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Dynamic constitutive relations for polarization and magnetization
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In this paper we develop constitutive relations for materials where the magnetization and polarization may
depend on both the electric and magnetic fields. The approach is general, and is based on a previously
developed statistical-mechanical theory. We include the quadrupole-moment density as well as the dipole-
moment density in the microscopic displacement field. This yields an electric gradient term in the constitutive
equations. This leads to origin invariance in the multipole moments from which Maxwell’s equations are
defined. We present generalizations of Debye and Landau-Lifshitz equations of motion which are valid for
nonequilibrium and contain memory. The reversible and relaxation terms in the polarization and magnetization
evolution equations include the possibility of magnetoelectric coupling. Using constitutive relationship, we
derive evolution equations for the displacement and induction fields from a Hamiltonian approach.
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[. INTRODUCTION cally describe the magnetization time evolution as a function
of the magnetic field and internal energy interactions. Dielec-
Artificial ferrite-ferroelectric composites, photonic band- tric behavior, on the other hand, originates from charge and
gap crystals, and metamaterials are being used in emergirgectric multipole moments. Electric moments are formed
electronic technologies. New materials combine ferroelecfrom charge separation. The description of dielectric relax-
trics, ferrites, and ferromagnetic materials into thin films oration is complicated because the translation and rotation of
composites to obtain a desired response. Metamaterialsharge and dipoles induces magnetic fields and moments in
composed of wires and resonators, have a unique permittithe material. Induced and permanent electric dipoles rotate in
ity and permeability response. For development of new coman applied electric field due to the applied torque. However,
posites it is crucial to have a fundamental understanding o§ince the ratio of electric to thermal energy is usually small,
the coupled response in the constitutive relations for Maxthermal effects tend to randomize the orientation of perma-
well's equations. To establish this relationship in such comnent dipoles. Therefore, for low field strengths and at ambi-
plicated systems, in this paper we study the foundations ofnt temperatures, few dipoles in an ensemble of dipoles fol-
the time evolution of the electric polarization and magneti-low the applied electric field. However, this small percentage
zation by a Liouville-based, projection-operator, nonequilib-of dipoles can produce appreciable polarization.
rium statistical-mechanical theory. The goal is to present a The simultaneous application of electric and magnetic
theory for constitutive parameters in Maxwell's equationsfields in complex materials can produce very complex be-
starting from microscopic quantities that are averaged to obkavior. A particular example is magnetoelectric materials
tain macroscopic quantities. We apply the developed theorf6—-12. Magnetoelectric coupling occurs in crystals having
to magnetoelectric and chiral media. For the history of thethe requisite symmetry and lattice coupling between the elec-
projection operator approach, see Réfs-5. We do not tric and magnetic moments. Hornreich and Shtriknha8]
discuss specific, field-dependent constitutive relationships. and Radd14] found that the origin of magnetoelectric be-
Maxwell's equations in material media require the speci-havior was the electric-field-inducegshift, spin-orbit inter-
fication of the magnetization and polarization as functions ofaction, exchange energies, and the electric-field-induced shift
the applied fields. Complications arise because the magnetin single-ion anisotropy energy. Magnetoelectric effects also
zation and polarization depend not only on the applied fieldpccur in materials moving in relation to the observer. The
but also on the internal energy. In magnetoelectric media thanderlying electrodynamics is complicated by induced fields
driving can be both electric and magnetic. In this paper wenteracting with electric and magnetic moments. That is, the
develop a system of equations that describes electromagnetipin orientation is coupled to the electric multipole through
driving with magnetoelectric coupling. These equations canhe lattice. In such materials the application of electric or
be used in Maxwell's equations with appropriate boundarymagnetic fields produces magnetization or polarization, re-
consitions to yield a closed system of equations. spectively. Magnetization orientations may change due to the
Magnetic response originates in moving charge, intrinsicapplication of electric fields. Electric-dipole moments can
angular momentum, and spin. If an external magnetic field islso be modified by application of magnetic fields through
applied to a material, the material responds by a precessidattice deformation.
of the magnetic moments. In the case of magnetic-field driv- The outline of the paper is as follows. We present a gen-
ing, the Landau-Lifshitz or Bloch equations phenomenologi-eral approach for the combined magnetic and dielectric re-
sponse in complex media. In Sec. Il, we overview constitu-
tive relationships in electromagnetic theory. In Sec. Il B, we
*NIST, Radio-Frequency Technology Division, MS 813.01. define the polarization, magnetization, internal energy, and
Email address: jjarvis@boulder.nist.gov associated Hamiltonian. In Sec. [IC we develop the
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statistical-mechanical foundations for the analysis. In Secswhere €, and uy are the permittivity and permeability of

IID and Il E we derive evolution equations for the polariza- vacuum,Q is the macroscopic quadrupole moment, &his
tion, magnetization, internal-energy density, and entropy. IRhe dipole-moment density, whereRsis the effective mac-
Sec. IIF we develop a linear approximation for polarizationroscopic polarization which includes the macroscopic
and magnetization. In Sec. Il G we present special cases fQ{uadrupoIe—moment density term.

the magnetization evolution. In Sec. Il we use the constitu- \we will now define the macroscopic polarization and
tive relations and derive evolution equationS for the displacemagnetization in terms of the microscopic densities. The mi-

ment and induction fields. Additionally, general expressiongroscopic dipole density plus the quadrupole-moment contri-
for charge and energy conservation are derived. In Sec. I¥ytion for N particles is defined as

we investigate a number of special cases using the equations

derived in Sec. I C.
p=Zl r]-e]-b‘(r—rj)—%zl e(rr)-Vér—r)=2 pj,
Il. MICROSCOPIC CONSTITUTIVE QUANTITIES = = : 3

A. Constitutive relations and theoretical constraints . i ) .
The chargeg; is can be positive or negative, for example, it

_ Inorder to solve electromagnetic relaxation and propagays negative for electrons and positive for protons. Here we
tion problems, Maxwell's equations require the specifications,m gver bound charge that is electrically neutral as a whole.
of relationships between the polarization and magnetizationg,gra| dipole bound charge neutrality is required in order
and electric, magnetic fields, and their space and time derivay, the net dipole moment to be independent of origin. The
tives, in the form of constitutive relations. This relationship free charge need not be neutral as a whole. The free-charge
can be expressed @={E,H}, M<{H,E}. The double- |inetic energy is included in the internal energy.

