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A new triple correlation technique for measuring the complete intensity profile of ultrashort
optical pulses is described. The triple correlation preserves the phase information of the
input pulse so that a reconstruction of the triply correlated signal will provide a unique
reconstruction of the input. The new technique described here uses two second-order,
nonlinear optical interactions for the generation of a triply correlated signal. A derivation of
the measured triple-correlation signal and the pulse reconstruction is given. The effects
of noise on the measured signal are also examined.

1. INTRODUCTION

The rapid progress of short-pulse laser technology has
produced a concomitant increase in the use of ultrashort
laser pulses for measuring various transient phenomena
(see Refs. 1-6 for examples). The advantage of using ul-
trashort optical pulses for studying transient phenomena is
the high temporal resolution offered by measurement tech-
niques that use these pulses. These measurement tech-
niques are pump-probe techniques, where one optical pulse
is used to pump, or create, an event and another optical
pulse is used to probe, or interrogate, that event or some
manifestation of that event. Moreover, because the pump
and probe pulses may be derived from a single pulse, mea-
surement jitter can be eliminated. As the time duration of
the phenomenon under investigation approaches the opti-
cal pulse widths that are used to measure them, it becomes
essential that the temporal pulse profile be accurately
known in order to correctly describe the phenomenon.

Currently available electronic test equipment do not
have the temporal resolution necessary to measure the pro-
file of ultrashort optical pulses. The fast response times and
low jitter needed to measure these pulses are provided by
only a few techniques. Other than the streak camera (the
fastest measured response time being about I ps7 ) all these
techniques use self-measurement schemes that exploit the
extremely fast nonlinear optical response times found in
some dielectric materials. These nonlinear optical tech-
niques are based on the correlation of multiple replicas of
the input pulse via second- or third-order nonlinear optical
interactions in a material.

Degenerate four-wave mixing (DFWM), a third-order
nonlinear optical technique, uses the correlation of three
replicas of the input pulse to profile the input pulse 8-'2

without loss of phase information. The drawback with
DFWM is the use of the third-order nonlinear susceptibil-
ities, which are often so small as to require pump intensi-
ties that approach, or exceed, the damage threshold of the
material.' 3 "4 The commonly used intensity
autocorrelation 5-18 uses two replicas of the input pulse

and does not preserve the phase information of the pulse,
so that any asymmetries will not be recovered from the
measured signal. Interferometric autocorrelation' 9 tech-
niques require additional measurements (and equipment)
to completely describe an optical pulse, thereby increasing
the cost and complexity of analysis. Other double-
correlation techniques2 0 '21 require nonlinear processes to
modify the pulse in one (or both) of the arms of an auto-
correlator. Unless these processes are well characterized it
will be impossible to accurately reconstruct the input pulse.

A new triple-correlation method for measuring the
complete temporal intensity profile of ultrashort laser
pulses is proposed. Gamo first suggested triple correlation
techniques for measuring optical pulses in 1963 when he
proposed electronically mixing the outputs of three detec-
tors that had each received a time-delayed portion of the
input pulse.22 With the ultrashort optical pulses used to-
day, this technique would not be practical, though it does
present the idea which is used in this study. In 1983, Wir-
nitzer proposed a triple correlator 2 3 based on the same
design as Gamo's but using nonlinear optics to mix the
three beams. The problem inherent in this technique is the
high input powers required in order to observe the third-
order effect.

11. PROPOSED TRIPLE CORRELATION USING
NONLINEAR OPTICAL METHODS

The triple correlation technique proposed here for the
measurement of ultrashort optical pulses uses two consec-
utive second-order nonlinear interactions of replicas of
these pulses in a dielectric crystal. Because this technique is
a triple correlation, it requires the interaction of three rep-
licas of the optical pulse. The first nonlinear interaction,
between two of the replicas, generates a second harmonic
signal. The next interaction involves this second harmonic
and the third replica. The output of this interaction may be
either at the sum or difference frequency of the two inputs.
As compared to Wirnitzer's proposed triple correlator, this
proposed technique takes into consideration the need to
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eliminate unwanted background signals and to optimize
phase matching, and the limitations of the nonlinear prop-
erties of real materials. This triple correlation technique
offers advantages over the previously discussed techniques
for the measurement of ultrashort optical pulses because it
will not require additional techniques (such as pulse am-
plification, compression, etc.) to profile the pulses.

