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Abstract
The Usadel equations give a theory of superconductivity, valid in the diffusive limit, that is a

generalization of the microscopic equations of the BCS theory.  Because the theory is expressed in a
tractable and physical form, even experimentalists can analytically and numerically calculate detailed
properties of superconductors in physically relevant geometries.  Here, we describe the Usadel equations
and review their solution in the case of predicting the transition temperature TC  of a thin normal-
superconductor bilayer.  We also extend this calculation for thicker bilayers to show the dependence on
the resistivity of the films.  These results, which show a dependence on both the interface resistance and
heat capacity of the films,  provide important guidance on fabricating bilayers with reproducible transition
temperatures.
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Microcalorimeters and microbolometers
based on transition-edge sensors (TES) [1] show
great potential for improving the detection of  x-
ray, optical, and infrared photons in scientific
and commercial instruments [2].   Presently,
TES microcalorimeters have the best x-ray
energy resolutions, achieving a resolution of 2
eV at 1.5 keV [3]  and 4.5 eV at 6 keV [4].

When designing detectors based on
transition edge sensors, it is important to be able
to reproducibly control and adjust the transition
temperature TC .   Bilayers are practical choices
for the TES because the TC  can be simply
adjusted by changing the relative thickness of
the normal and superconducting layers.
Because the TES should have low resistance so
that heat diffuses rapidly throughout the sensor
[5], the bilayer is also an ideal sensor because it
enables the use of high-conductivity normal
metals such as Cu, Ag, or Au.

Although the TC  can be parametrized for
bilayers by making a series of samples with
differing thickness, it is very useful to be able to
predict TC  from more fundamental physical
parameters.  It is also convenient to predict TC
even for relatively large thickness changes.
Predictions based on simple physical parameters
guide the experimentalist as to what physical

parameters need to be controlled in order to
make sensors reproducibly.  Several previous
papers have presented theories on predicting the
TC  for bilayers [6].  We believe the predictions
given in this paper based on the Usadel
equations [7] give simpler and more physical
predictions for TC  and also more clearly
indicate the crucial importance of the interface
resistance between the two bilayer films.

The Usadel theory is based on the
assumption that electrons travel diffusively
through the metal.  This is an excellent
assumption for most thin-film superconductors
because electrons either have short mean-free
paths in the metals or scatter diffusively from
the boundries.

We refer the reader to Ref. [8] for a
derivation of the Usadel equations as well as a
more detailed description of its physical
significance.  Because the Usadel theory is a
microscopic theory, the states of the electrons
must be described.  In the BCS theory, which
assumes no impurity scattering, k-vectors can be
used to describe the superconducting state.  For
a diffusive conductor, k-vectors are no longer
eigenstates, and thus the electron states must be
described through an energy variable E .



The superconducting state is described by a
function θ( , )x E , where x  is a position
coordinate (we consider here only one
dimension for simplicity.)  The variable θ  is
complex and ranges in magnitude from 0 to
π / 2 , where θ = 0 corresponds to the normal
state.

The Usadel equations used to solve for
θ( , )x E  are
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where D n es s s= σ / 2  is the diffusivity constant,
ns is the density of states, σs is the normal state
conductivity, Veff is the BCS-like interaction

potential, τsf is the spin-flip time, ϕ  is the

usual superconducting phase, Ax  is the vector
potential, ∆  is the superconducting order
parameter, hω D  is the Debye energy, and T  is
the temperature.  Because the superconducting
state is formed from a pairing of two electron
states, the pairing is described by a spinor term
which has only three possible  components.
These components correspond in Eq. (1) to an
excitation-energy term iE  which tends to make
θ = 0 (normal state), a term which describes
pair breaking through spin-flip scattering,
current, or magnetic fields, and a
superconducting pairing term.   At an interface,
conservation of spectral current requires that
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where r  and l index the right and left side of
the interface, and G Aint /  is the electrical
conductance of the interface per unit area.

Physical quantitites can be computed once
θ( , )x E  is known.  For example, the
quasiparticle density of states is given by

n nqp s= Re[cos ].θ   The supercurrent density is

given by
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An interesting limit of the Usadel equations
is the case of a uniform superconductor, where
there is no spatial dependence and  no pair
breaking from magnetic impurities, fields, or
currents.  The first and third terms of Eq. (1) are
then zero, and θ  is easily solved to be
θBCS E i E( ) arctan( / )= ∆  , or equivalently

cos / ( ) /θBCS E E= −2 2 1 2∆  and

sin / ( ) /θBCS E= −∆ ∆2 2 1 2 .  Substituting θBCS

into Eq. (2), the usual BCS form for the pair
potential is obtained.

