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The potential and current distributions are
calculated across the width of a quantum
Hall effect sample for applied currents be-
tween O pA and 225 pA. For the first
time, both a confining potential and a cur-
rent-induced charge-redistribution potential
are used. The confining potential has a
parabolic shape, and the charge-redistribu-
tion potential is logarithmic. The solution
for the sum of the two types of potentials
is unique at each current, with no free
parameters. For example, the charge-deple-
tion width of the confining potential is de-
termined from a localization experiment by
Choi, Tsui, and Alavi, and the spatial extent
of the conducting two-dimensional electron
gas across the sample width is obtained
from the maximum electric field deduced
from a high-current breakdown experiment
by Cage and Lavine, and from the quantum

Hall voltage. The spatial extent has realistic
cut-off values at the sample sides; e.g., no
current flows within 55 magnetic lengths of
the sides for currents less than 215 pA.
The calculated potential distributions are in
excellent agreement with contactless elec-
tro-optic effect laser beam measurements of
Fontein et al.
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1. Introduction

The potential and current distributions within quantum
Hall samples are important aspects of the integer quan-
tum Hall effect [1-3]. In this effect the Hall resistance,
Ry, of the ith plateau of a fully quantized two-dimen-
sional electron gas (2DEG) has the value Ry(i)=h/(e’),
where 4 is the Planck constant, e is the elementary
charge, and 7 is an integer. Early attempts to measure
potential distributions across samples [4-7] used electri-
cal contacts to the two-dimensional gas that were placed
within the sample interior. The potentials were found to
vary throughout the entire sample. There was concern,
however, that the electrical contacts themselves signifi-
cantly altered the potential distributions. Fontein et al.
[8] have made contactless measurements of potential
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distributions using a laser beam and the electro-optic
Pockels effect. They observed major fractions of the
quantum Hall voltage occurring near the sides of the
sample, but also significant contributions within the
interior. Valid predictions of the potential distribution
across quantum Hall samples should agree with their
results.

In this paper we calculate the potential distributions
across the sample for applied currents /sp between 0 pA
and 225 pA by: (a) assuming a parabolic confining
potential for the charge carriers and using parameters of
the parabola obtained experimentally by Choi, Tsui, and
Alavi [9]; (b) assuming an applied current-induced loga-
rithmic charge-redistribution potential for the charge
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carriers that is similar to that of Balaban, Meirav, and
Shtrikman [10], but with very different cut-off values
for the spatial extent of the potential; (c) assuming that
the width of the conducting region varies with applied
current because a Lorentz force deflects the conducting
electrons slightly towards one side of the sample; (d)
using the maximum electric field deduced by Cage and
Lavine [11] from a breakdown experiment at high cur-
rents to determine the cut-off value for the spatial extent
on one side of the sample; and (e) using the quantum
Hall voltage to determine the cut-off value of the spatial
extent on the other side of the sample. The calculated
potential distributions are in excellent agreement with
the measurements of Fontein et al. [8].

2. Coordinate System

The coordinate system is shown in Fig. 1. For conve-
nience in writing the equations, the origin is located at
the source S and is halfway across the sample width w.
The sample labeling is chosen to be consistent with
previous work [11]. Potential probes 1 and 2, and the
drain D, are not shown. The positive x axis points along
the sample in the general direction of the externally
applied current Isp. The positive y axis is chosen as
indicated. Therefore the positive z axis points downward
for a right-handed coordinate system. The magnetic
field B also points downward, simply to be consistent
with results from the breakdown experiment [11] that
will be used in Secs. 4 and 5.

Note that the conducting charges are electrons with
charge g = — e. This is taken into account throughout the
paper; it is necessary to do so because the signs of both
the confining potential and the charge-redistribution
potential depend on the sign of the charge carriers.

Fig. 1.
sample is shown. The origin is located at the source S, halfway across
the sample width w. The dotted curves indicate the electron flow
pattern for this magnetic field direction. F_ is the Lorentz force on the
conducting electrons and Fc is the Coulomb force. B is the magnetic
field, v is the electron velocity, and V, and V are the potentials on
either side of the sample.

The coordinate system used in this paper. Only part of the
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The Lorentz force Fi = ev X B is in the positive y
direction. This force deflects the electrons slightly to the
right until it is matched by the Coulomb repulsive force
Fc=—-eE [12]. A charge-redistribution of the 2DEG
results from this deflection. Also because of the Lorentz
and Coulomb forces, the electrons enter the corner of the
source at y = — w/2 for this magnetic field direction and
exit at the corner +w/2 of the drain—in agreement with
the experiment of Klass et al. [13]. We assume that the
electrons spread out across the sample interior in agree-
ment with the experiment of Fontein et al. [8]. Potential
probes 4 and 6 are near the potential of the source.
Probes 3 and 5 are near the potential of the drain, and
have a positive potential relative to the source for these
current and magnetic field directions. The chemical po-
tential ¢, = V, is therefore positive relative to the chem-
ical potential ¢z = V5 on the opposite side of the sample.

