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Uncertainty of Oscilloscope Timebase
Distortion Estimate

C. M. Wang, Paul D. Hale, Kevin J. Coakley, and Tracy S. Clement

Abstract—We study several problems related to the characteri-
zation of the timebase in high-speed sampling oscilloscopes. First,
we examine the bias of using the method of the first-order approx-
imation to estimate the additive and time jitter noises, and present
a procedure to adjust for the bias in the estimates. We then study
the bias and variance of a least-squares timebase distortion esti-
mate that uses multiple sets of waveforms. Based on simulations, a
method for calculating the uncertainty of the timebase distortion
estimate is proposed. We also study the effects of amplitude and
phase drifts, as well as jitter error on the estimation of timebase
distortion. Results are shown using simulations with parameters
that are closely related to those we observe in our laboratory.

Index Terms—Curve fitting, harmonic distortion, least squares
methods, mean square error methods, timing jitter.

I. INTRODUCTION

H IGH speed sampling oscilloscopes suffer from several
nonideal properties that must be characterized and com-

pensated for. One of these effects is timing errors. At theth
sample, the timing error is the sum of a deterministic timebase
distortion (TBD) , and a random timing jitter error . Thus,
the th sample of the signal of interest as a function of time
is given by

(1)

where is the target time interval between samples andis
additive noise. The jitter and additive noises are independent
zero-mean random variables with variancesand .

The problem of estimating these effects based on sine-wave
data has been studied by several authors. Pintelon and
Schoukens [1] present a sine-wave fitting procedure for esti-
mating the harmonic distortion of the sampling oscilloscopes
assuming there is no TBD. Schoukens, Pintelon, and Van-
dersteen [2] propose a fitting procedure that eliminates the
TBD restriction. Their approach, however, uses a parametric
TBD estimation method [3] that is known to perform poorly
when the TBD has discontinuities [4]. Recent work [5]–[7] has
overcome this problem by estimating a nonparametric TBD
based on waveforms of multiple phases and frequencies.

All the above fitting procedures use the weighted nonlinear
least squares (LS) for parameter estimation. The weighting

Manuscript received August 18, 2000; revised November 14, 2001. P. Hale
was supported in part by the Office of Naval Research and the Space and Naval
Warfare Systems Center.

C. M. Wang and K. J. Coakley are with the Statistical Engineering Division,
National Institute of Standards and Technology, Boulder, CO 80303 USA.

P. D. Hale and T. S. Clement are with the Optoelectronics Division, National
Institute of Standards and Technology, Boulder, CO 80303 USA.

Publisher Item Identifier S 0018-9456(02)01388-8.

scheme is to weight each data point proportionally to the
inverse of its variance. The variance can be obtained either
from independent, repeated measurements or (if we have prior
information on the additive and jitter noise variances) from the
approximate model

(2)

where is the derivative of the measured signal evaluated
at . On the other hand, (2) can be used to esti-
mate and if repeated measurements and TBD estimate are
available. Since (2) is derived from a first-order Taylor expan-
sion of (1) on , it is of interest to study the bias of estimating

and using (2). In this paper, we derive the exact formula
relating to and for the sine-wave data. The result
can be used to produce and estimates which have smaller
bias than that of estimates obtained from (2).

In practice, the characterization process starts by selecting
a pair of appropriate frequencies to generate waveforms. At
each of two frequencies, signals are sampled at different starting
phases. It is shown [7] that if multiple sets of waveforms are
used to estimate the TBD by averaging, only two signals in
quadrature from each frequency are sufficient. In our approach,
we measure 100 sets of four waveforms (see [7] for details re-
garding the estimation of TBD). Although the starting phase for
each waveform need not be the same among the 100 sets of mea-
surements, they are often very close and the 100 waveforms are
usually treated as repeated measurements. The sample variances
are computed from the waveforms and are used to construct the
weights in the LS procedures. In this paper, we study the ef-
fects of varying phases and amplitudes, as well as varying jitter
noises, on TBD estimation, if they were (wrongly) assumed to
be constant among waveforms.

The use of 100 sets of four waveforms allows us to examine
the variation among the 100 individual TBD estimates. In this
paper, we study the bias and variance of the final TBD estimate
(the average of the 100 TBD estimates), and propose a method
for computing the uncertainty of the final TBD estimate.

II. ESTIMATION OF ADDITIVE AND JITTER NOISES

We first derive the exact relationship between and
and for the simplest case

(3)

where , , , and are, respectively, the offset, amplitude,
frequency, and phase of the sine wave. Denote
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TABLE I
BIAS FACTORS OF THEFIRST-ORDER APPROXIMATION

, and assume that and are independent Gaussian noises;
it is shown in the Appendix that

(4)

Eq. (4) differs from (2) by a scaling coefficient [on
term]

and an offset

If we express in units of the sample period , then the mag-
nitude of and depends only on the ratio , where is
the sampling frequency. Table I displays the square root of
and for some combinations of and .

