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Abstract

A new linear prediction method that improves IDDQ
test effectiveness is described. The method uses
statistical pre-processing of exhaustive measurements
on training devices to extract principal patterns in the
device IDDQbehavior and to generate a prediction
model. Fitting the model to device measurements
accommodates variations in the fabrication process.
Comparison with the Delta IODQtest method using the
SEMATECH S-121 data shows that for nearly equal
numbers of defective parts passed, the new method
fails fewer defect-tree parts.

I. INTRODUCTION

An important factor in the acceptance and use of IDDQ
testing as a way to detect defects in digital CMOS
integrated circuits is the method's ability to enhance
the fault coverage of an overall test program with a
small number of additional test vectors. Although an
IDDQtest makes no direct query of a device's ability
to function as designed, it can uncover defects in a
device that functional, stuck-at, and other tests miss.

With the advent of deep submicron fabrication
technologies, shrinking MOSFET geometries have
caused normal quiescent current to increase.
Discussions of the causes of MOSFET leakage are
found in [1]-[4]. Leakage current mechanisms such
as subthreshold conduction, gate oxide tunneling, and
short channel effects including drain induced barrier
lowering (DIBL) and gate induced drain leakage
(GIDL) confound a test method that seeks to
discriminate good devices trom bad devices with a
simple comparison to a threshold.

This paper describes an IDDQtest method that makes
use of statistical analysis of the larger device
population to extract information that can aid the test
effort. The method uses linear prediction to
discriminate between devices whose measurements
indicate normal leakage current and those that have
defect induced leakage currents. In prediction-based
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IDDQtesting, a model is developed with which device
IDDQresponses may be predicted. The residuals of
the predictions, the difference between actual
measurements and the predictions, are used to
determine if a device is defective or not. The key
idea is to test exhaustively a small sample population
of devices and to use information in the exhaustive
sampling to enhance the test effectiveness of the
small number of measurements made during on-line
testing. By fitting device measurements to the
model, the method can accommodate IDDQvariations
arising trom variations in the fabrication process.
Another way of describing the approach is that
principal patterns in the IDDQbehavior of known good
devices are found. The goodness of fit between these
patterns and measurements made on a device under
test is used to make a pass or fail decision on the
device whatever its absolute IODQlevels may be.

Section II discusses the motivation for the work and
presents a brief survey of prevailing IODQtest
methods. Section III discusses the rationale behind

predictive IDDQand gives a qualitative description of
a new empirical linear prediction method. Section IV
gives an overview of the mathematics behind the new
prediction method. Section V presents results using
the new method with the SEMATECH Project S-121
data [5]. Section VI summarizes the main points of
the paper and describes how the method might be
applied to production testing.

II. BACKGROUND

The traditional IDDQtest is based on two observations.
One is that a digital CMOS circuit, even a large one,
draws a negligibly small current trom its power
supply when the circuit clock is stopped (quiescent
mode). The other is that the presence of a defect
anywhere in the device can cause a non-negligible
supply current to be drawn if the circuit nodes
associated with the defect are driven to the right
states. Examples of defects that can elevate supply
current include resistive metal bridges, gate oxide
shorts, and MOSFET floating gates.
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In practice, however, even a defect-free CMOS
circuit does draw some current. In addition,
quiescent current levels vary from device to device
due to random variations in doping levels,
lithographic dimensions, and other fabrication
process parameters. A group of devices whose
internal logic states have been set equal under static
conditions will display a spread of IooQvalues around
some mean value. As long as quiescent current
variations in defect-free devices remain small,
discrimination between normal quiescent current and
defect-induced current is a straightforward task.
Establish a current threshold or limit, and declare as
defective any device whose supply current exceeds
the threshold for any of the test vectors applied.

With increased deep submicron leakage comes not
just higher nominal quiescent current but increased
variance too both within a single device among test
vectors and among many devices. The task of
discriminating good devices from bad is not as
straightforward, because normal quiescent currents
may be larger than defect currents. Under these
conditions, a simple threshold test is no longer
workable.