headed arrow in this relation indicates that the relationship - The microscopic magnetic-moment density can be written

could be local or nonlocal in. time and space, and Fhat the, terms of intrinsic magnetic moments; and the magnetic
constitutive relation may be linear or nonlinear functions Ofdipole density due to charge motion, as

the driving fields, or contain various derivatives of the driv-
ing fields[15,16. Yei

The dielectric polarization is odd under parity and even mzz Yili(ry) o(r—r;)— ?ﬁiXpi EZ m;; +mg,
under time reversal. The magnetization is even under parity : ! : 4
transformation and odd under time reversal. These symmetry (4)
relationships place constraints on the nature of the constitu- . .
tive reIatio%shﬁps[l?—Sq B andE are widely accepted as Yei= Ho€i/2M; whereM; is mass and; is the charge located
the fundamental fields r.ather th@n and H, and we agree at pf)Sitiani: J is the intri_nsic spin, and is the p.osition of
with this interpretatior(see, for example, the covariant deri- particle i with a canonical momentumsm,=M;fi+&A;.
vation of Maxwell's equation§25]). However, in this paper Note thaty,; can be positive or negative dep(_endlng on Fhe
we useE andH as driving fields. We are interested in con- sign of the charge. The spin gyromagnetic ratios are defined

stitutive relationships, so we may write, for examp, Y i~ ito€i/2M;, and for an electrog~2. o
_ ' ' ' The expected value of the macroscopic magnetization is
= uH rather than the reverse.

separated into intrinsic and magnetization due to charge mo-

tion1 M(r=t)E<m>ETr[mp(t)]:2i<m|i>(r!t)+<m0>(rvt)r

wherep is the statistical-density operator that satisfies Liou-
When driven by time-dependent applied magnetic or elecville’s equation and is reviewed in Appendix C. The ex-

tric fields, a material may attain induced in addition to per-pected  macroscopic  polarization  is P(r,t)=(p)

manent magnetic momeni26]. Locally, the total magnetic =Tr[pp(t)], and the expected macroscopic internal-energy

moment is built from intrinsic and orbital angular momen- density is(U)=Tr[Up(t)]=U(r,t). Both p and m implic-

tum and current-induced magnetic momern®7]. The itly depend on functions of the electric and magnetic fields.

atomic or other charge-motion magnetic moments are inModeling induced electric moments requires a knowledge of

cluded because we consider nonequilibrium systems. We dihe positions of all the charges in the molecules. Modeling of

not use relative coordinates from the nuclei to the electrongermanent electric dipoles requires only a knowledge of the

as in Ref.[24]. coordinates of the dipole, in which case the integrations sim-
The authors of Ref416,25,27,28showed that for multi-  plify in the expectation calculations.

pole expansion truncation consistency and origin invariance

in Maxwell's equation, the displacement vector needs to in- C. Statistical-mechanical theory

clude a quadrupole term in addition to the dipole moment o )

density. The macroscopic displacement and induction fields e now use statistical-mechanical theory to develop evo-

are related to the macroscopic magnetizafibrand polar- lution equationg3]. The analysis is semiclassical in that we

B. Formulation of the problem

ization P and applied fieldE andH by use Poisson brackets between position and momentum vari-
ables and also include intrinsic angular momentum. In this

D=e€E+P-V-Q=¢E+P, (1)  section we define the Hamiltonian, then introduce the en-

tropy, and then derive expressions for the polarization, mag-

B=puoH+M, (2 netization, and internal-energy density in terms of Lagrange

056127-2



DYNAMIC CONSTITUTIVE RELATIONS FOR . .. PHYSICAL REVIEW E 64 056127

q tion for the polarization and magnetization which we later
derive. These gradients of the electric field terms have been
T shown to be important in constitutive modelif2g]. If even
higher-order moments were included in the definitiong of
andm, then higher-order field derivatives would be included
r in the Hamiltonian.
Calculation of the equations of motion is based on
Poisson-bracket or commutator relations. The kinetic energy
and magnetic terms in the internal energy do not commute
with the polarization and, therefore, when calculating the
time evolution, will contribute t¢p,F]. We use the symbols
FIG. 1. Coordinate system with position and momentum of[ | for either classical-mechanical Poisson brackets or
charger;, ;. guantum-mechanical commutatdsee Appendix A In this
paper, intrinsic spin is treated quantum mechanically. Here
multipliers. The Lagrange multipliers are determined for thejs the internal energyas compared witdJ which is the
linear response. The expressions for the polarization, magnénternal-energy densitym and the magnetic dipole-dipole
tization, and internal energy-density will be used in Sec. Il Dinteraction do not commute witn, and therefore will con-
for a derivation of evolution equations. tribute to[ m,F]. We separate the internal energy into lattice
Consider a dielectric and magnetic material immersed il’potentiaj energyF, and lump the balance int@, or F=F,
electric and magnetic fields. The applied Maxwell fields +G.
E(r,t) andH(r,t) are turned on at=0, and drive the non- In addition to p, the projection-operator statistical-
equilibrium process. We assume that the wavelength of thehechanical theory uses a relevant canonical-density function
field is much longer than the particle dimensions. In a finitey, ¢ does not satisfy Liouville’s equation, but an exact equa-
time after a field is appled, relaxation occurs in the materiation of motion can be constructed in terms gf o, and a
which modifies the interaction field. In this analysis we limit projection operatof1]. The basis of the projection-operator
relaxation time tor>#/kT. method is the projection out of the relevant variable contri-
In classical mechanics the dynamical state is specified bjgution and the lumping the rest into relaxation or dissipative
the phase coordinatesand momentar; for each degree of terms.o can be constructed by maximizing the information
freedom(see Fig. 1 This dependence for all particles is entropy at specific times,
denoted by the variablE. The applied electric and magnetic
fields are functions of andt and not functions of the phase- S(t)=—kTr{a(t)Ino(t)], (7)
space coordinates.
The trace(Tr) is defined in classical mechanics as inte-gypject to constraints on relevant variablds P, and/ [1].
gration over phase variables and quantum mechanically as+js yields
trace of the operators. The definition of the classical-
mechanical trace is

1
a(t)= Zex;{ —f d3r'{B(r',Hu(r’)
Tr()=f()drl---drNdm---dwNEf()dF. ) B DM Har(r )
=Br",tym(r’)-Hy(r’,
The Hamiltonian in volumé/ includes potential and ki-

netic energy interaction of moments with applied fields, —,B(r’,t)p(r’)-Ep(r’,t)}>. 8
dipole-dipole interactions, magnetic anisotropy, and other in-

teractions. We separate the Hamiltonian into internal eNergy o initial condition iso(t=0)=p(t=0), (this condition

density, Stark, and Zeeman interactidese Appendix A can be generalized, see Oppenheim and Ley#ie The
partition function is
H(t)=f d3r{U(r,I')—p(r,I')-E(r,t) —m(r,T) - H(r,t)}.