The process of measuring ultrashort optical pulses us-
ing this triple-correlation technique is to first (a) obtain
the two dimensional data corresponding to the triply cor-
related signal; (b) perform a two-dimensional Fourier
transform on this data to obtain a bispectrum; (c) reduce
the bispectrum to normal spectrum; and finally (d) inverse
Fourier transform the spectrum to obtain the recon-
structed profile of the ultrashort optical pulse. In Sec. 11 A,
we derive an expression describing the triply correlated
signal; in Sec. II B we present the two-dimensional Fourier
transform and develop the bispectrum reduction technique.
Simulations of the triple correlation and the effects of noise
on the reconstructed signal are presented in Sec. III.

A. Derivation of triple-correlation signal

The triply correlated signal intensity will be derived
here. Let the fields of the three interacting optical waves be
(see Fig. I)

E(t) =A(t)cos[wt-i- t(t)], (la)

E(t+ rl)=B(t+ rl)cos[wt+ wr, + PD(t+ -rl),
(lb)

E(t + r2 ) =C(t + r2 )cos[wt + wr2 + 1(t + r 2 ) ],
( Ic)

where Il and r2 are the time delays between the pulses. Let
the interaction constants for the first nonlinear interaction
be d, and for the second interaction be d2, where these

NLM
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NLM2
TO DETETOR

E2(t, t
"V,2)

E(t 4+ T2)

FIG. 1. Simple geometry for generating a triply correlated pulse by using
two nonlinear interactions. E(t), E(t + At), and E(t + r2) represents the
optical fields of the three laser pulse replicas, where ir and 1r2 are delays.
El (ti-) is generated by the interaction of E(t) with E(t + rl-) in nonlin-
ear medium, NLMI . The triply correlated field, E2 (tr,,r 2 ), is created by
the interaction of EI(t,1-)) and E(t ± r2 ) in NLM2.

constants include geometrical factors as well as the nonlin-
ear optical coefficients. Also, for simplicity, let the argu-
ment of the cosine functions in (I) be a, b, and c for E(t),
E(t + il), and E(t + 72 ), respectively. Considering the in-
teraction in the first crystal, between E(t) and E(t + rt),
the optical field generated is

E'l(tr) =dl [E2 (t) + E2(t + r) + E(t)E(t + r)]

=di [A 2 (t)cos 2 (a) + B 2 ( t + r)cos2 (b)

A (t)B(t + i-1)cos(a)cos(b) ]. (2)

If the optics are arranged so that the self-second-harmonic
generated pulses do not contribute to the measured signal,
we get

El (t,7-1) =di [A(t)B(t + -rj)cos(a)cos(b) 1.

Now we let El interact with the pulse of the last beam,
E(t + T2). Assuming the optics are arranged so that we do
not detect the self-second-harmonic pulses, we get

E2(t,ri,r2)-dld2El(tT 1)E(t + r2) = (djd2)A(t)B(t + ri)C(t-+ r2)cos(a)cos(b)cos(c)

=[(did2 )/4]A(t)B(t+r])C(t+ r 2 )[cos(a+b+c) +cos(a+b-c)

+cos(a-b+c) +cos(a -b-c)].