3. Confining Potential

We begin the calculations with a confining potential
to prevent the 2DEG from spilling out the sides of sam-
ples. Choi, Tsui, and Alavi [9] performed an experiment
on mesa-etched GaAs/AlGaAs heterostructure samples
in zero magnetic field. They then used one-dimensional
localization theory to deduce the charge-depletion
widths, 4, of the confining potentials, and found that A
was (0.5 £ 0.2) um for a 2DEG of surface number
density n,=i(eB/h) = 1.5 X 10""/cm?. We will use their
results to define the depletion width of the confining
potential for a mesa-etched sample.

3.1 Charge-Depletion Region

Figure 2 (a) shows a schematic of the charge distribu-
tion in the GaAs/AlGaAs interface region near one side
of the mesa when there is no applied magnetic field. The
GaAs layer of our sample [11] has a residual donor
density of about 1 X 10'¥cm’, while the donor concen-
tration in the AlGaAs layer is about 1 X 10'%/cm’ and
ns = 5.94 X 10"/cm’. There is an ionized donor atom in
the AlGaAs layer for every electron in the 2DEG but,
unlike Choi, Tsui, and Alavi [9], we assume the ionized
donor atoms are distributed over a volume rather than in
a surface sheet with density n,. The confining potential
is generated from electron surface charges on the side of
the mesa, as indicated in the figure. There is an ionized
donor atom or ionized impurity site in the charge-deple-
tion region for every surface charge.

We assume a homogeneous charge-depletion region
in Fig. 2 (b). The depletion width A for a homogeneous
three-dimensional material is [14]

A = (2&V../eNp)'?, (1
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Fig. 2. (a) Schematic diagram of the GaAs/AlGaAs interface region

near one side of the mesa. See Sec. 3.1 for further explanation. (b) The
ionized donor charge-depletion density distribution Np. (¢) The con-
fining potential V. for negatively charged surface states.

where & = k&, is the dielectric permittivity of the semi-
conductor, k is the dielectric constant (k = 13.1 for
GaAs), & is the permittivity of vacuum, V,, is the value
of the confining potential at =w/2 and Ny, is the average
density of ionized donors and impurity sites in the
charge-depletion region. We selected the value of the
charge-depletion width to be A = 0.5 pm [15]. This
value is consistent with the results of Choi, Tsui, and
Alavi [9]. We chose the value of V,, to be one-half the
1.50 V separation between the valence and conduction
bands of GaAs at 1 K [14], or V,, = 0.75 V. The value of
the average charge-depletion density from Eq. (1) is thus
Np = 4.3 X 10"/cm’, which seems quite reasonable.

3.2 Confining Potential Equation

A homogeneous charge-depletion region results in a
parabolic confining potential V., with the origin at
y = A = w/2-A, as indicated schematically in Fig. 2 (c).
The confining potential is negative because the charges
on the side of the mesa are electrons.

The equations for the confining potential V. and its
electric field E. = — VV. are
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Ve(y) = —a(-A) and E(y) = 2a(y-A)  (2a)
for A=y= g— .
Ve(v)=0and E.(y) =0 (2b)
for —A<y<A,
Vey) =—a(y+A)? and E(y) =2a(y+A) (2¢)
for—% =-y=-A,

where a =V,/A?=3.0 X 10" V/m? for A=0.5 um and
Vo =0.75V, and
-

A= 3)

il
2

3.3 Confining Potential at Isp = 0 uA

Given the values of 4 and V,,, there is a surprising
amount that can be deduced about the electron states of
the confining potential when the magnetic field is ad-
justed to be at the center of the i = 2 quantum Hall
plateau and Isp = 0 wA. Since there is no applied current,
and therefore no Hall voltage, the Fermi energy & is
constant across the sample width and is located halfway
between Landau levels. Under these conditions, states of
the lowest (N = 0) Landau level are occupied up to the
Fermi energy & = Zw./2, no states are occupied in the
second (N=1) Landau level, w.=eB/m* s the
cyclotron angular frequency, m* is the reduced mass of
the electron (0.068 times the free electron mass in
GaAs), and # = h/2m. References [11,16-18] describe
how these states can be defined in the Landau gauge.