©) Z=Tr

eXp(—f d3r{B(r .U )= B(r',t)

U is the internal-energy density which contains the lattice

electrostatic and magnetostatic energies, the kinetic energy " PN . / ”

of the bound and free charge, and other interactipnsn, Xm(r)-H(r. 0 =B Hp(r)-Ep(r,U} |, (9

and U, are functions of and positions and momenta of all

the particles, but have no explicit time dependence. Timavhere Z is the partition function, B8(r,t)=1/kT(r,t),
dependence in these quantiles is obtained after taking thé(r,t)Ep(r,t), andB(r,t)H(r,t) are Lagrangian multipli-
trace. The effect of the inclusion of the quadrupole termp in ers related to the inverse temperature and electromagnetic
is to include in the Hamiltonian the gradient of the electricfields that interact withp and m, wherek is Boltzmann’s
field which interacts with the quadrupole moment. Thisconstant andt andH are applied fields, where&s andH),
electric-field gradient is also present in the equations of moare effective local fields which do not depend on the phase.
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The constraints are

t
><jOTr{[m(r),H(r,t)]ﬂF,t,T)(l—P(F,r)}

M(r,t)=(m)
1 X[p(r'),o(I',)]){E(r',7) —Ep(r’,7)}dT,
[ _ 3,7 ’ ’
—ZTr[m(r)exp< fd r'{B(r',tyu(r’) (13
=B, tym(r’)-Hy(r',t) where we divided the magnetic field from the internal energy
into purely magnetic and magneto-electric components as
—ﬁ(r’,t)p(r’)~Ep(r’,t)}”, (10 Hy = Hygne + Hyge 19
P(r,t)=(p) andHy g appears in the magnetoelectric temm, as we will

L see shortly, and
:ZTr[p(r)ex%—f d3r{B(r',HU(r’) () [

O’)t :<p>+J’ d r’J'OTr{[p(r)vH(r1t)]7-(F1tvT)[l
=B, ym(r’)-Hy(r',t)

=P, n]lp(r"),o(l, )]} -{E(r",7)
—ﬁ(r’,t)p(r’)-Ep(r’,t)}”, 11
—Ep(r’,q-)}d7-+f d3r’
U(r,t)=(U) .
1 , xf Tr{[p(r),H(r,t) (T ,t,7)[1-P(T,7)]
=2Tr[U(r)exp(—J dr’{B(r’',H)u(r’) 0

X[m(r"),o(T', )]} {H(r",7)—Hy(r’,7)}d7.

=B, Hym(r’)-Hyu(r',t) (15

_B(r’-t)p(r,)' EP(r,lt)}

. (120 Tis an evolution operator ani is a projection operator,
defined in Appendix C. The projection operator in the relax-

At this stage of development we have expressed the expecté’ﬂion term subtracts flux and assures the proper behavior of

values of the magnetization, polarization, and internalthe correlation functions at large time. The reversible terms

energy density as functionals of Lagrange multipliers which'eéduce to 0 when there is no correlation between the magne-

are interpreted as electric and magnetic fields and inversézation and polarization.

temperature. The Lagrangian multipliers can be expressed in Using Egs.(6), (13), (15), and (C1), we find that the

terms ofM, P, and/. A linear approximation for these quan- internal-energy density evolves as

tities is obtained in Sec. IID. Then we develop evolution

equations for these quantities.

OU(r,t) aP(r,t) IM(r,t)
T+V-Jq=E(r,t)- pm +H(r,t)- R

(16)

D. Evolution equations

In this section we use the statistical-mechanicalwhere we included an additional divergence term for thermal
projection-operator theory to derive time-evolution equationsiriving by heat exchange with the surroundings,J, (see
for the magnetization, polarization, and internal-energy denRobertson’s thermal-driving formalismi33]). Equations
sity [1]. If we apply Eq.(C10 from Appendix C and Eq6)  (13), (15), and(16) are exact within the approximations in
to the case of simultaneously applied electric and magnetithe multipole moments, and valid for nonequilibrium states.
fields incident on a material containing intrinsic and inducedAs a consequence of the generality of the formulation, the
magnetic moments and permanent and induced electric mewonlinear correlation functions must be approximated and

ments, we find interpreted. The relaxation kernels can be approximated in
M(r 1) many wayssee Refs[2], [29]). These equations can then be
r . linearized and solved using Fourier analysis
= YertM (1, 1) X[H(r,t)—H r,t)y]+(m o .
ot YesM (1,0 X[H(,8) = Hy (1 O]+ () We now calculate the so-called reversible terms in the

equations of motiori13), (15), and(16) (see Appendix B

¢

t
3,7
+J d JoTr{[m(r)’H(r’t)mr’t’T) Tr(iLmo)=Tr([H,m]o)

X (1=P(T, 7)Hm(r"),o(0, 7)) {H(r",7) :Tr([mfm,Hdsr}U)”ﬂmfp,Edsr
—HM(F’,T)}dT—Ff d3r’ —Tr([m,Flo)
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+94
=Tr([m,j m-(H—HM)dﬂa) © Ha
r
+Tr([m,f p~(E—Ep)d3r}U). (17)
The integrals can be performed because of the delta func- T

tions in Egs.(3) and (4). Tr([m,F]o) contains magnetic
internal interactions including any magnetoelectric coupling.
This term is re-expressed in terms of effective fidijg and

Ep as shown in Appendix B. Magnetoelectric effects can
also originate from charge translation; however, in this !
analysis we do not treat media that is moving as a whole.
Using commutation relations between the intrinsic angular

momenta and Poisson brackets for magnetic dipole mo- . ,
ments, we find (PY(r,t)=Tr(i Lpa) =Tr([H,p]o)

Tr( m,f m-(H—HM)dﬂU) =Tr( p,f m~Hd3I’}a')+Tr<[p,f p.EdSI’}U)
—Tr([p.F]o)

&
H

mn

FIG. 2. Model of a rotating dipole and induced magnetic fields.