Table I indicates that, given the frequency, the poor choice
of the sampling frequency or large can cause the first-
order approximation to produce and estimates with sub-
stantial bias. To illustrate this further, simulations were con-
ducted. Repeated waveforms were generated from a nominal
sine wave with an amplitude of 0.2 V and a frequency of 16
GHz. The measurements were sampled at 2048 points in a time
window of 4 ns. This yields . One value of ,
0.002 V (1% of the amplitude), and two values of, 1 ps (about
50% of the sample period) and 2 ps, were used. Based on the
generated waveforms, the method of the first-order approxima-
tion was employed to estimate and . The process was re-
peated 100 times. Table II displays the means of the 100and

estimates for sample sizes (number of repeated waveforms)
150 and 300.

The (empirically obtained) bias of the and estimates
in Table II agrees well with the (analytical) results in Table I.
It shows that the first-order approximation can adequately esti-
mate the jitter noise variance but not the additive noise variance
for the sampling frequency considered.

To reduce the estimation bias, one can work directly on (4) to
obtain the parameter estimates using the nonlinear LS. A sim-
pler method is to adjust the results of the first-order approxima-
tion based on (4). Specifically, let and be the estimates of

TABLE II
ADDITIVE NOISE AND JITTER ESTIMATES USING THE

FIRST-ORDER APPROXIMATION

TABLE III
ADDITIVE NOISE AND JITTER ESTIMATES USING THE ADJUSTED

FIRST-ORDER APPROXIMATION

and obtained using the first-order approximation, then the
bias-adjusted estimates, denoted byand , are given by

(5)

(6)

and were obtained by equating the coefficients of the constant
term and of (2) and (4).

Table III displays the means of the 100and based on the
same simulated data used to produce Table II. Table III clearly
shows the effectiveness of the adjustments.

Eq. (4) was derived with the assumption that there is no har-
monic distortion in the model. If there is harmonic distortion,
the exact relationship between and and is much
more complicated [for example, see (25) in the Appendix for
the second-order harmonic case]. However, if the amplitudes
corresponding to the harmonics are small relative to the funda-
mental amplitude, the adjusted estimates of (5) and (6) can still
be applied to reduce the bias. To illustrate, we added a second-
order harmonic term, with the amplitude of the harmonic equal
to 5% of the fundamental amplitude, to the sine-wave model
used in the simulation above, and compared the two estimation
methods. Table IV displays the means of the 100 estimates of the
jitter and additive noises for each of the two approximations. It
shows that the adjustments in (5) and (6) are useful, even in the
presence of harmonic distortion. We also obtained the LS esti-
mate of and of the simulated data based on (25). Both esti-
mates wereunbiasedfor the simulation parameters and sample
sizes considered.

A final remark on the first-order approximation is in order.
The first-order approximation is derived based on the assump-
tion that is small so the high-order terms of can be ig-
nored. Even if is small, the bias of the estimate ofcan still
be large. If an estimate of with a small bias is desired, either
the exact/adjusted method or other means of obtaining the ad-
ditive noise should be used.
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TABLE IV
ADDITIVE NOISE AND JITTER ESTIMATES WITH HARMONIC DISTORTIONS

III. U NCERTAINTY OF TBD ESTIMATES

Estimation of additive and jitter noises requires the knowl-
edge of the TBD to evaluate the time derivative , while
the TBD estimation routine needs the estimate ofand to
construct the weights for the LS procedure. Thus, an iterative al-
gorithm is used. We begin with a set of equal weights, and then
estimate the harmonic distortion, TBD, amplitude, and phase
parameters. With these estimates in hand, we estimate the jitter
and additive noises and use them to form a new set of weights to
obtain the TBD and other parameters. This process is repeated
until convergence is attained.

The measurements we use in the iterative procedure consist
of a 9.75 GHz signal and nearly quadrature signal, and a 10.25
GHz signal and nearly quadrature signal. The sinusoidal sig-
nals are generated using an inexpensive 100 kHz–3.2 GHz syn-
thesized signal generator, whose 5 MHz reference is provided
by a hydrogen maser that is maintained by the NIST Time and
Frequency Division. The synthesized signal is multiplied by a
5 multiplier and amplified and filtered to ensure spurious har-
monics of the input signal are less than60 dB (re: carrier) and
spurious harmonics of the output signal are less than50 dB
(re: carrier). The oscilloscope is triggered from the fundamental
signal generated by the signal generator, and the relative phase
of the measured waveform is set by changing the trigger level of
the oscilloscope. The model for these 4 waveforms is given by

(7)

where , , 2, 3, 4, is the harmonic order,
GHz, GHz, ,

and . The noises and are assumed
to be independent and identically distributed with zero means
and standard deviations and , respectively. The model
allows different additive and jitter noise standard deviations for
different waveforms.