Figure 3 shows a schematic drawing of the energy of
the confining potential for Isp = 0 pA, with greatly
exaggerated values of A and 4w, and only a small frac-
tion of allowed states. The occupied/unoccupied states
are indicated as solid/open circles, and the occupied
(filled) states lic between Yma and Yimin = —Vmm. In the
presence of the magnetic field, electrons of the 2DEG
occupy Landau level states that penetrate into the
charge-depletion regions near the mesa edge, and cur-
rent circulates around the sample periphery. Under these
conditions

Aw.

ac(ymax) = T = evc(ymx) = €a (ymux")‘ J2

Vin
=BP (yma:&_)‘}z! (4)



Volume 100, Number 5, September—October 1995
Journal of Research of the National Institute of Standards and Technology

where A = w/2 - A,
The occupied states of the right-hand side (rhs) con-
fining potential generate a total current /. (rhs) that is

Ymax Yenax.
I.(rhs) = j J.y)dy= | oyE.(y)dy=
A A

& 5 & o Kias)
_RH [Vs:(ymax) Vc(*-)]v RH ’ (5)

where J.(y) is the current density, o, is the off-diagonal
conductivity tensor component, V.(Vmi) = —@(Vmax —
A)%, and V.(X) = 0. In the absence of significant dissipa-
tive scattering on the quantum Hall plateau, o,, = 1/Ry
[12]. Similarly,

=1

g
I (lhs) = chdy 0 I U'X)'Ec(.)’) d}’ =

¥ min ¥ min

& RLH [VioA) = V()] = — LeQmin) .

Ry '’

where Vc(ymin} i a{ymin"'"\)z'

It follows from Egs. (2) to (6) for the 12 906.4 (),
i = 2 plateau at 12.3 T, for the 400 wm wide sample of
Ref. [11], and for Isp = 0 pA that

2
I. (ths) = ;g—;’: = % =081 pA =—1I.(lhs), (7)
Ymax = — Ymin = 199.559 pm , (8)

and
%— Ymax = 0.441 pm. 9)

Thus, a rather large 0.81 pA current circulates around
the sample at 12.3 T when Isp =0 pA, 4 = 0.5 pm and
Vi = 0.75 V. The maximum extent of this current is 60
times farther from the sides of the sample than that
produced by skipping orbits bouncing off of a hard wall
with a cyclotron radius or magnet length I = (fi/eB)"?
of 7.3 nm.

532

Ec(y)=-ele(y) @ OpA

————== ¥Ymax

s

Yy (um)

Fig. 3. Schematic drawing of the energy of the confining potential
V. across the sample when [Isp = 0 pA. Values of the charge-depletion
width A and the Landau energy level spacing /w, are greatly exagger-
ated. The occupied/unoccupied states of the first two Landau levels are
shown as solid/open circles. The occupied (filled) states lie between
the locations Ymax = — Ymin-

4. Charge-Redistribution Potential

Section 2 noted that the Lorentz force exerted on the
conducting electrons causes deviations — e¢do(y) from
the average surface charge density —eodu.=—en,=
— ie’B/h of the 2DEG charge-redistribution across the
sample width. The resulting charge-redistribution
potential, V,(y), arising from applied currents would be
a linear function of y if the mobile electrons occupied a
three-dimensional volume. They occupy a two-dimen-
sional sheet, however, and MacDonald, Rice, and
Brinkman [19] expressed this charge-redistribution self-
consistently in terms of a charge-redistribution potential
as

wil

) 2 1 1
e f b0 (y) In [ﬂy —yl]dy . (10)
—wi2
where
im* d? feoSdZ
300’)=ﬁ F‘r’r(y)=m er(y)v (11)

as shown in Appendix A. Riess [20] extended this po-
tential to a 2DEG with finite thickness. Thouless [21]
then found an analytic logarithmic approximation of this
potential far from the sample sides, and Beenakker and
van Houten [22] then approximated the near-edge be-
havior by introducing a cut-off at a distance & from the
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sample side, and a linear extrapolation for

wi2

dz [ 2 ' '
Vip)=-§ '(Ivﬁ‘/r()’)ln LYoyt (2

-wi2

from Iyl =w/2 — £ to lyl = w/2. The characteristic length
£is E=ilj/ma* = ie’/(2mkehw,) where Iy = (4 /eB)"?
is the magnetic length and a* = 4arke, A’ /m*e* is the
effective Bohr radius in SI units. Qur values of &, Iy ,
and a* for the i = 2 plateau at 12.3 T are 3.3 nm, 7.3 nm,
and 10.2 nm, respectively.

Balaban, Meirav, and Shtrikman [10] used a nonlin-
ear (quadratic) extrapolation near the sample sides and
obtained the charge-redistribution potential

IsoRw [ln % +

Vr()’)" 2

S

Y+ w/2
A y——w:‘2‘

(13)

for Iyl < w/2 — 8, where & = [ for the i = 2 plateau, and
& is not the differential & of Eq. (10). They successfully
used this potential to describe the sample-width depen-
dence for breakdown at small currents, but could not
account for the larger breakdown currents observed in
other experiments [11, 23-28]. Their geometry factor is

w &£+ 68|

[h‘l 3 + 2—5 = 0.08

(14)

for our values of & and 6 at w = 400 pm.

4.1 Charge-Redistribution Potential Equation

The charge-redistribution potential described by
Eq. (13) was calculated for an infinite square-well con-
fining potential, and must be modified for use with a
more realistic confining potential. To do this correctly
would require a numerical solution of Eq. (12), with the
confining potential included, as is discussed in
Appendix A. We approximated this numerical solution
(and then tested the approximation) by using the form of
the potential in Eq. (13) but introducing two parameters,
Ymin and Ymay, that alter the charge-redistribution poten-
tial due to the presence of the quadratic confining
potential.