Researchers have refined the original IooQ test
method idea with several different approaches.
Gattiker et. al. [6][7] propose a current signature
method that looks at the set of IooQmeasurements on
a device under test after sorting the measurements
from smallest to largest. Discontinuities in the
resulting curve are interpreted to indicate the
presence of a defect. A differential current signature
method is also described which compares each IOOQ
measurement to a reference current value and
declares a device defective if any of the comparisons
exceeds a threshold. Thibeault [8][9] proposes a
differential IooQ method known as Delta IooQ in
which the differences between successive IooQ
measurements in a set are compared to a threshold.
Like the current signature method, this method is
insensitive to defects that elevate quiescent current at
all test vectors. Since such defects are likely not
caused by defects in active circuit components,
ignoring these kinds of defects can reduce the
number of functional devices rejected. Thibeault
shows that the variance of Delta IooQ residuals
(IoOQk+1- IooQk)is less than the variance of absolute
IooQ measurements since measurement variations
from chip to chip or from wafer to wafer contribute
to the latter but are partly eliminated by taking
differences. The result is that a single threshold
pass/fail criterion results in fewer misclassifications.
Daasch et. al. [10] make use of spatial proximity
among devices on a wafer to predict the behavior of a

device under test from its neighbors' IooQ
measurements. The residuals of these predictions are
shown to have reduced variance. Maxwell and
O'Neill [11] describe a current ratio method. The
method is based on the observation that a set of
devices will exhibit similar current signatures when
the IOOQvalues for each device are plotted in the
same vector order. This means that the ratio of
maximum IooQto minimum IooQfor a set of devices
is nearly constant even if the absolute IooQ values
among devices are very different. By applying to the
device under test a test vector likely to produce a
minimum (or nearly minimum) IOOQvalue, the
maximum IooQvalue for that device can be predicted.
A single absolute measurement on a device under test
can thus provide tailored thresholds for the device
against which subsequent comparison measurements
can be made. Jandhyala et. al. [12]-[14] apply
clustering techniques to separate good devices from
bad devices. Clustering methods attempt to classify
devices into groups with similar characteristics.
Clustering methods can sort devices into "good"
clusters and "bad" clusters without restriction to
simple, one-dimensional threshold comparisons.
Variyam [15] describes an IooQtest method based on
linear prediction of IooQcurrents. Each IOOQvalue
among a set of values for a given device is predicted
from the remaining IooQ values in the set. The
residuals of these predictions are applied to a
threshold test.

Each of these methods uses to a different degree
information from the overall set of test vectors and
device population. All methods except the traditional
single threshold IOOQtest also rely on techniques to
reduce the variability of IooQtest results to improve
the accuracy of discrimination procedures. The
traditional single threshold IOOQtest makes a decision
about a device based on whether any measurement
exceeds a threshold. The current signature and Delta
IOOQmethods are based on comparisons of individual
measurements with other measurements from the
same device. The nearest neighbor method bases
decisions on the set of measurements made over a
local population of devices in the neighborhood of
the device under test on the wafer. The ratio IooQ
method also uses a small population of devices to
determine the maximum to minimum ratio of IooQ
current for the set of devices to be tested. The
predictive and clustering approaches rely on
statistical analysis of larger device populations to
make pass/fail decisions. In doing so, these last two
methods make use of additional information
contained in the population where hidden correlations
can offer insight into device behavior. The method
proposed here uncovers the correlations among
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measurements at different test vectors from an
analysis of a large device population and uses them to
make pass/fail decisions.

III. PREDICTIVE IDDQ

A predictive approach to IOOQtesting recognizes that
because device leakage currents among defect-free
devices are correlated to one another through an
underlying set of process parameters, it is possible to
predict the IOOQvalue of one test vector from the looQ
values of one or more other test vectors. Fig. 1
illustrates how IOOQmeasurements correlate with
fabrication process parameters. Drainlsource-
substrate junction areas, MOSFET gate length Leff,
impurity concentrations, and gate oxide thickness are
a few examples of process parameters whose
variations give rise to varying leakage currents. The
mechanisms behind these leakage currents were
mentioned in section I. The leakage mechanisms
combine in state-dependent fashion to produce
varying looQ levels that are correlated with the
underlying process variations.

