ andr modes of the structure of Fig. 6. would be expected given the lossless substrate. Unlike

That form is Cic andC,,., the elements of, are only weakly depen-

dent on the metal loss.

1 _] |)(017 |e—i(0c—0ﬂ)/2
= . (53)
X + |X,Tc|€"(0°’9”)/2 1
and
vk [¢ 0
Wm - 1_|XC7TX7TC| 0 é’ﬂ,, 1 (54)

V2222222 Signal Conductors

where we have chosen the appropriate signs in the gen- XY Ground Plane
eral expressions given in the appendix for this example.
Figure 7 plots the terms which appear in Egs. (53) and
(54) and shows that, despite the quasi-TEM nature of
the lines and the lossless dielectric, the modal represen-
tation is quite complicated. Reference [14] shows that Fig. 6. The asymmetric microstrip line and the method of connect-
thi be attributed t ) d in th d Iing devices between the conductors studied here. TherBQvide

IS can _e altributed to a near ege”eracy In . € moda signal conductor on the left is separated from the 260wide signal
propagation ConStf_intS_- The compllcat_ed be_hqwor of the conductor on the right by a 5am wide gap. The 10Qum thick
modal representation is also reflected in variations of the substrate has a relative dielectric constant of 12.9. TheuthZhick
modal capacitance§,,. and C,,, which Fig. 8 shows signal conductors and am thick ground plane have a conductivity

change significantly with frequency. of 3.602x 10" - ™.

Substrate

<—{__)}= Device Connection Paths

) <
(2
o =]
P S
= 4
?5) 1S
: £
(]
‘*~ £
©
3 2
= “
(]
& 8
s <
~

Frequency (GHz)

Fig. 7. Modal parameters for the asymmetric coupled lines of Fig. 6. the frequencies at which
Im(y—y~) = 0 and at which|y.—y,|/Bo reaches a minimum define the frequency range labeled
Ye = v, in the figure.
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Fig. 8. The elements of the capacitance matri@sand C. for the coupled lines of
Fig. 6. The calculations show that the element&gfindG, are small and thdCe1, —Ceo|
= 2.0 X 10 pF/cm.

Figure 9 shows the elemeri& andL. in the power- we would anticipate from the fact thel, is nearly equal
normalized conductor representation. They display the to the identity matrixl in this case. Reference [15]
behavior typical of conductors at microwave frequen- shows that the power-normalized conductor representa-
cies: the elements &; increase slowly with frequency tion also simplifies device models. These results illus-
as the fields are expelled from the metals and dependtrate the advantages of using the conductor rather than
strongly on the metal loss while the elements Lof the modal description when the off-diagonal elements
increase slightly at very low frequencies where the fields of X are large.
penetrate deeply into the metals.

Our numerical calculations based on the full-wave
analysis method of Ref. [28] show that the elements of 16. Conclusion
W, in this case differed from those of the identity matrix
by less than 5< 10 below 40 GHz. This implies that We have investigated a power-normalized multimode
the impedance matrix of passive reciprocal devices em- equivalent-circuit theory based on the normalized
bedded in these transmission lines are very nearly sym-modal voltages and currents of Ref. [1]. Its conductor
metric and the transmission-line equivalent-circuit representation allows the construction of a nodal equiva-
model of Fig. 4 is appropriate in the power-normalized lent-
conductor representation. circuit analogy suitable for electrical design. The theory

Although Ref. [4] showed tha® for this structure incorporates all of the elements required for design with
differs significantly from the identity, complicating the multimode transmission lines, including symmetry
calculation of thermal noise in the modal representation, conditions for reciprocal terminations and junctions,
our calculations show that the matrit; Q M of Eq. explicit expressions for the impedance matrix of multi-
(51) is also almost exactly equal to the identity matrix ~ mode transmission lines, source representations, and
Thus in the power-normalized conductor representation expressions for the thermal noise of passive multiports.
the conventional Eq. (52) for the thermal noise of a We illustrated the theory with examples of both
passive termination embedded in these lines applies, assymmetric and asymmetric coupled lines.
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Fig. 9. The elements oR. andL for the coupled lines of Fig. 6. The calculations show tRat,— Rz
= 0.1Q/cm and|Leys — Lepy| = 107° nH/cm.