It was necessary to do this because the potential
distribution of Eq. (13), with a cut-off distance & = I,
gave the correct quantum Hall voltage Vy; = Rylsp across
the sample, but the electric field E, =— VV, did not
increase quickly enough for increasing current to satisfy
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the Isp = 0 pA conditions of Sec. 3.3 and then reach
the electric field values necessary for quasi-elastic inter-
Landau level scattering (QUILLS) transitions [11, 16—
18,25-28] at high currents.

We use the same form for the charge-redistribution
potential as Balaban et al. [10], but with a different
geometrical factor and very different cut-off values, yuin
and ym.., which vary with applied current. Our charge-
redistribution potential is

_ LRy Yimax T wi?]'l y+ w/2
Vo) 2 [ln W/2 = Vo = y-w/i2 |’
(15)
W w
for —-i-(yminiyﬂym-:E
where I, = Isp — I, (ths) — I (Ihs). (16)

I.(rhs) and I.(lhs) are defined by Eqs. (5) and (6), and
the geometry factor G in Eq. (15) is
]—I

We assume G is current-independent, and assign the
value

G(“,’ ymax) i [1n Mz.

w/2 = Ymax (]?)

G =0.147 (18)
to Eq. (17) by using the value of yy = 199.559 pum
found in Sec. 3.3 for Isp = 0 pA and w = 400 pm.
Our value of G is thus somewhat larger than the value
G = 0.08 that would be used by Balaban et al. [10]. The
cut-off values

Omar = WI2 = Yyax aNd Sin = W/2 + Yigin (19)
will be determined in Sec. 5. Appendix B discusses the
agreement between our Eq. (15) and the self-consistent
Eqgs. (10) and (11).

The electric field E, = — VV, due to redistribution of
the 2DEG with applied current is

E'(y) - jrrgﬂ

w

C Wy -

(20)

We now have nearly all the information necessary to
determine the potential and current distributions.
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5. Calculations

Figure 4 shows the confining potential - V,(y) and
the charge-redistribution potential — V,(y) across the
sample for greatly exaggerated values of A, 8., and
8min, and for an arbitrary value of 7,, where [, is defined
by Eq. (16). V, becomes infinite at =w/2, but that is of
no concern because it is only the occupied states which
contribute to the Hall voltage, and those states occur
only between yp.x and yui,. The potentials are therefore
finite and well-behaved in the region of interest.

(V)

Potential

Fig.4. The confining potential — V.(y) and the charge-redistribution
potential — V;(y) across the sample for greatly exaggerated values of
A, 8nae = W2 — Ynax, and Sin = /2 + Yosin.

5.1 Total Potential

Of course the electrical transport properties depend
on the total potential V,(y), but we can unambiguously
separate V,(y) into the confining and charge-redistribu-
tion potential components

Vi) =V.(y) + Vi(y) . 21
We have uniquely defined the potentials V.(y) and V,(y)
in Egs. (2) and (3) of Sec. 3.2 and Eqgs. (15) to (18) in
Sec. 4.1, plus Egs. (5) and (6) in Sec. 3.3. The current-
independent parameters for the confining potential and
the charge-redistribution potential are: 4 = 0.5 pm,
Va=0.75V, and G = 0.147. For a given sample we know
the applied current /5p and the sample width w, but there
are still two free parameters: yp,, and .

Ordinarily, it would not be possible to uniquely deter-
mine the values of y,,, and y.;, since the only other piece
of information is that the quantum Hall voltage Vy is

Vi = Rulsp = Vi(Wmin) = Vimar), (22)
and there is a range of values for yn,, that satisfies this
equation. It is possible, however, to determine the value
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of yma for a particular type of experiment, and we
believe that the results are representative of most other
experiments since our calculations agree with the ex-
perimental data of Fontein et al. [8]. We first note that
E(y) = - VV(y). Therefore

E(Ymix) = Ec(Ymax) + E:(Vmar) - (23)
In an experiment described in Ref. [11] we measured
the quantized longitudinal voltage drops along a GaAs/
AlGaAs sample between potential probes 4 and 6 of
Fig. 1 at high currents, and deduced the maximum elec-
tric field E,,. from a quasi-elastic inter-Landau level
scattering model. The results were

Enn = 1.1X10°Vim @ Isp = 215 pA (24a)

and

Enax = 42X10° V/im @ Isp = 225 pA. (24b)

The value Ep, = 1.1X10° V/m at Isp = 215 p.A was just
sufficient to excite the lowest, M = 1, QUILLS transi-
tions [11,25-28]. It is clear from Fig. 4 that E,., will
oceur at Yo, SO

Et(ymax) = Enax. (25)
We can therefore use Egs. (23) and (24) to determine
Ymax» and then Eq. (22) to obtain y., for the sample of
Ref. [11]. Note that changing the values of y. and Yy
also alters the values of /.(rhs), /.(lhs), and thereby the
value of I, in Egs. (5), (6), and (16). Thus there are no
free parameters, and one can obtain unique solutions to
the total potential and other transport properties.