The quantity measured by the detector is the integral of the intensity of the pulse described by E2, and is given by

I,('rlr2) =l 1/ rc E'j(t,,rj,r2)dt,

(3)

(4)

where 6 is the wave impedance of the nonlinear material. Putting (3) in (4) and noting that the time average of the
squares of the cross products of the cosine terms will be zero and the time average of the squared like-terms (four of them)
will be 2, we get

A2(t)B2(t + r1)C2 (t + 2)dt= (did2)
2 A2(t)B2(t + i-1)C

2(t + i-2) dt. (5)

It is important to note that 1 is a function of two delays, rl and r2. Next, the signal recovery procedure is discussed.
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B. Signal recovery

Equation (5) needs to be rewritten for frequency domain analysis,

I(fIJ 2)-= f f It(rl,i-2)exp[ - i2ir(rLf1 + -2 f 2) ]drI-2

did2 )2 IL L
{A 2(t)B 2(t +i-i)C(t +r2)exp[ - i2-r(11 ~fl +,rzf 2 ) ]Jdt drtdr2 .

Performing the integrations, we can obtain,

I(fl$2) = [ (dld2 )214']J(f1)1(f2)J( - ,- f2).

This result is the bispectrum. The discrete analog of
would be obtained after acquiring the two-dimens
(2-D) data and performing a discrete Fourier transf
Examination of the discrete bispectrum reveals

1i;.= [ (d 1d2 ) 2 /46]IJ/~v - i-r

where the i and j subscripts denote specific frequent
The next step is then to convert the discrete bispec
given by (8) into a (regular) discrete spectrum. B
doing this we can simplify the conversion by making u
symmetry relationships2 4 and the fact that I(r l ,Tr2 ) is
(that is, zero imaginary parts). These symmetry rela
ships are shown graphically in Fig. 2. Because I(r l,7
real, I(f,f 2) is Hermitian, and consequent
I (f1 ,f 2 ) = I*( (-fi, -f 2). This reduces the problem
analyzing the entire bispectrum to analyzing only

a

4'

f2

/
/

-A

C

f I

J.1 ..

N

(7)

If (7)
,ional
form.

(6)

quadrants. We can simplify even further. From (7) and
ignoring the constants, we see

I (f f 2 ) =I (fI I (2f)I ( - A -f2)

=I(f 2)I( 1 )I( - f2 - f)

(9)

(8) Similar symmetry relationships can be found for

ncies. I(fl, - f -f 2 ) and I( - f -f2 ,f 2 ),
strum
3efore I(fA , f' -f2)=I(flI( -A -f2)I[-(-fA
use of -f2)f-fl]
is real
ation- =I( -A -f 2 )I(f 1 )I(f 2 )
,r2) is
gently =I(-f l-f 2 ,f 2 )- (10)

em of The symmetry and Hermiticity of I(fl, f 2 ) shows that
Y two there is only one unique octant in the bispectrum. This

octant in turn can be used to produce a unique spectrum
corresponding to the original triple-correlator input pulse.

b The inverse fourier transform of this spectrum provides
our time domain waveform, which is a unique temporal
profile of the input ultrashort optical pulse.

To reconstruct the spectrum from the bispectrum, first
reexamine (8),

fiy
iij,=DI Ijl*(+j)' (011)

where the conjugate has been used in place of the negative
frequencies and D represents all constants. In the octant of
the bispectrum that will be used to obtain the spectrum,

d both i and j are non-negative and i + j must be less than or
equal to the maximum value of either i or j, which is N.
Thus, the usable part of the unique octant is reduced by
half and the equation needed to obtain the spectrum is,

f I Iui+j)=[(1iJi)1I~i1j*Ji<N; 0<i~J<N. ( 12)

The zeroth harmonic and next two harmonics for the spec-
trum will now be calculated. These are given by

FIG. 2. Symmetry relations of bispectrum. Different areas of the bispec-
trum contain redundant information, and this fact is more easily seen by
separating out the bispectrum symmetry relationships that give rise to the
redundancy. These symmetries are caused by (a) hermiticity of the data,
(b) I(1,2) = 1(2,1), and (c) 1(1,- I-2) = 1(-I-2,2). The shaded
areas in (d) exhibit the redundancy of bispectrum, showing that only one
unique octant exists.