IDDQfor each test vector

pn junction gate length doping
area

gate oxide
thickness

Fig. 1. Test vector to fabrication process correlation.

If one can predict these looQ levels well, then the
residuals, the differences between measured and
predicted values, will be small and have less variance
than the original set of looQ measurements. A
prediction method that is related in some way to
process parameters and is based on the behavior of
defect free devices should therefore be able to track
process variations. It should reduce looQvariability
that is due to changes in process parameters alone.
On the other hand, the IOOQcurrent associated with a
test vector that activates a defect will not be well
predicted, and the prediction residual will be large.
As a result, large prediction residuals among devices
with defects will be well separated from the small
prediction residuals of defect free devices.
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The method of prediction described in [15] predicts a
test vector's IDOQvalue by taking linear combinations
of looQvalues from other test vectors. Appropriate
linear combinations are found using regression
analysis on data from a population of devices called a
training set. The method described in this paper also
uses information from a training set population but
performs the predictions based on a mathematical
model derived from the training set. looQvalues are
predicted not with linear combinations of other IOOQ
values from the same device but with linear
combinations of data vectors from an empirical
model derived from device responses. Also, devices
in the training set are measured for a greater number
of test vectors than are measured during production
testing. During production testing, the prediction
method makes use of information contained in the
additional test vectors measured from the training set.
The method therefore allows looQvalues for a device
under test to be predicted for test vectors not
measured during production testing.

Empirical Models and Linear Prediction

Empirical models are learning-based models,
obtained by numerically analyzing the data from
exhaustive testing of representative units coming off
the production line. They are based on the premise
that a selected lot of devices will manifest all of the
degrees of freedom or variability of the
manufacturing process. At the National Institute of
Standards and Technology (NIST), a user-friendly
software toolbox for optimizing empirical linear
model building has been developed. The toolbox,
High-dimensional Empirical Linear Prediction
(HELP), was developed specifically to meet the
requirements of test and measurement engineers.
While this paper discusses some of the methods used
by the toolbox, it does not describe the software
itself. Interested readers may refer to [16] and [17].
More detailed treatment of the methods used by the
toolbox can be found in [18]-[21]. The toolbox
incorporates a new approach for optimizing the
testing of electronic devices and instruments. The
approach is currently being used by mixed-signal
integrated circuit manufacturers to reduce the cost of
testing their products, and it is also being used at
NIST to reduce customers' costs for selected
calibration services. Examples of devices that can
benefit from the HELP approach range from
integrated circuit analog-to-digital (AID) and digital-
to-analog (D/A) converters to multi-range precision
instruments.

The HELP approach is based on a simple
mathematical model that relates device response over



all test vectors to a set of underlying variables. Once
an accurate model has been developed, algebraic
operations on the model can be used to select an
optimal set of test vectors and to predict the response
of a device under test at all test vectors. HELP places
special emphasis on empirical modeling using
measurement data collected previously on devices
similar to the unit under test. An efficient testing
strategy tries to identify the parameters that govern
the behavior of a device type and build a
mathematical model for it. For a given new device,
these parameters are then determined from a reduced
set of measurements, and the mathematical model is
used to compute the device response at all test
vectors. Empirical models require no detailed
knowledge of the internal device architecture to be
both accurate and efficient. In addition to test
optimization, the toolbox is useful for exploring the
structures that underlie the behavior of the tested
devices. It can reveal how many variables are
actually needed to explain the behavior and what
their characteristic signatures look like. It can warn
production engineers when the manufacturing
process has undergone hidden changes, and it may be
used to help diagnose the likely causes.