5.2 Results

Relevant values for the solution at Isp = 0 wA are
shown in Table 1. Most were calculated in Sec. 3.3; the
remainder were found from Eqs. (2), (3), and (15) to
(22). Note that y,,,, and y,;, are predicted to be about 60
magnetic lengths from the sides of the sample.

We calculate the values shown in Table 1 at
Isp = 215 pA by increasing the value of yn, until
E(Ymax) = 1.1X10° V/m, adjusting the value of yu, to
obtain the correct Hall voltage, and remembering that
changing the values of y... and y.. also changes the
values of I (rhs), I.(lhs), and /.. The solution is unique,
with no free parameters. The same procedure is done at
Isp = 225 pA, except that the value of yn,, is increased
until E,(Yma) = 4.2 % 10° V/m. Note in Table 1 that
is still about 13 magnetic lengths away from the side of
the sample at Isp = 225 pA.
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Table 1.

Values of some quantities obtained from the calculations in Sec. 5 for sp = 0 pA, 25pA, 215 pA, and 225 pA. The quantities

common to all the calculations are i =2, B= 123 T, k= 13.1, w = 400 pm, A = 0.5 pm, V, = 0.75 V, @ = 3.0x 10" V/m’, A = 199.500
pm, G =0.147, and Iz = 7.3 nm. See Secs. 2-5 for the definitions of these symbols

Isp  I(ths)  I(lhs) I Ymax Ymin VeOma)  ViOma)  EcOma)  EQma)  Emad  Snanlls
(rA)  (pA) (pA) (nA) (pm) (pm) V) V) (MV/im) (MV/m) (MV/m)
0 081  -08l 000 199559  -199.559  -0010 0000 0354 0000 0354 603
25 094  -0.68 2474 199564  -199.554  -0012 -0.160 0382 0054 0436  59.6
215 230 005 21275 199.599  -199.515  -0.030 -1.392 0596 0504  1.100 548
225 3736  -0.00  187.64 199901  -198.044 0482 1477 2405 L1795 4200 135

We also calculate the relevant quantities at Isp = 25
pA, which is a current often used in precision quantized
Hall resistance measurements. In this case, however, we
do not know the value of E (yna.), S0 we use a linear
interpolation of the value of yn., between its values for
Isp =0 pA and 215 pA. The quantities shown in Table 1
for Isp = 25 wA are relatively insensitive to this choice
for yo.

5.3 Plots

We now plot the potentials, using Eqgs. (2), (3), (15)
to (19), and (21). Figure 5 shows V.(y) and V,(y) for the
parameters used in Table 1 at Isp = 215 pA, except that
the plot is between *0.99999 w/2(%£199.998 pm)
rather than y,., and y.;, in order to show the sharpness
of the confining potential and the extent of the charge-
redistribution potential at these extreme values of y.
Figure 6 shows V,(y) plotted between y,,, and y,, using
the parameters in Table 1 at Isp = 215 pA and 225 pA.
Other than moving farther to the right, the total potential
does not significantly change shape with increasing
current.

Figure 7 shows V\(y) at Isp = 25 pA. The shape of this
predicted potential is in excellent agreement with the
experimental measurements shown in Fig. 6 of Fontein
et al. [8]. It is this agreement which provides the best
verification of our results. The “linear” part of the po-
tential distribution within the sample interior, attributed
in Ref. [8] to heating effects which cause R, = V,/Isp to
increase, is accounted for by our charge-redistribution
potential in a sample which has minimal heating at these
currents [24].

The electric fields E.(y) = — VV.(y) and E/(y) = -

VV.(y) are shown in Fig. 8 for Isp = 215 pA; they were
determined from Egs. (2), (3), (18), and (20). The value
Of Ymax = 199.599 pm is such that E(ym) = 1.1X10°
V/m in equation (23). The contribution to the total elec-
tric field at y., is slightly more for the confining
potential than for the charge-redistribution potential at
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this current. Table 1 shows that the confining potential
also provides the dominant contribution to E,(Ym.) at
other currents.

3 F e ) e T T
ol -
Vi(y) @ 215 pA
i _
% N
0 -~
g
L T
= V) @ 215 A
_2 - -
_3 1 1 1
-200 -100 0 100 200
y (um)

Fig. 5. V.(y) and Vi(y) plotted between *0.99999 w/2 for the
parameters used in Table 1 at fsp = 215 pA. The parameters common
to all plots in Figs. 5-11 are i = 2 (12906.4 1), B = 123 T, w = 400
wm, k= 13.1, 4 = 0.5 pm, V,, =0.75 V, and G = 0.147.

