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The Eftects of Timing Jitter in Sampling Systems
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Abstract—Timing jitter generally causes a bias (systematic error) in
the amplitude estimates of sampled waveforms. Equations are devel-
oped for computing the bias in both the time and frequency domains.
Two principal estimators are considered: the sample mean and the so-
called Markov estimator used in some equivalent-time sampling sys-
tems, Examples are given using both real and simdlated data.

I. INTRODUCTION

HE PURPOSE of waveform sampling and digitizing

systems is to assign an amplitude value and a corre-
sponding time of occurrence to each of a finite set of dis-
crete points that define a waveform over a specified time
epoch. In this paper we present an analysis of the effects
of random errors in the time of occurrence of the wave-
form samples. Such errors are commonly called timing
jitter. Since only the nominal sample times are known,
the effect of timing jitter is to introduce random errors in
the amplitude values which are assumed to correspond to
the sample times. In general, estimates of the true wave-
form values that are based on the observed samples tend
to be biased. This is generally true for any sampled wave-
form for which second and higher order derivatives exist.
The bias depends on the statistical estimator that is used.
We have examined estimators used in both real-time and
equivalent-time sampling processes.

While it is true that waveform estimates based on time-
jittered samples are generally biased, the power, or mean
squared value of the waveform samples is asymptotically
unbiased, provided that the jitter is uncorrelated with the
waveform itself. Therefore, it will be shown that the
power contained in the noise created by timing jitter is
directly related to the bias described above.

In recent years, timing jitter has been studied either di-
rectly [1] or indirectly [2], [3] by several authors. In this
work, we expand on the results using the mean in equiv-
alent-time sampling given by Gans [1], and include anal-
yses of other estimation processes commonly used in
equivalent-time sampling.

II. ProBLEM

Referring to Fig. 1, consider a waveform to be sam-
pled, described by y = f(¢). For jitter-free sampling, we
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Fig. 1. lNlustration of the bias asyociated with using the mean o estimate
the value of a waveform sampled at time 1. with timing jitter having a
PDF of P{AT).

write ¥, = f(r), where y, is the amplitude at time r. With
jitter present, let [ v, - * * ¥,] be the statistical sample,
where v, = f(r + Arn ) and Ar is a random variable
denoting the kth deviation from the nominal sampling
time, r. (For n = 1, multiple sampling at the same nom-
inal time ¢ on the waveform is assumed, as in equivalent-
time sampling. } We wish to determine the bias that re-
sults when using an estimator f,, based on the statistical
sample [ v, = = vl

I11. THE MEean as EsTiMaTOR
For real-time sampling, the most commonly used esti-
mator is the sample mean
I "
g 2 Vet (1)
Rk=1
which, in the limit as » becomes large, approaches the
expectation of ¥,, where ¥, denotes any one of the y, in
the statistical sample. This is given by

oo

ElY] = 5 f(r + Ar) P(At) dAr (2)
where P At) is the probability density function (PDF) of
the jitter distribution, as illustrated in Fig. 1.

For the more usual case of additive random noise in the
measured signal, the mean is an unbiased estimator,
Therefore, when it is possible to take repeated measure-
ments, the sample mean is frequently used to reduce noise
by averaging repeated data records. In other cases, single
records are often processed using orthogonal transforma-
tions or least-squares fitting routines to extract signals
from noise. Fourier transforms and sine wave curve fit-
ting, for example, are commonly used [4], [5]. For these
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cases, the mean is the underlying estimator; the resulting
coefficients approach the coefficients of the transform of
E[Y,], as the number of samples increases.

When timing jitter is present in addition to additive
noise, a bias will be introduced in the cases noted above.
The bias can be calculated in terms of the moments of the
jitter distribution by expanding f(r + At) in (2) in a Tay-
lor series:

&

E[¥] = 5_m[f(r) 4 f(r) Ar

+ f () A2 /2! + - - -] P(Ar) dAr (3)

where (') represents the derivative. Since the integral of
the first product term in (3) is the true value f(t), the
remaining terms of (3) comprise a bias. The bias is ac-
tually the sum of products of the function’s derivatives
and the moments of the underlying jitter distribution. We
can express this result in a more useful form in the fre-
guency domain by taking the Fourier transform of (3):

F(E[Y])
= F[f(:} Sw P(At) dﬁr]
% F[f’{:} r AtP(Ar) d&.:]

+ F[f”(r}% rmmzf-{mf .—m:J + e
(4)

The integrals in (4) are, respectively, the following con-
stants: unity, the mean ( p), and the second moment (o’
1 ,ul}._. of the jitter distribution. Since F(b - f'(1)) =
Juwb « F( f(1)) = jwb - H{w), (4) becomes

F(E[Y]) = H(w) + jopH(w)
- wi(e® + p?) H(w)/2 + .-+ (5)
= H(w) [1 + jop — w*(a® + p*)/2
ey ] (6)

The bracketed terms of (6) represent a filtering function
operating on the true signal H(w). The second term within
the brackets indicates the intuitively obvious notion that
a nonzero mean in the jitter distribution will show up as
an apparent linear phase shift in the frequency domain.
(The corresponding term in (3) shows a fixed time shift.)
Higher order terms involve the higher order moments of
the jitter distribution; for symmetrical distributions, the
odd-order terms vanish.