Ei: 7n<m|i>(r,t)+70<m0>(r*t)> :Tr< p,f m-(H—HM)dﬂU)

X[H(r,t)—=Hp(r,t)], (18
+Tr(

p,f p-(E—Ep)d3r a'). (21)
where y,; are for spin specie§). We neglected the second

spatial derivative of thes function and any field gradients.
The magnetic dipole-moment densitymeg)=Tr{ =;yeil;

X 71, 8(r —r;)o] can be small in comparison {on;;). For a
single spin species, the right hand side of ELf) can be
approximated asy.sM X (H—H,,). Noting thatm, com-
mutes withp, and using Eq(14), we see that the magneto-

electric term in Eq(13) can be expressed as (PY(r,t)=2 |&|Tr &(r—r)orX|yelH(r; )]
1

The term containing only polarization in EQ1) is 0, be-
causep commutes with itself. Tf(p,F]o) contains all re-
versible polarization internal energy interactions including
effects of magnetoelectric coupling.

(m>=—Tr([m,j m-HMEd3r}a —2 le| T 8(r—ri)ori X | yeilHu(ri 1)1

—Tr @2

mo,f p-(E—Ep)d3r}o). (19
The first term on the right hand side denotes the interaction

Calculating the Poisson brackets between the magneti(\}?/:lz H field and the second term the interaction with thg

<(jl|g§>li§ angular momentum and polarization, we find that Eq. H,, in Eqs. (20) and (22), contains effects from demag-

netization, induced fields, magnetoelectric interaction, and
other interactions with the internal energy. As we will see in
: _ _ the applications, this field can be the origin of Thomas pre-
(.t = Z [yeil T o(r=riorix|e|E(ri. 0] cession or spin-orbit interaction. Similarly, ti& field in
Egs.(20) and (22) contains depolarization, induced electric
) N _ ) _ fields formed by changing magnetic flux, magnetoelectric,
+2i [ yel TS =)ot X [&]Bp(ri )]~ verM and other interactions with the internal enelgge Fig. 2
We see from Eq(4) that the reversible bound current
defined by Eq(22) is related to the vector-potential momen-
tum and the time integral of the magnetic part of the Lorentz
In Eq. (20) the first term on the right-hand sidehs) denotes  force. The first term is related to changes in the magnetic
the interaction withE-field and the second term the interac- moment due to an applied electric field acting on dipolar
tion with E;, field, the quadrupole term cancels with the de-moments. We expect this term to be small. The term contain-
rivative of the delta function in the dipole-moment density. ing Ep is related to changes in magnetic moments from the
For the polarization we have torque due to the Coulomb forces from induced electric

XHyeg. (20
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fields; that is>; yeifi X € Ep . The term containingd,, in Eq. In a linear approximation fos, we use a zero-order equi-
(22) is related to the magnetic field induced in the dipolelibrium canonical-density function in terms of lattice internal
rotation and other internal-energy interactions. Equatg®y  energyF;
includes the charge current of, for example, a polar molecule
rotating in an electric field{m) can be seen from Ed@4) to 7o =eXp(—BFo)/Trlexp( = BFo) .
be proportional ta crossed into the Coulomb electric force. N _ _
In the case of no polarization-magnetization interactigny ~ Fo depends on the positions of all of charges in the lattice. It
goes to zero. In this case the constitutive equations decoupli independent of the kinetic energy, electric-moment den-
Eq. (13) reduces to a generalized magnetization-evolutiorSity, and magnetic-moment density. We assume that part of
equation, and Eq(15) reduces to a generalized polarization- the internal energy(, contains the electric and magnetic
evolution equation. In Sec. Il F examples are presenteg for dipole-dipole interactions, kinetic energy, and other interac-
andm when permanent dipole and magnetic moments rotatéons. If we expand Eq(11) for a small argument, in a high-
due to applied fields. temperature approximation, assumpeEys, m-Hy, and G

are small relative tkT, and keep only terms linear iBp,

E. Nonequilibrium entropy evolution Hw, andG, in volumeV we find
We can also calculate the nonequilibrium entropy from rt 1- B8G

Eq (): (V L V'B o +[B(PP)o— B%(p{P.G})ol - Ep(r 1)

S(t)=—k T o(t)Ino(t)]

+[B(pm)o— BXP{mM,G})o]- Hw(r,1) (25
1
=f d3r?[u(r,t) or

P B OTM N EOTEINE b b (p(1- 6o+ Kapy [T~ Rpp] Enlr 0+ Kopd T

(23 .
. . _Npm]'HM(rat)
and the entropy rate is, using Ed.6), . .
E<p>0+R1‘Ep+R2'HM, (26)
ds(t) do(t)
——=—kTr| ——Ino(t) . . . .
dt dt where the zero-order static susceptibility per unit volume is
1(aU opP M Xopp=BV(PP)o, Xopm=BV{(PmM)o, {} denotes an anticom-
:f d3r _{ relax Ep— relax Hm] mutator, and the subscript on the brackets indicatedpas
Tt dat Jt used in the expectations. In nonpyroelectric materig$él
J.VT) 1 (t —BG))o=0. The tensor&ij contain depolarization, demag-
=J d3r[ -V J— ST] + Ff f drd3rd3’ netization, and other interactions containedinwhere
0
XTIS(r )1 P)S(r', 7], (24) Npp=B{(PP)o} (p{P.G})o=B*Xopn(P{P.G})o, 7
2

where the thermal driving entropy flux from the surround-

ings [35,3§ is Js=J4/T. In the case of thermal isolation, o _1 oen

this term is 0. The last integrals on the rhs of E2f}) are the Nom=B{{Pm)o} ™ (P{M, G})o=B"Xopm(PIM. G})o-
entropy production. The subscrifrielay indicates only the

relaxation part of Eqg.13) and(15) is used. Also the micro- . - .

scopic entropy density rate is=(U—p-Ep—m-Hy)/T, ASS“”:j'”IgNrJZDGa:‘d Ngtm_artehsm?f"’ ?'”Cflslkrf Ild we may
where the dot is defined in EC10). HereU is the dynami- expand Eq(26) to obtain the effective local fie

cal evolution and does not contain the thermal driving energy oo = -

density. The superscritindicates Kubo transfor8]; clas- ~ Ep(r,t)=(1+Npp) Xoppl P(r:t) = Xopnl | = Npml- Hu(r, 1)}
sicaly, ak=a. We have not been able to show that the

(28)