The location, yma, of the last-filled state on the right-
hand side of the sample increases with applied current
Isp. We can use Eq. (A-3) and Table | to determine what
part of this increase in yp, is due to the increase in the
total electric field at y,... The percentage contributions,
relative to the values of yuu and E\(Ymax) at Isp = 0 pA,
are 4 %, 5 %, and 3 %, for Isp = 25 pA, 215 pA, and
225 pA, respectively. Therefore, most of the increase in
Ymax 18 due to the Lorentz force pushing the electrons
closer to the side of the sample.

The current density J,(y) for electrons moving in the
positive x direction is

)
1) = 0y E) = 5 [EO) + B (26)
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2 T T T

1L - VWly) @ 225 pA J

--2 00 -100 0 100 200
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Fig. 6. Vi(y) plotted between yuu, and ymin, using the parameters in
Table 1 for Isp = 215 pA and 225 p.A. The values of ypa and ypi, are
199.599 pwm and -199.515 pm, and 199.901 pm and —198.044 pum for
Isp = 215 pA and 225 pA, respectively.
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Fig. 7. Vi(y) at Isp = 25 pA. This potential is in excellent agreement
with the experimental measurements shown in Fig. 6 of Fontein et al.

[8].
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Fig. 8. Electric fields E.(y) = - VV.(y) and E/(y) = - VV,(y) for
Isg = 215 pA.

Figure 9 shows J,(y) for Isp = 25 pA, 215 pA, and 225
RA. The maximum two-dimensional current density is
at Y, and is 85 A/m and 325 A/m, respectively at Isp
=215 pA and 225 pA. There is current in the negative
x direction in the vicinity of ym, at small currents due to
the dominance of the confining potential. When
Isp =215 pA and 225 pA, however, E.(Ymin) > |Ec(Vmin)|
and no current flows in the —x direction anywhere across
the sample.
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Fig. 9. Current density J,(y) for fsp = 25 pA, 215 pA, and 225 pA.

The current / (y) for electrons moving in the positive
x direction is

y

19)= [ nay = - H2, @n
o
where
I = T Iy = 0w +1Gan) . 29)
and -
AT =10 -T() @9)
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We divide the sample width into 20 equal segments in
Fig. 10 and determine the percentage of current flowing
through each segment for Isp = 25 pA, 215 pA, and 225
KA. We do not show a plot for Isp = 0 wA, but A7 would
be —0.81 pA and +0.81 pA for the left-hand side and
right-hand side segments, respectively, and zero for the
other 18 segments because /.(rhs) = —1.(lhs) = 0.81 pA.

50
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Fig. 10. Percentage of current flowing through 20 equal segments
across the sample width for Isp = 25 pA, 215 pA, and 225 pA.

100 200

The current distributions in Fig. 10 are virtually iden-
tical between 25 pA and 215 pA, even though large
numbers of electrons are being excited into higher
Landau levels at 215 pA. The left and right side distri-
butions are nearly symmetric. There is, however, a sig-
nificant transfer of current from the left-hand side seg-
ment to the right-hand side segment at 225 pA. We saw
in Sec. 5.2 that no current flows within 60, 55, and 13
magnetic lengths of the sample side for Isp =25 pA,
215 pA, and 225 pA, respectively. Also, 68 %, 70 %,
and 51 % of the current is in the 19 segments to the left
of the right-hand side segment where the edge channel
current would flow for these three applied currents. The
current density was negative in the left-hand side of
Fig. 9 at Isp = 25 pA because electrons were flowing in
the —x direction at y;, —199.554 m, but that contribu-
tion to A/ in the left-hand side segment of Fig. 10 is so
small that the net current is positive.
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Finally, we investigate the charge-redistribution
—edo(y) of the electrons in the 2DEG in terms of the
deviation 8o (y) in the number of electrons/cm?® from
the average number n, = 5.94x10'"/cm’ on the i = 2
plateau at 12.3 T, where

dl

d00) =55 37V0) (30)

from Eq. (A-5). Figure 11 is a logarithmic plot of
15 ()| versus y for Isp = 215 pA. There is an excess of
electrons on the +y side of the sample, and a depletion
on the —y side.

An assumption made in deriving Eq. (A-5) was that
the charge density varies slowly across the sample, i.e.,
that p(y) = p(y+dy), or 8o (y) << n,. This assumption
is valid here because the largest value of 8o (y) occurs
at Ymax , and is 2 %, 2 %, and 6 % of n, at Isp = 25 pA,
215 pA, and 225 pA, respectively.

One of the consequences of our approximate form of
the charge-redistribution potential is that the net charge
does not vanish when the charge-redistribution —e da (y)
is integrated across the sample width. The area under
the curves in Fig. 11 is 4 % larger for the +y side than
for the —y side. Therefore, there is an unaccounted
excess of electrons; so this is not quite the actual shape
of the charge-redistribution function. However, it is the
potential and current distributions that are of primary
importance to the transport properties—not the charge-
redistribution. The charge was certainly conserved in
the experiment of Fontein et al. [8], and yet their mea-
sured potential distributions are symmetrical. This fact
demonstrates that the slight charge asymmetry does not
significantly affect the potential and current distribu-
tions.