(13a)

(13b)

I2=[(I U,)(IJI )I*- ( 13c)

Because the zeroth (ij = 0) component of the bispectrum
is real, so will be the zeroth (i + j = 0) component of the
spectrum. The first harmonic (i + j = I), however, is also
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real. Therefore it appears we have lost the phase informa-

tion for the first harmonic of the spectrum; this point will

be dealt with in more detail later. The apparent loss of the

first harmonic phase component is a linear phase error, and

is more clearly seen from the following representation of

(12) to compute the harmonics I2, I3, and I4:

12 =M2 exp i4)2

= [(MAl1, 1)(MI1 A<) exp i(21T1j - 14),j) ( 14a)

time

13 = M3 exp id)3

- [(M 1,2 )/(M 1M 2) I]exp i(C) I+ (D2 - (DL2)

- [(M 1,2 )/(M 1M 2)Iexp i(3(Dj - (V1,2 - (I)

(1 4b)

14 = M4 exp (1)4

- I (M 2 ,2 )1(M 2M'2 ) ]exp i(2(1) 2 - (2,2)

- [(M2,2 )/(M 2M2 ) ]exp i(4(D1 - 2(1)1,1 - (~,)

(14c

time

time time

FIG. 3. Test waveforms with noise. (a) and (b) show the test waveform (double-sided exponential) with multiplicative noise and (c) and (d) show the

test waveform with additive noise. The peak signal-to-noise ratio in (a) and (c) is 5, and in (b) and (d) is 0.5.
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and

14= [ (M 1,3 )/(MlM3 ) ]exp i(11F1 + qP3 -'Dl,3)

= [ (M 1 3)/M 1M 3 ) ]exp i(44I) 1 - (J- (DI,2

( 15)

where M indicates the magnitude of the frequency compo-
nent and <1 the phase.

One last point regarding the extraction of the spectrum
from the bispectrum. This process can be performed in two
different ways; one way averages the bispectrum and the
other does not. To clarify this, consider the previous ex-
ample for obtaining the fourth harmonic. In the nonaver-

4-,
C

time

aging technique, I4 is obtained directly from either (14c)
or (15). For the general case of using the nonaveraging
technique (set j= 2), the spectrum is given by

Ii+ 2[(1 i2)Ah12)]I*, i= 1?2,...,N -2. (16)

In the averaging technique, I4 is obtained from the average
of (14c) and (15). The spectrum, for the general case of
using the averaging technique, is given by

1j+j=(I/k)Y_[(IjjJ)1(1j)]*, + j=3,4,...,N;inj)1,
(17)

where k is the integer value of (i + j)12. And, as men-
tioned before, we need only consider one octant, so that

time

time

FIG. 4. Reconstructed waveforms. (a) and (b) are the results of the reconstruction of an autocorrelation of a Lorentzian (a) and a double-sided
exponential (b). (c) and (d) show the results of the reconstruction of a triple correlation of a Lorentzian (c) and a double-sided exponential (d).
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ibj. The differences between the results of these two ap-
proaches depend on whether the signal noise is signal de-
pendent or independent. For signal-dependent noise, the
two techniques produce identical results (reconstructed
waveforms) because the noise is an integral part of the
data. The averaging technique, on the other hand, reduces
the effects of signal-independent noise on the reconstructed
waveform.

III. RECONSTRUCTION SIMULATIONS

The following simulations will elucidate the properties
of triple correlation. The resultant waveforms shown are

from the reconstruction of a triple correlation or an auto-
correlation. The simulations presented here are for "single-
shot" experiments to more closely examine the effects of
signal noise (both additive and multiplicative) on the re-
sultant waveforms. The effects of time averaging will be
considered later. A Lorentzian described by 1/[l + [t±r]
and double-sided exponential described by exp( -tlr)