To improve the TBD estimate we average results from 100
sets of 4 waveforms. Let be theindividual TBD estimate
obtained from the th set of waveforms, ,
then thefinal TBD estimate is given by

(8)

The uncertainty of , expressed in terms of the root mean
square error (RMSE) and averaged over thetime points, is

Fig. 1. Timebase distortion used in the simulations.

given by

E (9)

where E is the expected value of . We use simulation ex-
periments to illustrate a method for obtaining the uncertainty of
the TBD estimate.

A. Simulation Study 1

The simulation parameters used here are closely related to
those we observe in our laboratory. We use a 4 ns time window
with 4096 points ( ). The nominal TBD , shown in
Fig. 1, has a discontinuity at 3 ns from the starting time. The
harmonic order used is 3. We generate 100 sets of four wave-
forms. Each set contains a 9.75 GHz signal and nearly quadra-
ture signal, and a 10.25 GHz signal and nearly quadrature signal.
The fundamental amplitudes for waveforms 1, 2, 3, and 4, are
0.1909 V, 0.1911 V, 0.2547 V, and 0.2548 V, respectively. The
amplitudes corresponding to the second and third harmonics are
10 and 5% of the fundamental amplitudes. The additive noise
standard deviations for waveforms 1, 2, 3, and 4, are 0.001 15
V (0.60% of the amplitude), 0.001 15 V, 0.000 67 V (0.26%),
and 0.000 67 V. The jitter standard deviations for waveforms
1, 2, 3, and 4, are 0.74 ps (75.8% of the sample period), 0.79
ps (80.9%), 0.84 ps (86.0%), and 0.88 ps (90.1%). The starting
phases of theth waveform are the same among the 100 sets of
data. The iteratively weighted LS procedure described above is
used to obtain the TBD estimates and then . The process
is repeated 200 times. Let be the final TBD estimate of the
th simulation sample, , then the mean square
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error of the 200 final TBD estimates, an estimate of in
(9), is given by

(10)

If we denote /200, that is, the mean final TBD
estimate of the 200 simulation samples, we can further partition

as

(11)

The terms on the right side represent, respectively, the bias and
the variance of the final TBD estimate (based on the 200 simu-
lation samples). For the above simulation, we obtain

ps ps ps (12)

The bias is small relative to the variance, and hence the uncer-
tainty of the final TBD estimate can be obtained from the vari-
ance of the final TBD estimate. Furthermore, the variance of the
final TBD estimate can be estimated from the variance of the
individual TBD estimate , . Specifically,

(13)
where is the sample variance of the 100 TBD esti-
mates, each of which is obtained using four waveforms. This
variance is averaged over the 4096 points and is given by

(14)

Fig. 2 displays the square root of for
. Each of them is an estimate of the RMSE

u ps. The mean of these 200 uncertainty estimates
is 0.0428 ps. The results indicate that the standard error of
the individual TBD estimates is a reasonable estimate of the
uncertainty of the final TBD estimate.

B. Simulation Study 2

Under the model in (7), the uncertainty of the TBD estimate
depends on the magnitude of and . If we double the addi-
tive noise standard deviations and keep the rest of the simulation
parameters the same as used in simulation study 1, the bias and
the variance of the TBD estimate based on the 200 simulation
samples are found to be

ps ps ps (15)

The result indicates that the additive noises affect primarily the
variance of the TBD estimates.

C. Simulation Study 3

If we double the jitter standard deviations and keep the rest of
the simulation parameters the same as used in simulation study

Fig. 2. Uncertainties of the final TBD estimate for the 200 simulation samples.

1, the bias and the variance of the TBD estimate based on the
200 simulation samples are found to be

ps ps ps (16)

Thus, the jitter noises affect both the bias and variance of the
TBD estimates, and the effect on the variance is larger compared
to the additive noises.

The uncertainty we propose here is integrated over time and
ignores any covariance structure in time. We use the uncer-
tainty to monitor the TBD measurements in experiments for es-
timating the magnitude and phase response of a 50 GHz sam-
pling oscilloscope using the “nose-to-nose” method [8]. Re-
cently, we have observed in a range of 0.0389 to 0.0392
ps for 13 TBD measurements over a span of 42 days. For future
work, we plan to study the effect of TBD uncertainties on the
estimation of the magnitude and phase response of sampling os-
cilloscopes with 50 GHz bandwidth.