Note that if either f(¢) or P(At) in (2) is an even fune-
tion, then (2) becomes equivalent to a convolution inte-
gral. In this case, the filter function can be calculated in
closed form as the Fourier transform of the jitter PDF.
Using this approach, the exact filter functions for Gauss-
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Fig. 2. The filtering effects of averaging repeated, time-jittered records.
{a} The solid curve consists of the first ten harmonic components of a
square wave; the dashed curve gives the computed, filtered waveform,
baszed on uniform jitter with a standard deviation of one tenth the square
wave period. (b} The mean of 100 time-skewed records of the example
waveform is given. The time skew had the same standard deviation used
i (a).

ian and uniform distributions ( with ¢ = 0) have been cal-
culated to be e /2 and sinc {\Ema}, respectively.

In many applications where the jitter distribution spans
a time window that is short compared to the period of the
highest frequency component of the signal, the three terms
shown in (6) will be an adequate approximation. Then,
only the mean and the second moment of the distribution
need be known to predict and compensate for the errors.
For example, with a Gaussian distribution having a o of
one tenth the signal period 27 /w, the higher order terms
amount to only 1.8 percent out of a total bias of 17.9
percent. For a uniform distribution having the same ratio
of ¢ to signal period, the respective values are 1.1 percent
out of 18.6 percent.

A. Examples

The results expressed in (6) can be used in a variety of
situations. The most obvious are cases in which multiple
samples of the same nominal time point on a waveform
are averaged. This occurs in equivalent-time sampling
systems such as sampling oscilloscopes, in so-called ran-
dom repetitive sampling in which the time of occurrence
of random samples is quantized, and in cases where mul-
tiple records of the same waveform are averaged, but the
records have random time-skew up to one sample period
between them due to asynchronous triggering. In the lat-
ter two examples, the jitter distribution is uniform, and



S

i

AMPLITUDE

Fig. 3. Results from sine wave curve fitting of time-jittered data, with a
jitter standard deviation of 36%. The solid curve is the unjittered wave-
form which has a peak value of 1.0, and the jittered samples are repre-
sented by ( + ). The fited waveform is given by the dashed curve, and
has a peak value of 0,804

has a known variance based on the digitizing resolution
in the first case or the sampling period in the second.

Fig. 2 shows the results of averaging multiple records
simulated with random time-skew between them. The
waveform is the sum of the first 10 harmonic components
of a square wave, and the time-skew distribution: ix . ni-
form, with a width of 5.6 percent of the square wave pe-
riod. Fig. 2{a) shows the original waveform as the solid
curve, and the dashed curve is the expected waveform
after filtering with the function given in (6). In Fig. 2(b),
the waveform shown after averaging 100 time-skewed
records is very close to the expected waveform.

In Fig. 3, the results of a sine wave curve fit are shown
for simulated data: a sine wave of unit peak amplitude
sampled at 500 points, under the influence of Gaussian
jitter with ¢ = 36°. The solid curve is the original wave-
form, and the plotted points are the time-jittered samples.
The dashed curve is a plot of the fitted sine wave, ob-
tained using the three-parameter fit described in [6]; the
peak amplitude of the fitted sine wave, 0.804, is also in-
dicated. The attenuation predicted by (6) gives a peak am-
plitude of 0.821. The rms value of the residuals in this
case is 0.409.

IV. Tue MeEpian aND MaRKOV ESTIMATORS

In some equivalent-time sampling systems, the esti-
mator is known only in algorithmic rather than analytic
form. The sampling voltage tracker [7] is a good exam-
ple. In this approach, shown schematically in Fig. 4, the
waveform is sampled repeatedly at the same nominal
point, ¢, on the waveform with a strobed analog compar-
ator. The samples, v, are compared with a reference in-
put, ¥.(r) which is incremented or decremented by a
small, fixed amouni, &, each period, depending on the
logical output of the previous comparison. Under these
conditions, the reference voltage follows a random walk
described by a Markov chain. Fig. 5 illustrates this pro-
cess. The estimate of y, is obtained by integrating the ref-
erence voltage over a large number of repetitions and dig-
itizing with a DVM. Therefore, at each ¢ the sample mean
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Fig. 4. Basic circuit of the sampling voltage tracker.