~o-1 i
entropy-rate correlation function on the rhs(@#) is strictly =~ XoppP(r, 1) + Lp- P(r,1), (29)
=0 The reversible terms do not contribute directly the en-
tropy rate, since TiCo)=0. where the electric depolarization tensor is defined as
F. Linear approximation Epz 325(*6p1p< p{p@})o)‘gaplp: Npp. )*(*aplp_ (30)

In order to use Eqs(13) and (15), we need to obtain
approximations for the Lagrangian multipliers representingequation(30) represents the depolarization tensor in terms of
the effective electric and magnetic fieldSp(r,t) and the dipole-dipole interaction potential energy. The magneti-
Hu(r,t). zation can be approximated as
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M(r,t) (m(1-BG)),
v v +[B(mm),

— BZ(m{m,G})o]- Hyw(r,t) +[ B({mp)o
—BXm{p,G})o]-Ep(r,t) (31)

or

M(r,t)=(m(1—BG))o+ Xomm [ I —Nmml-Hu(r,1)
+)?Omp'[r_ f\]mp]‘ EP(rvt)

=(m)g+R3-Ep+Ry-Hy . (32

In antiferromagnetic, paramagnetic, and diamagnetic materi-
als there is no net magnetization in the absence of an applied

field. The coefficienﬁg is related to thex in Rado’s theory

[9,14].
The demagnetization tensors are

Nimm=B{(mM)o} = Xm{m,G})o= B Yomm(M{m, G} )o
(33

and

Nmp: 2,8{<mp>0}_1<m{p1e}>0: Bz)?anzwlp<m{prc‘}>01
(34)

where the susceptibilities per unit volume afgmnm
= BV(mm), and Yomp=BV(mMp)y. SinceG/kT<1, we can
assume!\lﬁmm is small, and we may expand E@2) to obtain
the effective field

Huw(r,0)~ (T + Ny - Xoma M(r,0)
_)‘(_)Omp'[r_ l(iimp]' Ep(r,t)]
~ XompM(r,0)+ Ly M(r, 1), (35)

o1

L= BXomm (MM, G} o Yomm=Nmm Xomm  (36)

For magnetic materials E5) yields well-known results.
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G. Relaxation approximations

The relaxation kernel can be approximated in the absence
of an electric field and no reversible terms to obtain Landau-
Lifshitz, Gilbert, or Bloch-Bloembergen equatiofsee Rob-
ertson[2]). In the simplest case of no memory, the kernel is
proportional to a delta function. Equatiofi3) and(15) can
be solved by using Eqg10)—(12) or their linear approxi-
mates. In Sec. Il F, applications are presented to illustrate the
coupling of induced fields to the electric and magnetic mo-
ments. With no electric field driving, for E¢13) we have

IM(r,t)
T: 7eﬁM(r!t)X[H(r!t)_HM(r!t)]

t
+f dgf'f Tr{[m(r),H(r,O]T(T,t, 7)
0

X[1=P(,7)][m(r"),o (I, 7)]}-{H(r",7)
—Hp(r',7)}d7, (39

where
Tr{[m(r),H(r,)]T(T,t,7)[1=P(T,7)][m(r,)o(T",7) ]}
=K.

The relaxation term reduces to the Landau-Lifshitz relax-
ation expression when we assume the magnetization relaxes
toward the effective magnetic field. This was shown by Rob-
ertson[2] for NMR relaxation.

The Gilbert dissipation expression is of the form

MXdM
M

(40)
So the loss term in this case assumes that the right hand side
of Eq. (13) is orthogonal tavi.

The original Landau-Lifschitz equation is obtained from
Eqg. (13) if M= yomHnm and the kernel is assumed to be a

delta functionec I 8(t— ) and

dM - -1
_:'}’gMX(H_Lm'M)_C(XOm'M_H)a

at 47

Depolarization has its origin in the potential field created by

the polarized bound charge which creates an opposing elec-
tric field. Demagnetization is related to the analogous spin

effects.
Using EQgs.(26) and (32) we can solve forlEp and Hy,

when there is no magnetization or polarization in the absence

of applied fields:
Ep=[Rs—Rs Ry R 1 [M—R, R; - P]
=§,.P+5§, M. (37
and

HMzﬁgl[P_ﬁlEp]E§3P+§4M (38)

WhereC is a positive constant.
The Bloch-Bloembergen equation can be obtained

dm o -
S = YMX (H= L M) =T+ (M= M),

(42)
whereM = Mg, is the static magnetization, and the applied
field contains a static bias magnetic field in thdirection. In
Eq. (42) we define

1T, 0 0
= o wm, o |, (43)
o o0 1m
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and let K=y, 6(t—7)T. We set H-Hy~H—-L,,-M The displacement field satisfies
—xmM, where we usedy =y, M+ Ln-M. Then thex D aE p
andy components oH—L - M, in the relaxation term, are ot o T~ T([H.dlp)
neglected, keeping only thecomponent which is written as
H,=xm M. 1
z m =Tr EOE"F; ejrjﬁ(r_ri)_ijgl e](r]rJ)V

I1l. DISPLACEMENT AND INDUCTION FIELDS 5
X —r.

Evolution equations for the displacement and induction (r=ri)
fields, charge density, and energy conservation can be ob-
tained from the Poisson-bracket formalism using the consti- P)
tutive relationshipg13) and(15), and Eqgs(1) (2), and iden-
tifying E and H as Maxwell fields. The magnetic field is —Tr([d,up]1p)
expressed in terms of the vector potential, with each particle
having a canonical momentum associated with it. The vectoko|E|2 does not contribute to the Poisson brackets in Eq.
potential for particlei is A;(r)=ad(r—r;). The Poisson (45). When taking the spatial derivative in the trace, the
bracket of the vector potential, and displacement fields withfjuadrupole term cancels with the derivative of the delta

> Vixai-H(ri,t)wa VXA-H(r,t)d3

vac

—VxH-J. (46)

themselves yieldA; ,A;]=0, [d;(r),d;(r)]=0 and the ex- function in the dipole-moment densitgee Appendix E
pected values ar8=Tri[b(r)p]=Tr{2;VX[ad(r—r;)]p}
+V XA, V-b=0, D=Tr{[ gE+p(r)]p}=Tr[d(r)p].

If we add and subtracieg|E|2+ uo|H|?) from the internal
energy density in Eq6), then the Hamiltonian can be writ-
ten as

is

H(r)=f (Uy—d-E—b-H)d®, (44)
where the Maxwell internal-energy densitly, is a sum of
the energy density due to the materldl and the energy
density in the fields in vacuum. The integration volume in
the Hamiltonian is large enough to include all stored field
energy.