[I - expC - t/-r2)] are used to illustrate the phase-
preserving behavior of the triple correlation. Noise was
added to the double-sided exponential (Fig. 3), and the
subsequent reconstruction was compared to the deconvo-
lution of an autocorrelation. The noise was generated from
a pseudorandom number generator with a uniform distri-

time time

time time

FIG. 5. Reconstruction of waveforms having a peak SNR of 5. (a) and (b) are the results of the reconstruction of an autocorrelation of the double-sided
exponential with additive (a) and multiplicative (b) noise. (c) and (d) show the results of the reconstruction of a triple correlation of the double-sided
exponential with additive (c) and multiplicative (d) noise.
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bution and its randomness checked by autocorrelation. The simulations, c was set to 0.1 or 1, n (t) varied from - I to
waveform with additive noise is represented by 1, and f(t) ranged from 0 to 1. Figure 4 shows the recon-

struction of the Lorentzian and double-sided exponential
g(t) =f(t) + N' + cn(t), (18) from an autocorrelation or triple correlation. Both tech-

and the wwithmultplictivenoisbyniques reproduce the original input Lorentzian success-
fully. The autocorrelation, however, has not been able to

g(t) =f (t) [ I + AN + cn(t) ], ( 19) reproduce the exponential because of lost phase informa-
tion, as exemplified by the symmetric result. On the other

where c is a constant used to vary the signal-to-noise ratio, hand, the waveform reconstructed from the triple correla-
n (t) is the zero-mean noise waveform, f(t) is the double- tion has reproduced the exponential input accurately. The
sided exponential, and N' is the time-averaged value of small oscillations in the reconstructed data will be dis-
n(t). For the single-shot experiment N' is zero. For these cussed in the next section.

U,..

C

time

.4-

V

C

S

b

time

tine time

FIG. 6. Reconstruction of waveforms having a peak SNR of 0.5. (a) and (b) are the results of the reconstruction of an autocorrelation of the
double-sided exponential with additive (a) and multiplicative (b) noise. (c) and (d) show the results of the reconstruction of a triple correlation of the
double-sided exponential with additive (c) and multiplicative (d) noise.
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A. Effects of non-time-averaged, signal-dependent quency is due to N times 4(I. Therefore, we should be able
noise to obtain the phase angle of the first harmonic by dividing

Figure 5 shows the reconstructed waveforms for inputs the Nyquist-frequency phase by N. To test this, the Ny-

with 0.1-maximum-magnitude multiplicative or additive quist phase was obtained from a linearized phase function,
noise. Again, the autocorrelation has not been able to re- divided by N to get the first-harmonic phase, and this

produce the original inputs, whereas the triple correlation phase component, multiplied by the index, was subtracted-

provides accurate information. Figure 6 shows the recon- from the linear phase function. The results for the double-
structed waveforms for input waveforms with 1.0- sided exponential with and without I-maximum-
maximum-magnitude multiplicative and additive noise. magnitude multiplicative noise are shown in Fig. 7. The
These figures show that the triple correlation can repro- peak location is arbitrary. The important result is that the
duce the input waveforms accurately, with the exception of waveforms no longer manifest the oscillatory behavior.
small added oscillations [compare Fig. 3(b) to Fig. 6(d)]. This implies that the oscillations were caused by a phase

The origin of this noise will now be discussed. error and that this phase error is an errant multiple of ¢1.
Possible causes for the observed oscillations include Consequently, (D1 is important to correctly reconstruct the

phase error, machine error, or finite-record length error.
Studies of the last two possibilities showed that they are input pulse. Moreover, it appears the linear phase cannot
not responsible for the observed oscillations. Therefore, the be an arbitrary value. The constraints on the linear phase
possibility of phase error was examined. The most likely will now be explored.
candidate for this phase error is the assumption that loss of A linear phase shift in the frequency domain and a
the first-harmonic phase was of no consequence. Therefore, time delay in the time domain are equivalent. The linear
the "lost" phase of the first harmonic will be considered in phase shift must be d27r/(N/k), where N/k is an integer