IV. SENSITIVITY ANALYSIS OF TBD ESTIMATION

In general, the starting phaseof the th waveform in set
need not be the same as the starting phaseof the th wave-
form in set . However, if the starting phases of the 100th
waveforms are the same, we can then treat these waveforms as
repeated measurements and use them to estimateand .
In real measurements, both amplitudes and phases may vary or
drift slowly. The estimation results indicate that in our typical
10 ns measurements, the amplitudes vary within0.2% of their
mean values, and the phases drift about 15, over the 100 sets of
waveforms. In this section, we use simulations to study the ef-
fects of varying amplitudes and phases, as well as varying jitter
noises, on TBD estimation if the waveforms are treated as re-
peated measurements.
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A. Simulation Study 4

We employ the same simulation parameters used in simula-
tion study 1 for , , , , , and elapsed time. We
allow the amplitudes to randomly vary within1% of their
nominal values, and the phases to drift 31.6for waveforms 1
and 2 (corresponding to 90 ps at 9.75 GHz) and 33.2for wave-
forms 3 and 4 (90 ps at 10.25 GHz), over the 100 sets of wave-
forms. The iteratively weighted LS procedure, treating the 100
waveforms as repeated measurements, is used to obtain the TBD
estimates. Again, the process is repeated 200 times. The bias
and the variance of the TBD estimate based on these simulation
samples are found to be

ps ps ps (17)

The estimated RMSE in (17) is 3.5% larger than that in (12).
The mean of the 200 is 0.0483 ps. Thus, the variances of
the individual and final TBD estimates are slightly higher than
those in simulation study 1 because of varying amplitudes and
phases. Overall, the results indicate that a mild violation of the
assumption of constant amplitude and phase, used by the TBD
estimation procedure, has a small effect on TBD estimation.

B. Simulation Study 5

In the next simulation experiment, we study the effect of
varying jitter errors on TBD estimation. Let be the jitter
standard deviation of waveformin set , where , 2, 3, 4
and . Previously, we assumed that

for all (18)

If are different, then the weighting scheme constructed
[under the assumption (18)] and used by the estimation proce-
dure is not optimal, resulting in a less accurate TBD estimate.
In this simulation, we allow the jitter standard deviations to ran-
domly vary within 10% of their nominal values (0.74, 0.79,
0.84, 0.88) ps. The iteratively weighted LS procedure, assuming
(18), is used to obtain the TBD estimates. The bias and the vari-
ance of the TBD estimate based on the 200 simulation samples
are found to be

ps ps ps (19)

The estimated RMSE in (19) is almost identical to the RMSE
in (12). Thus, a small departure from (18) has no effect on TBD
estimation.

If (18) is seriously violated, the correct approach is to esti-
mate additive and jitter variances, and construct the weights sep-
arately for each set of four waveforms. Such an approach, how-
ever, requires the computation of in (2). Since repeated
measurements are not available in this case, we need to ob-
tain by other methods, such as repeated measurements
from a similar experiment performed previously. Vandeersteen
and Pintelon [9] also suggest the use of the square of the resid-
uals from a sine fitting estimation procedure as an estimate of

.

V. CONCLUSION

We examined the bias of a commonly used method for esti-
mating the additive and jitter noises of sampling oscilloscopes.
The bias is not negligible if the sampling frequency is not prop-
erly chosen and/or if the jitter noise is not small. We developed
a procedure to adjust for the bias. The procedure is based on a
model relating the variance of the measured signal and the ad-
ditive and jitter noises. Simulations were performed to show the
effectiveness of the adjustments.

We showed that the bias of a least-squares TBD estimate ob-
tained from multiple sets of waveforms is small relative to the
variance of the estimate, allowing us to compute the uncertainty
of the TBD estimate from the standard deviation of individual
TBD estimates of each set of waveforms. We use this uncer-
tainty to monitor the TBD measurements over time.

APPENDIX

DERIVATION OF THE VARIANCE IN (4)

We first state the following preliminaries (for example, see
[10]): if is distributed as a Gaussian with meanand variance

, then

E (20)

E (21)

(22)

(23)

Now

where . Thus, the variance of involves the variances
of and , the covariance between , and

, and terms. The first two variance terms can be ob-
tained from (22) and (23) with and . For the
covariance term, we have

cov

E E E

E E E

and Eq. (4) can be easily verified.
Next, we derive the variance of for a second-order har-

monic model

(24)
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The variance of consists of 4 variances and 6 covariances of
and variables. The variance terms can be evaluated using

(22) and (23). Denote and use the results of

the covariance terms can be shown to be

cov

cov

cov

cov

cov

cov

Using these results, we have

(25)

where
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