In the Maxwell approximation because &, E=p,, and
Ampere’s lawU,, does not depend on the position coordi-
natesr; of the particles but does depend arirhis is because
the electrostatic and magnetostatic lattice energies can be
expressed in terms ofo|E(r,t)|?+ uo|H(r,t)|2. Uy, does
depend on the canonical momentum through the kinetic en-
ergy. We define the current density ds=Tr([d,uy]p),
whereuy, is the Maxwell internal energy. Therefore, using
Liouville’s equation[Eqg. (C1)] Eq. (1), and the definition of
the Poisson brackef{&q. (A3)], and using the results from
Appendix E, we find, from a classical analysis,

B dH

pe—— _+
Mo ot

M =T b
i i r(|H,blp)

—Tr({f €l E|?d3r+ 2 er;-E(rj,b)
J

=

2 e(r;r;):VE(r; ),

I\J

ZVx{[a(r)a —r)]+A(r)}p=—VXE, (45

where, to obtain the last expression, we took the trace and
integrated by parts. We have Tuy ,b]p) =0 sinceuy, does
not depend orm; .

Using only the kinetic energy of the free charge and

neglecting the bound-charge dependence, the current density

J(ri)=Tr([d,um]p)

IZ Tr(,vlil(%i(f)_eAi(f ))5(r_ri)P)

—Z Tr( (it — €A1 8(r—r)o

Jee 3l

><7(t,7){1—P(T)HDU’)J])[E(W,T)

)y~ €Ait))o(r—r)

t e
—Ep(r',T)]dT-i-f d3r’f02i Tr(m(m(f)

—eA))o(r—r)(t,7){1- P(T)}[m(r'),0]>

X[H(r",7)—Hpn(r",7)]d. (47)

When Eqs(13) and(15) are used in Eq945) and (46), we
obtain general evolution equations for the displacement and
induction fields. In addition we have

V.B=0. (49)

The bound charge density from Ed) is
1
V-P=Tr(2 eiri-Vé(r—r’)p—zE &(r;rj):VV
i =1

x&(r—rj)p)=—pb, (49

where the sum is over the bound charge. Therefore, since
V.

E=pt,
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V'D=Tr(2 eiﬁ(r—ri)p)=pf- (50) ! 5

Maxwell's equations(45)—(50) and (10)—(12), together

with boundary conditions, determirie H, Ep, Hy, 8, M,
andP. ﬁ

The equation of continuity for charge conservation can be
obtained from Eqs(46) and (50):

ATr(Ze8(r—r; e (71— €A
(2i&6( |)p)+_|_r E i( i(f) '(f))-Vé(r
at i M; ] L

ITr(Xigo(r—ri)p) O

_ri)p = it ® ‘Hin

ei(ﬁ-i(f )~ €At )) FIG. 3. Model of a rotating dipole with oriented magnetic mo-

+V-Tr| X M. o(r=rj)p|=0, (531)  ments with induced magnetic fieldsH;,. Also indicated is the

i i

angular momentum of the magnetic moments with angular momen-

where the first term on the right-hand side)js /dt, and the umtL.

last Tr term is equal td. L . .
The sums here are over all free charge. From(E6) we magnetization. If we use E¢32) we obtain a relation analo-

see that the time derivative of the Maxwell internal-energyd0Us to that obtained by Rade:
density,Uy=Tr(Uyp), is

M(r,t) B 2
Al D) B v =[B(mm)o—BAm{m,Gh)o]- Hu(r.)+[A(mp)o
= CE(r,t)+ “H(r,t). (52
N A t ~BXm{p,G})o]-Ep(r,1)
This is the same expression as derived by Landau and Lits- *E' Hy(r )+ & Ep(r, ).

chitz using another approa¢B]. For linear systems the in-
tegral of Eq.(52) can be performed to obtain

B. Artificial medi
U= 3[D-E(r,t)+B-H(r,t)]. (53 rificial media
In this section we illustrate the dynamics of electric and

Using Eqs.(45), (46), (47), and(52), we obtain the gen- magnetic field coupling in the reversible terfis.(20) and

eral equation of energy conservation (22)] for various special cases. We assume a dynamical
model with no relaxation. Relaxation could be included, but
U makes the analysis less transparent.
M v.s=—J.E (54) y nsparem. -
ot We assume a perfectly rigid electric dipole that is free to

rotate. Intrinsic magnetic moments are rigidly coupled to the
where the Poynting vector S=EXH. Equations(52) and  charges. To obtain these specialized cases, the density func-
(54) are general, and are not limited to linear dielectrics. tion in Egs.(20) and(22) is assumed to constrain the charges
The entropy for an electromagnetic field, including a heato a rigid dipole with aligned magnetic moments.
flux from the surroundingdy=TJ; If an electric field is applied to a dipole without magnetic
ds) L moments, the dipole rotates because of the applied electric
torque. The rotation produces induced magnetic fields from
dt :f d3r( Ve Ist ) I VT (Bp—B) each charge, but in opposite directions. This produces in-
duced magnetic moments in opposite directions. This is be-

oH causey, changes sign for-e. We now study special cases
—| po—=+VXE|-(H=Hy) .
at of coupled magnetic moments and charge movement.
JE . L
_ ( foﬁ_vx H| (E- EP)’ ) (55) 1. Case 1: electric driving
In the first application, we consider a rigid, rotating elec-
tric dipole in an applied electric field where each particle has
IV. APPLICATIONS TO MAGNETOELECTRIC an intrinsic magnetic moment, as shown in F{g). The
AND ARTIFICIAL MEDIA magnetic moment is constrained to align with the electric

dipole. This is a magnetoelectric, Tellegen model in an ap-

plied electric field[11]. We use the phrase “Tellegen
Usually magnetoelectric media are analyzed in terms ofmodel” since the media do not seem to exist in nature. If

linear constitutive relations between the electric field and thenly an electric field is applied, the dipole will rotate and

A. Magnetoelectric media
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produce induced magnetic fields. At the same time the mag-
netic moment is forced to rotate.

In this case the Hamiltonian contains the Zeeman and
Stark interactions and kinetic energy of the moving charges.
We neglect all contributions to the internal energy except the
kinetic energy.