The transition temperature of a
superconductor can be calculated [8] by first
noting that just above TC , superconductivity is
very weak and θ << 1 .  If pair breaking is
neglected, Eq. (1) can be linearized to yield
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This equation can be solved analytically if one
considers a bilayer film that is thin enough so θ
is approximately constant across the film, and
small changes in θ  can be accounted for by a
polynomial expansion (see Fig. (1).)  If
derivatives of order higher than two can be
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Fig. 1.  Plot of the magnitude of θ  vs. x for a
NS bilayer.



neglected, a parabolic form of θ  need only be
considered in the normal and superconductor
region.  In the superconducting region ∆ is taken
to be constant, and Eq. (4) yields a constant

second derivative θ θs s siE D″ = − +( )( / )∆ 2 h

andθ θn n niE D″ = − ( )( / )2 h , where θs  and θn

are the values of θ  at the interface.  Because

the conductivity is zero outside of the bilayer,
Eq. (3) implies  ∂θ ∂/ x = 0  at the outside
interfaces of both metals.  Combined the outside

boundary conditions with θ ″ , we find at the

interfaceθ ∂θ ∂ θs s s sx d′= = − ″/ and

θ ∂θ ∂ θn n n nx d′= = ″/ , where dn  and ds  are
the thickness of the normal and superconducting
films.  At the bilayer interface, the two
constraints of Eq. (3) then allow θs to be
determined
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where nn  and ns  are the density of electronic
states in the normal and superconducting films
and τ π= +[( / ) / ( )][ / / ]intG A G d n d nK n n s s4 1 1 ,

where G e hK = 2 / is the conductance quantum.
Taking the imaginary part of θs  and

inserting into the gap equation (2) yields
1
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The first term in the bracket gives the integral
that appears in the BCS gap equation that
determines TC0 , the transition temperature of
the bare superconductor.  Equation  (6) can thus
be rewritten as a suppression of the TC  due to
the normal metal
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This integral result can be well approximated by
the expression
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as long as the pre-exponential (quantity in
brackets) is less than approximately 0.8.  For
most bilayers the films are thick enough so that
in Eq. (8) the first term in the bracket can be
neglected.

It is more convenient and physical to express
the interface conductivity in terms of a
transmission coefficient t  of the Landauer
conductance formula G tN Gch Kint = 2 , where

N Ach f= / ( / )λ 2 2  is the number of

conductance channels, and λf  is the Fermi
wavelength.  Although t  is considered an
adjustable parameter that depends on the details
of the interface layer, in practice for most clean
metals and interfaces it will have a value of
order one.

In summary, the transition temperature can
be written as
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For a MoCu bilayer, presently our preferred TES
material [4], we calculate d0 118= . µm and
n nn s/ .= 0 431, where we have used

nn = ×0125 1023. states / eVcm3 ,

ns = ×0 29 1023.  states / eVcm3 , TC0 101= . K,
and λf = 0 462. nm.  The nominal value of λf

for Cu is used since Cu is better described as a
Fermi metal.  We find that our experimental
data is well described by this formula with a
transmission factor t = 0.21. We also note that
d0  is approximately equal to the coherence
length.

The above calculation is valid in the limit of
thin bilayers where θ  does not vary greatly
across the film.  We have also calculated TC  for
thick films.  In the case where only the normal
film is thick,  the differential equation of Eq. (4)
can be solved exactly, giving the form
θ θn x kx( ) cosh( )= 0 , where k iE Dn

2 2= − / h .



This result changes the relationship between θn

and θn
′ at the internal interface. Modifying our

previous calculation with this new θn

relationship and expanding to lowest order in
dn , we find a similar formula for TC  as that
given in Eq. (9) but with the replacement
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This formula corresponds physically to
summing the interface resistance with the
resistance of the normal metal over a depth 1/3
the thickness of the normal film.

We have also numerically solved Eq. (4) for
TC  in the case of arbitrary thickness and
stacking of metals.  For the case of a thick
superconducting MoCu bilayer, we find that the
numerical solutions to TC  correspond to Eq. (9)
and (10) but with an additional correction in
1 / t  due to the resistance of the Mo film with,
again, a depth of 1/3 the film thickness.

The formula for TC  is dependent on both the
ratio of the heat capacity of the two metals
(through d ns s  and d nn n ) as well as the
resistance between the two metals.  The heat
capacity controls how much the pairing
interaction n Vs eff is reduced because electrons
spend part of their time in the normal metal
where there is no pairing interaction (Veff = 0) .
The resistance controls how well the electron
states in the superconductor are coupled to the
normal metal.  All of the interface resistance but
only  a fraction of the total resistance
perpendicular to the film affect the coupling
because the electron states are distributed
throughout the films.

A useful formula for the TC  of MoCu
bilayers that takes the film resistance into
account uses Eq. (9) with the substitution
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where σs0

5189 10= ×. / Ωcm  and

σn0
5588 10= ×. / Ωcm   are the nominal room

temperature conductivity of the metals.
These calculations have important

implications when fabricating TES bilayers

since the  resistance of the films, perpendicular
to the plane of the films, enter into the
suppression of TC .  While it is normally
straightforward to make the resistivity of bulk
films reproducible, the interface conductance is
of greater concern due to the possibility of
surface contamination.    In the fabrication of
both our AlAg and MoCu bilayers, we purposely
chose to deposit the entire bilayer in a single
step under clean conditions  in order to improve
reproducibility. In contrast, when we attempted
to make a MoCu bilayer in two deposition steps
(in order to pattern the Mo layer separately from
the Cu), even with a light Ar-ion surface clean
of the Mo we found that TC  was irreproducible,
with corresponding run-to-run transmission-
factor variations of 0.05 to 0.15.  We caution
that materials which oxidize rapidly, such as Al
or Ti, may be particularly sensitive to
deposition conditions.  We have also found that
MoCu is more stable than AlAg with respect to
thermal annealing, presumably because Mo and
Cu have negligible interdiffusion at the
interface.
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