more detail. Recall ( 14) which describes the reconstruc- and N is the length of the time record. N/k must be an
tion of the first four harmonics. It can be seen that the integer because it represents a fraction of the time record,
phase angle of each harmonic is "of' by an integral mul- which can only be an integral multiple of the data's time
tiple of the phase angle of the first harmonic, (D. That is, interval (time between two successive points of the time

record). Consequently, an erroneous linear phase becomes

i =(i- i- 1, (20) a sub-sampling error. For a linear phase shift of + 2wr/(N/

where 1'i is the phase angle of the reconstructed data, X1i is k), the corresponding incremental phase shift for each fre-

the phase angle of the original input signal, and i is the quency component is +2vrj/(N/k) where j is the fre-
frequency index. At the folding (or Nyquist) frequency, quency index. The oscillations observed in the
the coefficient of the imaginary component is zero; conse- uncorrected-reconstructed signal were caused by a linear
quently, the folding-frequency phase should also be zero. phase that did not fulfill the described prescription for
Therefore, any nonzero phase angle at the folding fre- proper linear phase.

time time

FIG. 7. Reconstructed waveforms with phase correction. Test waveform (a) with noise and (b) without multiplicative noise having a peak SNR of O.5.

Compare Figs. 3(b) (original input). 6(d) (reconstruction of Fig. 3(b) without phase correction), and 7(a) (reconstruction of Fig. 3(b) with phase
correction). The profile of 7(a) accurately reproduces the profile of the 3(b).
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time

time

FIG. 8. Effects of signal-independent noise on waveform reconstruction without bispectrum averaging for (a) 10%, (b) 100%, and (c) 1000%
noise-to-signal power.

B. Effects of non-time-averaged, signal-independent
noise

Signal-independent noise is the noise added to the mea-
sured signal from an uncorrelated source, such as noise
from the measurement electronics. For instance, if we are
profiling repetitive pulses from a 100 MHz pulse train and
the data acquisition rate is I kHz, then the signal at each
data point has been sufficiently averaged so that the signal-
dependent noise can be represented by its time-averaged
value. On the other hand, each data point may have addi-
tional noise that it obtained from the measurement instru-
ments (independent of the signal). So that is what we
examine now, the effects of non-time-averaged, signal-
independent noise. To this end, a triple correlation of a
noise-free input (the double-sided exponential) and a noise
plane, with a uniform distribution, were added. The noise
plane was obtained by independently creating each column

from a pseudo-random number generator. This insured
that the noise was uniformly distributed across the data
plane. The introduction of noise in this manner is not time
averaged and is the worst-case scenario. The time-averaged
case will simply add a constant background to the acquired
data. Figure 8 shows the effect of the addition of signal-
independent noise for noise-to-signal powers of 10%,
100%, and 1000%. This power ratio is the total power of
the noise to that for the double-exponential in the 2-D
window. Figure 9 shows the reconstructed data after using
the averaging technique that was previously described. The
recovered data have a dramatic improvement in the signal-
to-noise ratio when the averaging reconstruction is used as
compared to the non-averaged case. Consequently, the
triple-correlation technique allows one to extract signals
from very noisy backgrounds.

The relative level of signal-to-noise power can be im-
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tige 
tm

time

FIG. 9. Effects of signal-independent noise on waveform reconstruction with bispectrum averaging for (a) 10%, (b) 100%, and (c) 1000% noise-to-
signal power.

proved by varying the time window, or equivalently, the
time delays. Even though the peak signal-to-noise ratio
does not change under this circumstance, the relative im-
portance of the noise in the entire window decreases. To
clarify, as the data plane is decreased, the average power of
the signal is increased while the average power of the nois-
eremains constant, thereby reducing the effects of noise on
the reconstructed data.