The kinetic energy is

1 | xel
T= 51 @el? =57 [Hinel* (56)

whereHj, ) is the induced screening magnetic field due to
the charge motion, ang, is the induced diamagnetic sus-
ceptibility which is related to the moment of inertia byy|
=(1)»2. Hine) is the part ofH,, induced from charge mo-
tion, and‘”e:h’femin(e)' The_ mechanical torque can be ex-. FIG. 4. Model of precessing magnetic moments with an at-
tracted by considering the time rate of change of the electrigyched electric dipole.

internal energy in Eq9456) and(16). This yields

tric behavior as shown in Fig. f14]. The orbiting charge
_ =P_XE. (57) produc_:gs an induced_ diar_nagnetic magnetic fidlg, in
|vel dt opposition to the applied field.
Hin(m) is obtained from the mechanical torque

dew, |Xe| dHin(e)
O =1

We use the convention that positivg,, is in the same

direction as positivav,, andw, is positive for the counter- | xel AHin(m)

clockwise rotation of the dipole. The polarization satisfies W=me H. (61)

dP, The polarization satisfies E¢L3):

it = ©eXPe=~PeX| 7elHinge (59 P @3

dP,,
In this case the magnetization from Eg2) satisfies dt = el PmX (H=Hin(m) - (62)
dM, 2 | vel|Pel In this example the applied magnetic field in E§2) does
dat 2 Yei€ili X Eingiy =| ve| PeX Eip= MeX Ein not cancel out, since only the positive charge is orbitpg-
t i=1 |Me|

cessing. The charge at the vertex is assumed to be pointlike
=—|ygIMeXHing) , (59)  so that the induced magnetic field is negligible.
The magnetization satisfies

where, by Lenz’ Law, an electric fielH;, is induced by the
interaction of the permanent magnetic moments, with the dM,
induced magnetic fieldslj, caused by the rotation of the T:h’gleX(H_Hin(M))'
charge. This simple result describes a process for obtaining
magnetization changes from an applied electric field. In thél'he induced magnetic field subtracts from the applied field,
Tellegen model the electric field drives the magnetizatiorsince it is diamagnetic. We can relatél, )= (1
throughE;, interacting with the permanent electric moment. — | ye|/| vg|)H+ | ve|Hingm) /| vl -
This is a type of spin-orbit coupling. The induced electric
field is related to an effective magnetic field by 3. Application to chiral media

In the final application, we consider a system with unbal-
= |79||Me| nced char nd n rmanent magnetic moments. In thi
En=— m—=Hing) - (60)  anced charge a 0 permane agnetic moments. s

| Vel [Pel case we have only current-induced magnetic moments and

. e . charge-induced electric moments.
The torque from the induced electric field is equivalentto a  ~gsider a charged bead, free to slide on a spiral, as in

magnetic fieldH;yg) acting on the permanent magnetic mo- gon in Fig. 5. If a frequency-dependent magnetic field is
ments, whereHiyg) = Hinge)| Vel 74 applied in the plane of the spiral, a magnetic moment will be
induced in the opposite direction of the applied field and, by
Lenz’ Law, an electric field will be induced in the wire
As another simple example we consider the same rotatingshich will slide the bead on the spiral, causing electric po-
dipole as in the previous case, but instead of an applied eletarization. This is chiral behavior, as opposed to a magneto-
tric field we have an applied magnetic field. The magneticelectric effect. Conversely, if an electric field is applied, the
moment will precess about the applied magnetic field and theliding bead produces an induced magnetic moment. In this
electric dipole is forced to follow, thus exhibiting gyroelec- type of analysis there are no microscopic magnetoelectric

(63

2. Case 2: magnetic driving
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tions decouple and reduce to well-known equations. A quad-
rupole term was included in the displacement field that yields
origin invariance. Evolution equations for the displacement
and induction fields, with generalized constitutive relations,
were derived using a Hamiltonian approach. General expres-
sions for the dielectric and induction field evolution and
charge and energy conservation were derived. In this theory
symmetries in the constitutive relations are based on Hamil-
tonian mechanics, and therefore the constraint on constitu-
tive relations developed by Post is satisfi&d]. In order to
develop specific models for materials the approach in this
paper requires an estimation of correlation functions. A num-

\ ber of simple cases were presented, in order to illustrate the

v results of the theoretical work. Simple examples of magne-

toelectric coupling were studied in detail. In these cases we
were able to describe the coupling between polarization and
magnetization. In the last application we contrasted the chiral
behavior of free charge traveling on a spiral with magneto-
electric media. We found that chiral behavior can be de-
scribed by Maxwell's equations with constitutive relation-
ships of the forms of Eq€26) and(32). On the other hand,
magnetoelectric media can require more fundamental addi-
tions to the magnetization and polarization evolution equa-
tions.

—_—

H
FIG. 5. Model of chiral material. ACKNOWLEDGMENTS
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The constitutive relations for this application are given by APPENDIX A: HAMILTONIAN AND POISSON
Egs.(26) and (32), or they can be more generally obtained, BRACKETS

following Ref. [29], by taking linear approximations to Egs. A material with charged particles with an electric dipole

(13) and(15), neglecting the reversible terms, Fourier trans- LT X : ) .
moment and an intrinsic spin moment in applied magnetic

forming, and solving for the frequency-dependent polariza- L : .
tion angd magnetiza’gon q y-aep P and electric fields, with electrostatic energg, has an ap-

proximate Hamiltonian

V. CONCLUSIONS

1
— 2
In this paper we have derived a statistical-mechanical H=sy(m—eA)"—pu-H-er-E

theory for polarization and magnetization evolution for a
system of particles using a projection-operator approach. We
started from microscopic expressions for the polarization,
magnetization, and internal-energy density. These quantities
were then averaged to obtain macroscopic expressions. Then )
generalized, nonlocal equations of motion were derived fofVé can separate free from lattice charges, and expand the
the polarization, magnetization, displacement, induction, anéfttice contribution, using\=z(H>r) and angular momen-
internal energy, which included effects of memory and nonium L =rX, to obtain

equilibrium. We studied the coupling of the polarization and

magnetization in complex media, and found that a nonequi- 1 1

librium coupling can exist between the magnetization andm(n—eA)ZJr m(wf—eAf)z—p-H

polarization.