17. Appendix A. Unnormalized Modal definitions that correspond to those of Egs. (27) and
Voltages and Currents (28) used here. Either of these definitions, in conjunc-
tion with the constrainp =iy’ v¢, results inve = v, and
Reference [13] forms conductor voltages and currents ic = ic. Thus we see that, although the modal parameters
from linear combinations of unnormalized modal ©f the two systems are quite different, their conductor
voltagesvy, and currents,. In those works they, andi, parameters are equivalent.
are defined by

Ei= >, Vi €; Hi =, ime N - (55) 18. Appendix B. Symmetric and Power-
« ¥ Orthogonal Modes X = I)

Thev, andi,' can be obtained from, andir, by setting
the vy andigc Of this theory equal to 1, rather than
applying the power conditioR = vy igi of Brews [2] and
normalizations of Ref. [1]. Table 3 shows how this

We can put the elements of the cross-power maxrix
in the form

changes the various modal parameters and relations pre-
sented in this work. For example, the first line of the fS* &; - ek dS— f,uhzjhz*kds
table shows thaty, = (1) Vim. The element® given in X = Vs s -
the table areP; Ef g X hi - zds. . f8*|ak|2ds—f w|hy|?dS
S
Reference [13] defines either the conductor voltages S S
Ve by
Ve = —j E.-dl (56)
« f phy-hi dS— f e*e,edS
or the conductor currenig b i \*
y (%) s S (58)
hy; 2dS—f *|e,|?dS
ic'k:§£|—|t-d|, (57) l“' d :' |

Ck
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Table 3. Renormalization table for unnormalized modal parameters

This work Corresponding quantity in
Modal parameters (normalized system) Ref. [13]
p » 1
Voltages and currents Vi, Im (Vo)™ Viny (i0) " im
Normalization condition Pox = Vok 18k Vo=ip=(1,1,..
2
e v
Characteristic impedance Zy = Yoo _ @ = &kz 1
Tok  Pox \IOk\
Transmission line parameters Rmn+joln y
per unit length Gn +jwCqy Y
Cross-power matrix X i6 X Vo =P
Transformation matrices My, M, M, Vo, Miig
Reciprocity matrix W, VoioWhn
Impedance matrix Zmn Vo Zm o
Noise matrixQ Q it Q vyt
Conductor parameters Ve ey We, Z,y . .. Ve, ey We, Zgy . ..

(equivalent in both systems)

by following the arguments of Appendix B of Ref. [1]. 19. Appendix C. Diagonality ofM{ M; and
Equation (58) shows thaX = X; = 1 and that Symmetry of Z. and Y,
Xy = X, = 0 if the kth andjth modes have opposite
electric or magnetic field symmetries. For the symmet-  |f 7, the transmission line impedance matrix per unit
ric coupled microstrip lines of Fig. 1, for example, |ength, is symmetric then
X=1.

We call thekth mode of a closed guide power orthog-
onal if X,; = Xy = 0 for all of the other modegin the
transmission line. If th&th mode is power orthogonal,
then Ref. [4] Shows thallp Wi* = 1, andWiy can be  &nd
set equal to 1 by suitable normalization of the phase of ¢ _ tNg — (At t
the vy or theig [1]. Lossless modes are power orthogo- MiMy Zn = Zn My Mi = (M My Za)" (60)
nal.

WhenX =1, the conditions represented by Egs. (29) Thusz.is symmetric if and only iM;! M, Z, is symmet-
and (43) are compatible, so symmetZicandY. canbe  ric. Likewise, Y, is symmetric if and only iM{ M; Y,
achieved in the power-normalized conductor representa-js symmetric. Clearly, iM! M, is diagonal, then so are
tion. However it is possible to show that simultaneous M! M, Z,, andM! M; Yy, and saZ. andY, are symmet-
satisfaction of conditions represented by Egs. (29) and yic.
(43) then requires that all of the elements in any given  The reverse is true for nondegenerate modes (modes
column of M, and in the same column d¥i have  for whichy,2 # y?). First,Z. andY, symmetric implies
the same phase. It is also possible to show that settingthat bothM! M, Z,, andM} M; Y,, are symmetric. The
We = I requires that the magnitudes of the diagonal jkth element oM! M, Z,, is
elements ofW, equal one and that the phase of the
elements in the columns &, andM; be set to one half
the phase of the corresponding diagonal elemeigf (MM, Z)ik = (MIMy)jc Zonk - (61)

Ze=My Zo Mt = (MY Zy MY, (59)
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Thus M{ M, Z,, symmetric implies that NI} M)

Zok = (Mij M)y Zn. Likewise, M M; Y, symmetric
implies MiIM,)y; Yok = (MIMy)k Y. Taking the
product of these two equations and usifig Y = ¥

gives M| M)k (M M)y (° — %) = 0, which leads to
either M{M,)x = 0 or M{M,),; = 0. Assume that
(M{M,)i = 0. Then, from Eq. (60),

(M ,t M, Zm)kj = (M |t Mv)kj Zml

=(MiM, Zp)k = Mi M)k Zn, = 0, (62)

and so M| M,); = 0 as well. A similar argument applies
if we assume that it wasM! M,),; that was 0. Thus
M! M, is diagonal.