12

10 T T T
10'°L :
[baty)| @ 215 uA
« 10 '
£
R
©
L]
-200 100 0 100 200
y (um)
Fig. 11. Logarithmic plot of the charge-redistribution 8o (y )l across

the sample for Isp = 215 pA, where dor(y) is the deviation from the
average number density n,. The “-" region represents an excess of
electrons, the 4" region a depletion of electrons.
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We could conserve the charge by adjusting the origin
slightly to the right until the area under the curves are
equal for =y in Fig. 11, and then self-consistently recal-
culating the potentials with the new coordinates. This
would greatly complicate the calculations however, and
with all the approximations that have been made in this
paper, and with the excellent agreement with experiment
[8], it seems unnecessary. It may be a consequence of
this charge nonconservation problem that the value of
Ymin 18 inside the confining potential for the case in
Table 1 when Isp = 225pA.

5.4 Sample-Width Dependence of the Critical
Current

Balaban, Meirav, and Shtrikman [10] have found that
the critical current for breakdown of the quantum Hall
effect, I, scales logarithmically with the sample width
w for all Landau levels. We verify this dependence by:
(a) using the result in Sec. 3.3 that /.(rhs) = — I.(lhs) =
0.81 pA for the i =2 plateau at 12.3 T when Isp =0 pA;
(b) calculating the value of y,, from Eqgs. (2) and (5) for
each value of w at Isp = 0 pA; (¢) calculating the value
of G from Eq. (17) for each value of w; (d) defining I,
as the applied current Isp sufficient to excite the lowest,
M =1, QUILLS transitions [11,25-28]; (e) assuming
the value of E.(yn.) is the same for all values of Isp that
excite M = 1 QUILLS transitions (The value used is
E.(Ymax) = 5.96X10° V/m, obtained from Table 1 at
Isp =215 pA, w =400 wm, and E,(ypn,) = 1.1X10° V/m.
This is equivalent to fixing the value of I.(rhs) to be 2.30
pA for each value of 1,,); (f) calculating the value of y.x
from Eq. (2) for each value of w; (g) adjusting the value
of I, so that E(yma) = 1.1X10° V/m in Egs. (2), (17),
(20), and (23); and (h) adjusting the value of y, to give
the correct Hall voltage for each current by using Egs.
(2), (15), (17), (21), and (22).

The results of I, versus w are plotted in Fig. 12. The
shape of the curve is identical to the experimental data
of Balaban et al. [10]. The scaling is very different,
however because their critical currents are about two
orders of magnitude smaller than ours. We note that the
experiment of Haug, von Klitzing, and Plog [29] tends
to agree with the experimental curve shapes of Balaban
et al. [10], but the experiment of Kawaji, Hirakawa, and
Nagata [30] found a linear, rather than a logoarithmic,
dependence of 1., with w. Perhaps this difference is due
to nonuniformities in the values of the charge-depletion
width A along the sides of the samples, e.g., we have
observed different values of I, along the lengths of some
of our samples. If we assume that the value of V,
remains constant along a sample edge, allow A to vary
by changing the average ionized donor density Np, and
assume the ratio E.(Yima )/ E(Ymax) TeMains constant, then
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we find that the critical current required to excite M = |
QUILLS transitions with E.(yma)=1.1X10° V/m
decreases when A decreases and Ny, increases, i.e., the
steeper the confining potential, the smaller the critical
current.

250 T T T
200
i 150
=2 100 | M=1 Transitions i3
50 E
1] | 1 1
0 100 200 300 400
w (um)

Fig. 12. The critical current /., versus sample width w. Refer to Sec.
5.4 for details of the calculation.

6. Conclusions

We have calculated potential and current distributions
across the width of a GaAs/AlGaAs heterostructure
sample for applied currents between O pA and 225 pA,
using: (a) a quadratic confining potential V,(y) arising
from charge-depletion regions along the sides of the
sample; (b) parameters for that potential obtained from
a localization experiment [9]; (c¢) a logarithmic charge-
redistribution potential V.(y) of the 2DEG; and (d) a
maximum electric field E,(ymax) calculated from break-
down measurements and a QUILLS model [11]. Our
predictions are in excellent agreement with experiments
[8,10].