IV. APPLICATION TO IDDQDATA

Although the methods described in [18]-[21] were
developed for the testing and characterization of
analog and mixed-signal devices, they can be applied
to IDDQ data analysis as well. Since IDDQ
measurements consist of ordered pairs of digital input
codes and analog current outputs, IDDQtesting may be
viewed as a mixed-signal application. The data
analysis methods are based on a linear coefficient
matrix model A that relates the device's response y at
all candidate test vectors to a set of underlying
variables x. Once an accurate model has been
developed, algebraic operations are used to:

1. Estimate the parameters of the model from
measurements made at the selected test vectors.

2. Predict the response of the device at all candidate
test vectors from measurements made at the selected
test vectors. (The candidate test vectors are those
that were used in the training set.)

The model matrix A is an empirical model. It
requires no detailed design knowledge of the device
being tested. It is obtained numerically by analyzing
the data from exhaustive testing of devices similar to
the device being tested.

We start with an rnxp matrix of modeling (training)
data A, where m is the number of test vectors
measured in the training set, and p is the number of
devices in the training set. In the situation considered
here, p is larger than m. Each of the columns of A
contains IDDQdata for a single, known good device
taken over m test vectors. We want to extract a lower
dimensional approximation to these response
patterns, i.e. an rnxn (n < p) model matrix A such that
the columns of A can be approximated in terms of the
columns of A.

To construct an empirical model matrix from the
modeling set A, we take the singular value
decomposition [22] of A so that A = USVT. Here, U
is an rnxm orthogonal matrix, V has size pxm with
orthonormal columns, and S is a diagonal matrix
whose diagonal elements (Sl, S2,...,Sm)are the singular
values Sjthat are non-negative and decreasing. One
then chooses A=UI consisting of the n leftmost
columns of U. It is known that no model matrix with
n columns gives a better linear approximation of the
modeling data A with respect to a number of
approximation criteria. The columns of UI may be
viewed as the principal patterns in the device
behavior, and the numbers Sjdescribe the relative size
of each of these principal patterns. The model
dimension n is set by the user with the aid of various
diagnostic tools that are implemented in HELP. One
typically chooses n corresponding to a knee in a plot
of the logarithm of the singular values Sj if such a
knee is prominent. The idea is to include only those
model vectors that contribute significantly to
explaining variability in the data. The method is
closely related to Principal Component Analysis [22].

This method improves upon previous IDDQprediction
methods because the basis functions used in the
prediction are orthogonal. And, as will be seen,
through the training set, the method makes use of
information in all of the available test vectors for a
particular batch of devices, not just those used during
on-line testing.

Modeling

We now delete all rows of A except those
corresponding to the reduced test vector set of k test
vectors (the test vectors selected for on-line
measurement). Test vectors may be selected using
established fault models, or they may be selected
with HELP using an algorithm based on minimizing
prediction variance. The result is a row reduced
model matrix A, with k rows and n columns (n < k <
m). With a model determined and with test vectors
selected, we first estimate the parametervector x
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using least squares from a reduced number of IooQ
measurements ytaken from the device under test:

x::=X = (ATArl ATy. (1)

From the parameter estimate x, the predicted
behavior at all test vectors is given by

y=Ax =A(ATArIATy. (2)

In practice, one normally needs at least twice as
many test vectors as model vectors (k > 2n). While it
is intuitive that more test vectors are likely to find
more defects, from a modeling perspective, more test
vectors allow better sampling of device behavior
outside the space spanned by the model of good
devices. With fewer test vectors, the non-model
behavior of a defective device is harder to detect.

Fig. 2 illustrates with a matrix tableau how seven
model vectors and measurements at ten test vectors
predict the response of a device under test. The
procedure computes model parameters x from
device under test IOOQvalues measured at k test
vectors (big dots) and then uses x to predict the
device response at all of the device's candidate test
vectors, including those measured.

y AandA
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Fig. 2. Pictorial representation of equation (2).