20. Appendix D. Symmetry of the
Impedance Matrices of Reciprocal
Junctions and ScalarW:

If W, is scalar, then Eq. (41) shows that the conductor
impedance matriceg. of all passive junctions con-
structed entirely of reciprocal materials embedded in it
are symmetric.

If the conductor impedance matri%. of every pas-
sive junction constructed of reciprocal materials embed-
ded in it is symmetric, then we can also show th4tis
a scalar. From Eq. (41) we have

Z.=2Z =W, Z. (W)™, (63)
which implies that
ZWE=W, Z . (64)

Theij th element ofZ, WL is > Zu We, while theij th
k
element ofW, Z, is >, W Zy;. Equating these two
k

elements gives

(Weji — Weir) Zaip + >, Weik Zeix

k#j

- 2 Wik chj =0,

k#i

(65)

which must hold true for the conductor impedance
matrix of any junction constructed of reciprocal materi-
als. For any givem # j, Eg. (65) can only be true for all
of theseZ, if Wy; — Wy and all of the termsiVg

(k # j) are independently equal to 0, which implies that

421

W, is a scalar matrix.

Finally, if W, = al , wherea is a scalar, then Eq. (42)
shows thatM{ M, = oW,

If W, = al, then Eq. (41) shows that the conductor
impedance matricegZ; of all junctions constructed
entirely of reciprocal materials connecting the lines to
other lines for which\; = al will be symmetric. Like-
wise, if the conductor impedance matrices of all junc-
tions constructed entirely of reciprocal materials con-
necting the lines to other lines for whidl. = al are
symmetric, we must haw/_ = «al . This also holds true,
of course, wheW; =1 in all the lines. This is the most
convenient normalization sincé/. = | is the natural
choice in lossless lines.

21. Appendix E. Renormalization Table

We have presented relations between modal and
conductor quantities. Here we show how a renormaliza-
tion of the conductor voltages and currents that
preservesM| M, = X affects the other conductor
parameters. The second column shows the effect on the
element in the first column after multiplying the voltage
eigenvector by the matrig = diag ).

Table 4. Renormalization table for power-normalized conductor
parameters

Before normalization After normalization

Ve, e Ve, (6%,
M., M, 8 My, (6%)7M,
Ze, Ye 8Z:.8% (8% Y. 8
W, W 5* W, 674, 8% W, 67
Z; o Z. 6*
M, Q M, (Y M Q M, &*

22. Appendix F. Form of X and W, for
Two Modes WhenW; = |

Whenever it is possible to satisfy the power normal-
ization condition of Eq. (29) and s&/; = | simulta-
neously we have botM] M, = X andM! M, = W,,.
Thus we can writeX W™ = MT M, M, (M) =
MT(MY?*and so KWy )* XWyt=MT (M) H* MT
Mhyt=1.

Reference [4] shows that the conditiod YW, )* X
W, = | also holds if all the modes in the guide are
accounted for.
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If, for every modej to which we have assigned a Acknowledgments

voltage and a current and for every mdder which we
have not, the cross-power integrdlg; X hy* - dS=
Jex X hy* -zdS = 0, then as a corollary we have
X Wi H)* X Wyt =1 as well.

When X W, )* X W,;* =1 and there are only two
modes, which we will label the and = modes, then

(X Wi )* = (X W, ™)™ and we can writeX andW,, as "
1

[2

1 Xer Wine O
=l Tl w ] e
(3]
which implies that [4]
5
(Wmc*)_:L XCW*(Wm'n'*) - _ .
X‘ITC*(WmC* - (me*)il
(6]
WoeWoy | Wiet XMW en 1
1_XC“X'"C _xfrrchcil Wmcil

(8]

Equating the diagonal terms in Eqg. (67) implies that
[Wind? = [Wi|2 = 1= X ¢, X ., which implies that the
productX., X is real and that we can writé/,. and
Wine aSWine = V1Xer Xoe €% and Wi, = V1XKer X
€’. Equating the upper-right hand off-diagonal terms [10]
in Eq. (67) allows us to determine the phase @f K
terms of 6, and 6, to within a factor of =, while
equating the lower-left hand off-diagonal terms in Eq.
(67) allows us to determine the phase Xf. These
constraints on the phaseX, andX ., in addition to the
constraint that their product be real, result in the forms

(9]

[11]

[12]
[13]
o e
x=| ° 68)
+j |Xm| g (bc=67)/2 1
15
and 1)
[16]
- VI g% 0
V\/m— 1_XC7TX7TC O éeﬂ (69)

(17]

for X andW,,, respectively.
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