Referring to Table 1, the confining potential compo-
nent E.(ymw) of the electric field at y,.. contributes
88 %, 54 %, and 57 % to E,(yma) at 25 pA, 215 pA, and
225 pA, respectively. The maximum current density
J(Vmax) 18 34 A/m, 85 A/m, and 325 A/m, respectively at
these three currents. A significant amount of current is
distributed within the sample interior. For example, 7, is
99 %, 99 %, and 83 % of Isp, respectively at these three
currents. We predict the current to be much farther from
the sides of the sample than in other models, e.g., no
current flows within 60, 55, and 13 magnetic lengths of
the sample side for these currents. It would require a
lateral resolution of about 0.1 pm, rather than the 70 pm
resolution of Fontein et al. [8], to verify this result.
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7. Appendix A. Derivation of Egs. (10)
and (11)

We first derive Eq. (10) of Sec. 4. The Lorentz force
exerted on the conducting electrons causes deviations
—edo(y') from the average surface charge density
—en, = — ie’B/h of the 2DEG at each point y' across the
sample width. Consider a strip of this redistributed
charge of width dy', located in the x—y plane at position
y' and pointing in the x direction, with a charge/length
A(y') =—eda(y")dy'. Gauss’s law is then used to obtain
the electric field d E (y) at some point y in the x—y plane,

due to one of these line charges: K80§E' dS =g, and

thus keydE (y)2mly'=yIL, = A(y")L, for a cylindrical
Gaussian surface of radius ly'—yl and length L,. The
potential dV (y) of this line charge is

¥
AO0H 2 ,l iy
2mwKEy W 2ly"—yliw
¥-wil

dw)-—deu)dy =

= 20 gyl (A-1)
27Kk W

The total potential, when summed over all the line
charges, is Eq. (10)

wi2

1 z ]
J do(y") In [w Iy—yl]dy.

—w/2

e
2mTKE

Vo) =-

(A-2)

Now we derive Eq. (11) of Sec. 4. We found in Eq. (3)
of Ref. [11] that the center of mass coordinate y, of each
state undergoing cycloidal motion in a Landau level is

EQ)

EQ) | Fk
wB

+eB'

Y= (A'3)

so the states move to the right as E (y) increases. The
total charge 8Q transferred into the volume /,idy, out-
lined with solid lines in Fig. A-1, is

80 = dpl.hdy = Lh[Ays (y)p (¥)

Ay (y + dy)p (v + dy)]. (A-4)
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Fig. A-1. Geometry factors for the calculations in Appendix A.

If the volume charge density is slowly varying, then
p() = p(y + dy), where ph = —eo and Sph = — edo.
Thus, from Eqgs. (A-3) and (A-4),

. ly) B
do(y)dy = 0B [EG)-E(Q +dy)),
or
o) dE(y) _o(y) V()
e oB dy ~ wB dy* -

But o(y) = ieB/h, so we obtain Eq. (11)

_ e dV() _ im* &V (y)

dyl . (A‘S)

Equation (11) considers the charge-redistribution
—eda(y) due to the second derivative of the charge-
redistribution potential V,(y). The charge-redistribution
that we calculated in Sec. 5.3 depends also on the
second derivative of those regions of the confining
potential V.(y) which differ from the yp.x and ymi, values
at Isp = 0 pA.

8. Appendix B. Eigenvalue Equation

We saw in Eq. (12) of Sec. 4 that

wi2
2
Vo) =~ [ o o m| 2 -n oy, @
—wi2

where the characteristic length £ is

ido debis
T 2mkeohw,

5 (B-2)
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MacDonald, Rice, and Brinkman [19] have pointed out
that Eq. (B-1) has the form of an eigenvalue equation
O[F (y)] = CF(y), where

00) - - f %.2[ Jln[% Iy'—yljdy'

w2

is an operator acting on the function F(y) =V, (¥'), and
C = 1/¢ is a constant.

The function F(y) = V,(y') should have a second
derivative that satisfies Eq. (B-1). Our function, from
Eq. (15) of Sec. 4.1, is

IRy

2

¥+ w2
y -w/2

V:(y') =~ \ (B-3)

where the cut-off is Spay = % R |

i 1 E_Irﬁ [ W_Smal]_l =W

&y " T "L TeRr-oe
and

& Vi) =B [1g ] 20

dy|2 Vr(y ) by 7 In Bmax : [(wf2)2 j (yt)E]Z ]

(B-4)

We can see if the potential given by Eq. (B-3) is a
valid solution to the eigenvalue expression Eq. (B-1) by
substituting Eq. (B-4) into Eq. (B-1) and integrating
only between the limits — 8y t0 Syex because do (y') is
zero beyond these two cut-off values. Surprisingly, we
obtain nearly exact solutions to the eigenvalue ex-
pression at all values of y when £ is less than 2.0 wm and
Omax = Omin = £. This choice of 8y = Omin = & for the
cut-off values was used by Beenakker and van Houten
[22]. Our value of £ is 3.3 nm, so we would be well
within this exact range if Spux = Smin = &. The values of
Smax do not equal 8, however, and are much larger than
the value of £. Also, we have a confining potential,
V.(y), parts of which should be included in Eq. (B-1).
It would be interesting to see how well the values of
Vi(y) obtained in Eq. (B-4) agree with the values
obtained in the eigenvalue expression Eq. (B-1) when
using the values of quantities obtained in Table 1.
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