The following statements can be made about this
procedure. 1) The regression constants are
determined using device under test measurements.
Predictions are based upon fitting the model to the
device under test, so even wildly different current
levels from device to device are accommodated.
2) The method uses information from all test vectors
in the training set, not just those used for the device
under test. This means that IooQvalues at test vectors
not measured on the device under test can be

predicted. 3) The model is nearly optimal for
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explaining the behavior of good devices. Prediction
residuals are generally smaller than for any other
linear model with the same dimension and the same
number of test vectors.

v. RESULTS

The last statement forms the basis for improved IooQ
testing methodologies. Smaller prediction residuals
allow a threshold test based on residuals to
discriminate better between normal quiescent and
defect-induced supply currents even when absolute
current levels are very different from device to
device. With this thought in mind, the SEMATECH
data were analyzed using a HELP-based prediction
method. The results were compared with the Delta
IOOQ method. The two methods and their
experimental definitions are as follows:

1. Delta IooQ: The maximum of the absolute value
of the difference between each test vector and the
next test vector is computed for each device:

Omax = max IYi- Yi-II, (3)

2. HELP Residual IooQ: The HELP prediction
residuals are computed at the selected test vectors:

r = y - A (AT Arl AT y, (4a)

wher~ A (AT Arl AT Y are the predictions at the
measured test vectors only, and the maximum of their
absolute values is recorded:

r max= max Iril. (4b)

Note: For the data analysis described in this paper,
each method was preceded by a pre-screening pass to
exclude from the validation set any device for which
IooQvalues at all test vectors were elevated (> 5 J.lA)
but nearly equal (ill < 0.01 J.lA). These devices are
likely bad but would pass the Delta IOOQtest as
defined above.

By taking the maximum over all IOOQtest vectors
used, each method produces a single number that is
ultimately compared to a threshold in order to make a
pass or fail decision. The threshold level is set by the
test engineer per an appropriate yield/quality cost
function.

The mathematical model used by the HELP method
to predict device response over all test vectors was
derived from training data using known good devices
only, i.e. devices that passed all tests at the wafer



level (SEMATECH failure code $$). 500 devices
were randomly selected from the SEMATECH job 1
data to comprise the training set. 1000 different good
devices and 900 bad devices (failure code AF) were
randomly selected for a validation set. The training
set was then used with HELP to predict device IDDQ
values over all of the 195 SEMATECH test vectors
using different combinations of model size, n, and
number of test vectors, k. Model size refers to the
number of principal component vectors in the model
whose appropriate linear combination predicts the
response of a device under test.

For each 'model size/test vector set' combination, the
prediction data and the prediction residuals were
computed. As an example, Fig. 3 shows measured
IDDQand HELP predicted IDDQvalues versus test
vector for an arbitrary good device in the validation
set. 25 model vectors and 50 test vectors were used
to predict the device response at all 195 test vectors.
For clarity, only the first 60 of the 195 predictions are
shown.

__ 195 validation measurements.50 device measurements
. 195 predictions

10 20 30 40 50 60

Test Vector

Fig. 3. Measurements predicted with 25 model vectors and 50 test
vectors (only the first 60 of all 195 predictions shown).

The ability of the HELP Residual IDDQprediction
method to reduce variances is illustrated in the
histograms in Fig. 4. For the 1000 good devices in
the validation set, the plot compares Delta IDDQ
values, HELP Residual IDDQvalues, absolute IDDQ
current values, and IDDQcurrent prediction residuals
using the method described in [15]. It should be
recalled that maximal values over all IDDQtest vectors
used are employed throughout. Maximum residuals
from the HELP predictions are seen to have the
narrowest distribution of all the methods. It turns out
that for bad devices, a proportional compression
leftward of the HELP Residual IDDQdistribution is
not observed. As a result, the distributions for good
and bad devices are separated better with the HELP