2.9 T v N

AMPLITUDE

g.5 " " s M M L i . e
SAMPLES

Fig. 5. lustration of Markov process, representative of the outpul wave-
form ¥, (7} in Fig. 4, The solid curve is the Markov chain response to
the samples designated by { + ). The samples are taken from a sine wave
at 45%, with Gaussian jitter with 0 = 36°.

of the Markov chain is the estimator for the true value,
¥ the individual data are processed in real-time and are
not stored.

The statistics of this so-called Markov estimator have
been studied by the authors [8]. The analysis is too lengthy
to include here; however, the results are clear: the Mar-
kov estimator asymptotically converges to the population
median of ¥, as n — oo and then 6 — 0. An intuitive
appreciation of why this may be so follows from the ob-
servation that, for § << |a|, where a = f(t + Ar) —
¥, (1), the decision to increment or decrement is depen-
dent only on the sign of @. Therefore, the mean of y, (1)
will be stable only when the sign of @ has equal probabil-
ity of being positive or negative. This is the condition for
which the mean of y, (1) is the median of the samples y,;.

Although a formal proof has not yet been found, a sim-
ilar argument suggests that a modification of the algo-
rithm described above could be used to find any given
percentile of a sample set. To accomplish this, simply set
the ratio of increment amount, § 1, to decrement amount,
61, equal top + (1 — p), where p is the percentile de-
sired.

As an estiinator, the Markov estimator has some unigue
properties relevant to the problem of time-jittered sam-
pling. For symmetrical jitter distributions with zero mean,
the median of the time-jittered sample set [y, = * * ¥, ]
is unbiased, for monotonic f(¢) [9]. Furthermore, for dis-
tributions with nonzero median, it is easily seen that the
bias is simply a constant time shift, as in the case of the
sample mean. (If the distribution has a median, m, then
the distribution of ( Ar — m) will have a median of zero. )
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Another unique feature of the Markov estimator is its
computational efficiency. In usual sorting algorithms the
time needed to compute the median is of the order n log
(n). An algorithm to implement the Markov estimator is
of order n; hence, its cost is of the same order as that
required to compute the mean. Furthermore, the memory
requirements are equally minimal for real-time operation:
only the running average must be stored.

For nonmonotonic signals, the bias associated with the
median is not generally known; however, it can be com-
puted under certain conditions. For example, for sym-
metrical jitter distributions and signals that are symmetric
about their maxima or minima, t,,, the bias is given by
fli, + At,) — f(t,), where Ar,, is the one-sided median
of the jitter distribution, as illustrated in Fig. 6. When the
signal is a sine wave, for example, the respective biases
for Gaussian and uniform jitter distributions (with ¢ =
10%) are 0.70 and 1.14 percent. When the mean is the
estimator, the respective biases are 1.52 percent in both
cases.

For monotonic regions of repetitive signals, the median
(or Markov estimator) is obviously the best choice for an
estimator, since it is asymptotically unbiased. Few sig-
nals of interest, however, are strictly monotonic. Never-
theless, the median may still be the best estimator for some
applications in which the signals are not monotonic. As
indicated above, for sine waves sampled with either
Gaussian or uniformly distributed jitter, the median gives
a smaller bias than the mean for all values of the indepen-
dent variable. As another example, consider the measure-
ment of pulse rise time. Provided that the pulse has a
monotonic transition over the designated region, the me-
dian will give unbiased estimates of the defining 10- and
90-percent points, and the rise time measurement will be
unbiased. This will not be the case if the mean is used.

A. Examples

In Fig. 7, a comparison is made between the Markov
estimator and the sample mean estimator, for a sine wave
sampled with Gaussian jitter with o = 10°. At each g,
360 000 observations are simulated. Fig. T(a) is a plot of
sin (1), Fig. 7(b) is a plot of the bias of the sample mean
estimator, and Fig. 7(c) is a plot of the bias of the Markov
estimator for § = 107°. Note that, as predicted, the Mar-
kov estimator shows no bias in the monotonic regions of
the waveform, and that its bias is smaller everywhere than
that of the sample mean.

Fig. B gives the results of data taken with the sampling
voltage tracker. In this example, a filtered, high-purity
10-MHz sine wave has been sampled using the system
illustrated in Fig. 4 and described in [7]. Jitter was cre-
ated by phase-modulating the sine wave with Gaussian
noise. A sine fit was performed on the samples, and the
residuals are plotted in the figure. The fundamental sine
wave component seen in the residuals is an artifact of the
fitting process: the expected bias (see Fig. 7) has a sine
wave component itself, which has been removed by the
curve fitting process to minimize the squared error.
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Fig. 6. Ilustration of the bias associated with the median estimator, for
symmetrical jitter distributions, and nonmonotonic waveforms which are
symmetrical about their maxima or minima.
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Fig. 7. Simulation results comparing the Markov and sample mean esti-
mators, for a sine wave sampled with Gaussian jitter with o = 107 and

n = 360 000, (a) The original waveform. (b) The bias using the sample
mean. {c) The bias using the Markov estimator is given for § = 10 %,
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TIME [40nssDiv]

Fig. 8. Actual SVT results based on sampling a sine wave with added jit-
ter. A plot is shown of the residuals from a sine wave curve fil, with the
original sinc wave overlaid for reference. The vertical scale applies 1o
the residuals; the original waveform scale is 10 fimes larger.