IV. EFFECTS OF TIME-AVERAGED,
SIGNAL-DEPENDENT NOISE

The effects of time-averaged noisy signals will be con-
sidered now. The operation of the triple correlator is such
that each datum taken is the average of many occurrences,
mimicking a boxcar-type averaging mode. Let the signals
into the triple correlator be given by

I(t) =J(t) [ 1 + M(At) ] + A (t), (21a)

I(t+ri)=J(t+1,)[l +M(t+rl)] +A(t+rl),
(21b)

I(t +r 2 )=J(t +r 2 )[P + M(t +r 2 )] + A(t+r2 ),
(21c)

where J is the noise-free signal, M is the multiplicative
noise, and A is the additive noise. The time average of the
noise terms is

(22a)

(22b)

The triple correlation of (21a), (21b), and (21c), and
using (22a) and (22b) for the time-average value for the
noise, is
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f I(t)I(t+,r1)I(t+ r 2)dt=A' +A 2 (4M +2) fJ(t)dt +A (M+ 2M + 1) fJtJt ,lt

+ A(M 2 +2M +1) f J(t)J(t + -2)dt +A(M
2+2M +1)f fJt +i-TJt + 2)dt

+ (M3 +3M2 +3M +1) f J(t)J(t + r)J(t +r2)dt. (23)

The first five terms to the right of the equal sign in (23) are
noise terms. Each noise term can be obtained from the data
plane (see Fig. 10) and subsequently removed from the
data. To understand this, assume the delays have been ad-
justed so that zero delay is centered in the data plane and
that the delays are sufficiently long so that all noise con-
tributions can be measured. The first noise term can be
obtained from any region of the data plane where the three
pulses from each of the three beams have not interacted,
that is, in regions where only the noise is interacting. The
second noise term will also be distributed uniformly across
the data plane, and can be obtained from the data in areas
where one pulse is interacting with the noise of the other
two beams. The time average of the multiplicative noise,
M, may be obtained by comparing the power of the second
noise term to that from a power meter. For example, as-
sume the measurement electronics are well characterized,
A has been measured, and the integral of J(t) is simply the

¶2

Iv

t1

FIG. 10. Projection of data on rT - r2 plane to emphasize the effects of
noise on the data [see Eq. (23)]. The cube of the time-averaged value of
the additive noise is contained in the entire data plane, but it is the only
noise contribution in region IV. The triple-correlation noise term caused
by the correlation of noise from two beams and a pulse from the third is
found in regions 1, 11, and Ill. The autocorrelation-noise terms (three)
are caused by the correlation of noise from one beam and pulses from the
other two beams and their effects are found in regions I and II. The result
of the triple correlation of pulses from all three beams is found only in
region 1. The circles represent a contour plot of a noise-free, triply cor-
related, symmetric pulse. The dashed arrows represent the three
autocorrelation-noise contributions and how they add to the data plane.

average power; then the slope of a plot of power-meter
output versus second-noise-term power will give M. The
next three noise terms are autocorrelation terms and may
be obtained from regions of the data plane where the pulses
from two of the beams have interacted with each other and
with noise of the third beam. Consequently, one can re-
move the effects of time-averaged, signal-dependent addi-
tive and multiplicative noise from the data plane.

V. DISCUSSION

The technique proposed here for the measurement of
the full temporal intensity profile of ultrashort (picosecond
and femtosecond duration) laser pulses is based on record-
ing the triply correlated intensity of the pulses. This tech-
nique uses two consecutive nonlinear optical interactions
and three replicas of the same laser input to produce amea-
surable signal that has the same optical frequency content
as the input pulse. Because the output signal has the same
frequency content as the input, this technique does not
require complex third-harmonic-generation measurement.
In this respect, this proposed method is different from any
other previously reported techniques. The temporal reso-
lution of this technique is dependent on the inherent re-
sponse times of available nonlinear materials used and on
the spatial resolution of the time delay stages. With piezo-
electric crystals, almost infinite resolution for the time de-
lays can be achieved. Therefore, the temporal resolution of
this triple correlator will be limited ultimately by the speed
of the nonlinear optical materials, and is expected to give I
fs or less resolution.
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