Residual IDDQ method than with the Delta IDDQ
method.
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Fig. 4. Histograms of current, delta-current, and residual-current
values from different test methods. 1000 fault free devices are

represented. All methods used 50 test vectors. The HELP method
used 25 model vectors.
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passed. HELP model size, n = 50.
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Fig. 5 supports this statement by showing the
percentage of test escapes that occur with the Delta
IDDQand HELP Residual IDDQtest methods. Fig. 5a
plots the percentage of good devices (out of 1000 in
the validation set) whose test result was greater than
the test threshold over a threshold range from 0 to
2~. The number of model vectors used by the
HELP method was 50. The figure shows good
devices failed versus threshold for cases when the
number of test vectors used by both methods was 60
and 100. It is evident that the HELP Residual IDDQ
method fails fewer good devices than does the Delta
IDDQmethod for any given threshold. The quality
performance (bad devices passed) associated with the
yield improvement seen in Fig. 5a is shown in Fig. 5b
which plots the number of bad devices passed as a
function of test threshold. The performance of the
two test methods is nearly identical. While the Delta
IDDQmethod does pass slightly fewer bad parts than
the HELP method, the difference in quality is small
compared to the increase in yield attainable with the
HELP method.
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Fig. 6. Test escapes. a) Good devices failed. b) Bad devices
passed. HELP model size, n = 10.
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Fig. 6 shows more of the same idea but using
different randomly selected devices comprising the
model and validation sets and different numbers of
model vectors and test vectors. In the figure, the
HELP Residual IDDQcurves result from using 10
model vectors with 20 and 40 test vector cases. The
results are similar to those in Fig. 5.

To illustrate how model size affects performance of
the HELP Residual IDDQmethod, Fig. 7 shows test
escapes as a function of both threshold and model
size when 20 test vectors are used. For a fixed
threshold, the number of good devices failed
decreases with increasing model size because the
model does a better job at predicting device behavior.
However, as the number of model vectors approaches
the number of test vectors, prediction residuals for
bad devices decrease as -well, allowing some
additional bad devices to be passed.
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Fig. 7. Test escapes. a) Good devices failed. b) Bad devices
passed. Number of test vectors was 20.

Another useful experiment considers the effect of
pre-sorting IDDQdata on the outcome of the Delta



IDDQtest method. In [15], Variyam defines a Delta
IDDQtest method in which prior to the differencing
operation, the data are first sorted from smallest to
largest. By sorting first, the method acts as a simple
prediction scheme. It is noted that the Delta IDDQ
method will result in smaller values with a narrower
distribution if the IDDQdata are indeed sorted from
smallest to largest prior to the differencing operation.
Fig. 8 shows the percentage of test escapes that occur
with Delta IDDQ(pre-sorted) and HELP Residual IDDQ
(sorting makes no difference to the HELP Residual
IDDQmethod). In this case, the number of test vectors
used was 20, and the number of model vectors used
by the HELP method was 10. The sorted Delta IDDQ
method now fails fewer good devices than the
unsorted Delta IDDQmethod (compare with Fig. 6a).

..-..
~
"d
~
~
'"
!I)
<;)

'>
!I)o
"d
o

8

30. ,
I,,,
\

- Delta IDDQ(pre-sorted)

- - - .HELP Residual IDDQ

Predictive Delta IDDQ(pre-sorted)

20

10

o
o 0.5 1

Threshold (p.A)

(a)

1.5 2

- Delta IDDQ(pre-sorted)
- - - . HELP Residual IDDQ

Predictive Delta IDDQ(pre-sorted)

~............
..........................................................

('~- - - - - - - - ,- - - - -- - - -
;i
§J
;1
:/,

------

0.5 1

Threshold (!LA)

1.5

(b)

Fig. 8. Test escapes when the IDDQdata are sorted from smallest to
largest prior to performing Delta IDDQ.a) Good devices failed. b)
Bad devices passed.