The internal energy was studied and decomposed into lat-
tice potential energy, kinetic energy, energy due to perma-
nent and induced dipole moments and angular momentum,
and other interactions. In limiting cases the evolution equa- (A2)

1
+ EJ (€0l E|?+ polH|?)d3r + V. (A1)

1
= — _ 2_ . . 21 2| A2
o (7~ AN (vel + ) - H+ 5 (|al+ e AP).
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The last terms are due to the motion of the lattice as a whole APPENDIX C: NONEQUILIBRIUM
in a magnetic field. This and the kinetic energy of the free PROBABILITY-DENSITY FUNCTION
charge is included in the internal energy.

The Poisson bracket for functiofgr,...r,;mq....m,,t)
andG(rq...r,;m....m,,t) is defined as

In this appendix the projection-operator tools needed for
studying relaxation processes treated in this paper are over-
viewed (see Ref[3]). We suppress any spatial dependence

JF G  JF 4G and use a semiclassical analysis.
[F,G]=2 e am ar) (A3) The evolution of the statistical density function produced
: o om ot by the dynamics is given both classically and quantum me-
chanically b
[ri,rj]=[77i,7rj]=0, (A4) y by
. ap(t) .
[r.m]=8;=—[m.r{]. (A5) — i =[Hb.p1=1LDp(). (CY)

APPENDIX B: REVERSIBLE TERM Here L is either the classical or quantum-mechanical Liou-

ville operator.
We assume the sdf;(r)} of functions in phase space
that have expectations that are observables. The expectations
[,8( F—f (p-Ep+m- HM)d3r> ,a} =0; (B1)  are defined byF)=Tr[Fp(t)]. We define a generalized ca-

nonical densityo(t) that describes the nonequilibrium ther-

therefore modynamic variables of the system. Following R¢fd.and

[3] the generalized canonical probability density function

o(t) at timet satisfies

From Eq.(8),

[F,o]= f(p-Eerm-HM)d?’r,a}, (B2)
TR (D)o (t)]=(F;(T)). (C2

and the polarization current is , , I
In this approachu(t) is that part of the nonequilibrium sta-

3 tistical densityp(t) which is obtained from information at a
=Tr(p[H,o])=—Tr(p[F,a])+Tr| p fp-Ed ro single instant of time.
The canonical-density function is developed by use of
- Hg? constraint conditiofC2) and by maximizing the information
fipp ) m-AdT.o entropy to obtain
:Tr”pJp.(E—Ep)d%}o} o(t)=exp(—=A+F) €3
The* operator is defined as
+Tr”p,f m~(H—HM)d3r}a] N
M F=2 A(DF,. (C4)
n=0

=Tr”p,f m«(H—HM)d3r}a] =(p).
The Lagrangian multipliera;(t) are found by substitution
(B3)  of the calculated expectation values into the constraint con-

dition (C2). Normalization is obtained by settirfgy=1.

Using Eq.(14) yields It is necessary to introduce a projection-like operdér)
[32]. The operatoP is linear, non-Hermitian, and is used for
—Tr(m[H,o])= _Tr(m[F'g])+Tr(m[J m- HdBr’UD separating relevant or observable details from irrelevant de-
tails. It satisfies both
+Tr( m[f p.Ed3r,a-D (?U/(?tzp(t)(?p/é’t (C5)
and
=Tr({m,J m-(H—HM)d3r}o)
a(t)=P(t)p(t), (C6)
+Tr m,f p-(E— Ep)dﬂg] and it is defined for operations on a functidrby
_ : oo (t) _
=ygM X (H=Hywm) + (M), (B4) P(t)Azm*Tr(FA)zF(r*(FF} L(FA), (C7)

where we used the identity for operatdxsand B; ) . o
where § denotes a functional differentiation. The opereor

Tr(AiLB)=—Tr(iLA)B]. (B5) a generalization of Zwanzig's time independent projection
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operator{32], separates the relevant part from the irrelevantor rigid body rotation
part. The projection operator also contributes to the time de-

pendence off (t,7). P(t) may be expected to correct for the dProt:<m>>< = (D2)
divergence of transport coefficients. dt rot

It is possible to show that with the conditiom(0) ] ] ) . )
= ¢(0) [33] (Oppenhein{4] generalized this condition (w) is the average radial velocity of the particles. Classically,

this equation is to be solved simultaneously with the torque
equation(57) for (w) andP,,;. The effective angular velocity

t
p(t)y=0a(t)— JOdTT(t, H1-P(n}iL(1)a(7). (C8 g

. . . _— 1 dpP

The integrating factoff(t,7) satisfies the initial value prob- — rot

lem (o) ||;)mt|2prot>< FTER (D3)
IT(t,7) If the magnitude P, is constant, thet®, - { w)=0.

P =T7t,7{1-P(n}i L, (C9

APPENDIX E: TRACE CALCULATION
with initial condition7(t,t) =1. All of operators7, P, and L
are linear.

Using this formalism an equation of motion can be writ- (46) is evaluated

In this appendix, an example calculation in EGt) and

ten 9
Tr{z (eoE(r,t)+Z er;o(r—rp)
HFmy . t T Ol jx i
B0 (Fabe [ TR
ot 0 1 d
—5 2 () Vor—r)|——2V,
XT(1-P)[H,o(7)]}d7. (C10 =1 €idTjx "]

Here the dot is defined b =iLF. The first term on the Xa -H(r t)p
right side of Eq.(C10) is the reversible or convection term; : .

the second is the relaxation term. Equati@i0 is exact.

This technique has been used for other applicatj@ns =Tr( ; o & 8(r—r)VxH(rj,t)- a(rj)p) 0y
APPENDIX D: DIELECTRIC RELAXATION S ~
s TI‘[V]-XH(I‘J-)5(F—I’J-)p]~u10 _ @_a_l—lz a
On application of an electric field to a material, relaxation ; TrLS(r—=rj)p] Ylezoay )T
and dissipation occurs and also dipoles may rotate. At ambi-
ent temperatures and low field strengths, the ratio satisfies (D4)

p-E/kT<1, and thermal effects dominate over dipole €Neryyhere(; are unit vectors. The mean value of a variadlés

gies. This is described by the Langevin equation. As thejsfined as
temperature is decreased and the field strength increased, the

thermal energy decreases relative to electrical energy and the Trla;é(r—rj)p]
probability of rotation of dipoles increases. Aol (DY)
; i . TrLS(r—rj)p]
We can write the polarization rate as a sum of rotational
plus a nonrotational components of theith particle at positiom at timet (see Ref[34]). The
second derivative of thé function was neglected. Similarly,
d_P _ dProt  dPronrot (D1) the other components can be calculated to obtain the curl of
dt dt dt -’ the magnetic field.
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