V. SicnaL Power anp CurvE FiTr ReEsipuaLs
As stated previously, the power (or mean squared value)
of the time-jittered samples of a periodic signal is inde-
pendent of the jitter for random jitter that is uncorrelated
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with the signal. Thus for an arbitrary, periodic function,
z = G (t), defined over the range r = [1, 1,_,], having
Fourier coefficients a, /2, - - + g, /v/2, Parseval's re-
lation gives

fu— 1|

l L
.- 2 E[G? - L2 7
w2 E[G(t + An)] = 2 al/ (7)
the square root of which is the rms value of z, the function
without time-jitter. A proof of (7) is given in the Appen-
dix.

From (6), we know the Fourier coefficients of E[G (¢
+ Ar)], i.e., the expectation of the time-jittered version
of z, are given by

.
F(E[G(t + Ar)]) = % (1 - “”f;’ 5 ) (8)

In the limit for m finite and 1, — oo, the m expected Fou-
rier coefficients of G (¢ + Ar) are given by (8), and the
remaining energy will be represented by additional noise
spectral components, the total power of which we call
af. Since we have shown that the total signal power is

m 2 m 3 7 742
e ﬂ{l—m—ka]+a2

For sine fitting, the power in the residuals equals the:

power lost due to the bias of the fitted function. (To avoid
truncation errors, this applies only to sine waves that have
been sampled over an integral number of cycles.) In Fig.
3, for example, the calculated mean-squared value of the
residuals was 0.170, compared with 0.176, the computed
difference between the power of the original, unjittered
waveform, and the power represented by the fitted sine
wave. For Fourier transforms of periodic functions sam-
pled over an integral number of periods, the power lost
due to the bias of the “‘true’” harmonic components is
spread out in additional noise components.

V1. ConcLusIONS

In general, waveform estimates that are based on sam-
ples taken with timing jitter tends to be biased. We have
derived expressions for the bias that results from using the
sample mean as an estimator, and have shown that it can
be approximated in the frequency domain by a simple fil-
ter function. The so-called Markov estimator used in the
sampling voltage tracker, for example, was also studied,
and was shown to asymptotically converge to the popu-
lation median. It is, therefore, an unbiased estimator for
monotonic waveforms sampled with jitter distributions
having a median of zero. _

While the Markov estimator is expected to give a
smaller bias than the mean in many practical cases, it
should be borne in mind that the filter function associated
with the mean is a linear operator, while the Markov es-

timator is not. This means that the bias in the former case
is more easily compensated for, as pointed out by Gans
[1].

APPENDIX

We want to show that
fe—1 L
|
- 2 E[G¥r + A1)] = X2 a}/2 (A1)
M i=iy k=1

where G (1) is an arbitrary periodic function having (real
and imaginary) Fourier coefficients a, /v2, - - - a,/V2,
sampled over one period defined by the range of discrete
values t = [ 1y, I, -], where n satisfies the sampling theo-
rem. We will prove (Al) for G (1) = a; - sin (ir) and
G(t) = a; - cos (it), where i is 2« times an integer; it
will then follow from the law of superposition for expec-
tations of random variables that (A1) holds for any G (1)
which can be defined by a Fourier series.

By expanding sin (it + iAr¢) using the trigonometric
identity, we have

E|a® - sin® (it + iAr)]
= a* - sin’ (it) E cos’ (iAt) - P(Ar) d(Ar)
+ 2a’ -+ sin (ir) cos (ir) Eﬂ sin (iAr) cos (iAr)
- P(At) dat)

+ a’ - cos® (ir) r sin® (iAr) - P(Ar) d(At)
= a® - sin® (it) r P(Ar) d(Ar)

— a’[sin’ (ir) — cos® (it)] Ef sin” (iAt)
« P(Ar) d(Ar)

"+ 2a® - sin (it) cos (it) r‘ sin (iAr) cos (iAr)

- P(Af) d(Ar). (A2)
Since
51 P(Ar) d(Ar) = 1 (A3)
'm a’[sin® (it) — cos® (it)] = 0 (A4)
and
E‘;ﬂ 2a® - sin (it) cos (it) = 0 (AS)
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it follows that

L s E[a® - sin® (it + iA1)]

nlr=m

-1

Iw—1

2 a® - sin® (it) = a*/2.

fMr=1a

(A6)

An equivalent derivation exists for G (1) = a - cos (if).
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