Fig. 8 also shows the performance of a third possible
test method. Since HELP makes available 195
predicted IDDQvalues, it is interesting to observe

Delta IDDQperformance using these predicted values.
For good devices, these 195 predicted values occupy
nearly the same range as the 20 measured values
leading to smaller Delta IDDQvalues after sorting. As
shown in Fig. 8a, this method fails considerably
fewer good devices than the other two test methods.
Again, as a sanity check, Fig. 8b shows the quality
performance associated with the yield improvement.
The method does pass a slightly larger number of bad
devices than do the other two methods. The meaning
of these results is not entirely clear at this time. It is
worth noting that without pre-sorting, Delta IDDQ
performance using predicted values is not
significantly better than standard Delta IDDQusing
only measured values.

2.5
........................................................................................................

~ 21

j 1.51

to
.....
o
~
i:;;)

0.5

Delta IDDQ

Delta IDDQwith Pre-Sorting
Linear Prediction - Previous Work

HELP Residual IDDQ

---------------------------

-.-.-.-.-.-.-.-.-.-.-.-.-.-.--

Qo 20 40 60
HELP Model Size

80 100

Fig. 9. Percentage of good and bad devices in region where good
and bad device distributions overlap. 1900 devices and 195 test
vectors were used.

2

Finally, the performance of the HELP method is
compared with three other methods when all 195
SEMATECH IDDQmeasurements are used. With a
greater number of test vectors, the accuracy of all
methods tends to improve because distributions for
good and bad devices are better separated. A
measure for this separation is the overall fraction of
good plus bad validation devices whose test results
range from the smallest value for all bad devices to
the largest value for all good devices. This overlap
region typically is located near IDDQvalues of 2 j..lAto
3 j..lAfor all methods. With HELP Residual IDDQ,the
size of this overlap region is usually less than
0.3 percent of all validation devices (good and bad) if
the model dimension is less than 30 and larger if
higher model dimensions are used. For Delta IDDQ,
the fraction tends to be somewhat higher, and for the
regression method used in [15], the fraction is
slightly higher still. With the Pre-sorted Delta IDDQ
method, the fraction is highest due to the consistent
presence of a few bad devices with very low delta
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values. A typical situation is depicted in Fig. 9. Put
differently, good and bad devices could be separated
almost completely with HELP Residual IDDQif the
threshold is chosen properly and the model
dimension is not too high.

CONCLUSIONS

A new method for analyzing IDDQdata is proposed.
The method uses an empirical model to predict IDDQ
measurements for devices under test from a small set
of test vectors and infonnation obtained from a set of
known good training devices. The key idea is that
IDDQmeasurements over many test vectors are
correlated since they are related to a small number of
underlying process parameters. By detecting and
characterizing these correlations, a better distinction
can be made between variations in nonnal
background currents and defect induced currents.
The method introduces the differences between
measured IDDQvalues and values predicted by a
model of known good devices as a decision criterion.
Small residuals indicate that the device is well
described by the Jl10deland therefore likely to be
fault free. The method is implemented in the HELP
software toolbox developed at NIST. An alternative
method that perfonns a Delta-IDDQanalysis on pre-
sorted predicted values is also suggested.

The methods are applied to a portion of the
SEMATECH dataset, and it is shown that both
methods lead to increased yields with small increases
in the percentages of bad devices that are passed. As
in other IDDQtest methods, the increase in yield
comes from a decrease in the variance of the
distribution for good devices relative to the variance
for bad devices. The relative decrease for the HELP
Residual IDDQmethod is shown to be greater (better)
than the corresponding decrease obtained with other
methods.

Fig. 10 illustrates how a model based testing
procedure might be applied to production testing. In
an off-line phase of the test flow, devices are selected
to comprise the training set. These devices need to
be screened to ensure that the training set consists of
only defect free devices. How best to perfonn this
screening is a non-trivial problem, the treatment of
which exceeds the scope of this paper. Empirical
linear prediction software then builds a model from
the training data. During on-line production testing,
IDDQmeasurements are made only at the selected test
vectors. These measurements are then used to predict
the device response at all training set measured test
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points, and a pass or fail decision is made using either
of the two HELP based methods described.

Wafer Lot

Fig. 10. Possible model based production test flow.
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