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The potential and current distributions are
calculated across the width of a quantum
Hall effect sample for applied currents be-
tween 0 J-LAand 225 J-LA.For the first
time, both a confining potential and a cur-
rent-induced charge-redistribution potential
are used. The confining potential has a
parabolic shape, and the charge-redistribu-
tion potential is logarithmic. The solution
for the sum of the two types of potentials
is unique at each current, with no free
parameters. For example, the charge-deple-
tion width of the confining potential is de-
termined from a localization experiment by
Choi, Tsui, and Alavi, and the spatial extent
of the conducting two-dimensional electron
gas across the sample width is obtained
from the maximum electric field deduced

from a high-current breakdown experiment
by Cage and Lavine, and from the quantum

Hall voltage. The spatial extent has realistic
cut-off values at the sample sides; e.g., no
current flows within 55 magnetic lengths of
the sides for currents less than 215 J-LA.
The calculated potential distributions are in
excellent agreement with contactless elec-
tro-optic effect laser beam measurements of
Fontein et ale
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1. Introduction

The potential and current distributions within quantum
Hall samples are important aspects of the integer quan-
tum Hall effect [1-3]. In this effect the Hall resistance,
RH'of the ith plateau of a fully quantized two-dimen-
sionalelectron gas (2DEG)has the valueRH(i)=h/(e2i),
where h is the Planck constant, e is the elementary
charge, and i is an integer. Early attempts to measure
potential distributions across samples [4-7] used electri-
cal contacts to the two-dimensionalgas that wereplaced
within the sample interior.The potentials were found to
vary throughout the entire sample. There was concern,
however, that the electrical contacts themselvessignifi-
cantly altered the potential distributions. Fontein et al.
[8] have made contactless measurements of potential

--- - .

distributions using a laser beam and the electro-optic
Pockels effect. They observed major fractions of the
quantum Hall voltage occurring near the sides of the
sample, but also significant contributions within the
interior. Valid predictions of the potential distribution
across quantum Hall samples should agree with their
results.

In this paper we calculate the potential distributions
across the sample for applied currents ISDbetween 0 J.l.A
and 225 J.l.Aby: (a) assuming a parabolic confining
potential for the charge carriers and using parameters of
the parabolaobtained experimentallyby Choi, Tsui, and
Alavi [9]; (b) assuming an applied current-inducedloga-
rithmic charge-redistribution potential for the charge
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carriers that is similar to that of Balaban, Meirav, and
Shtrikman [10], but with very different cut-off values
for the spatial extent of the potential; (c) assuming that
the width of the conducting region varies with applied
current because a Lorentz force deflects the conducting
electrons slightly towards one side of the sample; (d)
using the maximum electric field deduced by Cage and
Lavine [11] from a breakdown experiment at high cur-
rents to determine the cut-off value for the spatial extent
on one side of the sample; and (e) using the quantum
Hall voltageto determine the cut-off value of the spatial
extent on the other side of the sample. The calculated
potential distributions are in excellent agreement with
the measurements of Fontein et al. [8].

2. Coordinate System

The coordinate systemis shown in Fig. 1. For conve-
nience in writing the equations, the origin is located at
the source S and is halfway across the sample width w.
The sample labeling is chosen to be consistent with
previous work [11]. Potential probes 1 and 2, and the
drain D, are not shown.The positivex axis points along
the sample in the general direction of the externally
applied current IsD.The positive y axis is chosen as
indicated.Therefore the positivez axis points downward
for a right-handed coordinate system. The magnetic
field B also points downward, simply to be consistent
with results from the breakdown experiment [11] that
will be used in Secs. 4 and 5.

Note that the conducting charges are electrons with
charge q = - e. This is taken intoaccount throughout the
paper; it is necessary to do so because the signs of both
the confining potential and the charge-redistribution
potential depend on the sign of the charge carriers.

5 3

W/2

6 4

Fig. 1. The coordinate system used in this paper. Only part of the
sample is shown. The origin is located at the source S, halfway across

the sample width w. The dotted curves indicate the electron flow

pattern for this magnetic field direction. FL is the Lorentz force on the

conducting electrons and Fe is the Coulomb force. B is the magnetic

field, v is the electron velocity, and VA and VBare the potentials on

either side of the sample.

The Lorentz force FL= ev X B is in the positive y
direction.This force deflects the electrons slightly to the
right until it is matched by the Coulomb repulsive force
Fc = -eE [12]. A charge-redistribution of the 2DEG
results from this deflection. Also because of the Lorentz
and Coulombforces, the electrons enter thecorner of the
source at y = - w /2 for this magnetic field direction and
exit at the corner +w/2 of the drain-in agreement with
the experiment of Klass et al. [13]. We assume that the
electrons spread out across the sample interior in agree-
ment with the experiment of Fontein et al. [8]. Potential
probes 4 and 6 are near the potential of the source.
Probes 3 and 5 are near the potential of the drain, and
have a positive potential relative to the source for these
current and magnetic field directions. The chemical po-
tential CPA= VAis therefore positiverelative to the chem-
ical potential cf>B= VBon the opposite side of the sample.

3. Confining Potential
We begin the calculations with a confining potential

to prevent the 2DEG from spilling out the sides of sam-
ples. Choi, Tsui, and Alavi [9] performed an experiment
on mesa-etched GaAs/AIGaAs heterostructure samples
in zero magnetic field. They then used one-dimensional
localization theory to deduce the charge-depletion
widths, .d, of the confining potentials, and found that .d
was (0.5 ::t:0.2) m for a 2DEG of surface number
density ns= i(eB/h) = 1.5 X I011/cm2.Wewill use their
results to define the depletion width of the confining
potential for a mesa-etched sample.

3.1 Charge-DepletionRegion

Figure 2 (a) showsa schematic of the charge distribu-
tion in the GaAs/AIGaAs interface region near one side
of the mesa when there is no applied magnetic field.The
GaAs layer of our sample [11] has a residual donor
density of about 1 X IOI4/cm3,while the donor concen-
tration in the AIGaAs layer is about 1 X I018/cm3and
ns= 5.94 X I011/cm2.There is an ionized donor atom in
the AIGaAs layer for every electron in the 2DEG but,
unlike Choi, Tsui, and Alavi [9], we assume the ionized
donor atoms are distributed overa volume rather than in
a surface sheet with density ns.The confining potential
is generated from electron surface charges on the side of
the mesa, as indicated in the figure. There is an ionized
donor atom or ionized impurity site in the charge-deple-
tion region for every surface charge.

We assume a homogeneous charge-depletion region
in Fig. 2 (b). The depletion width .d for a homogeneous
three-dimensional material is [14]

L1 = (28sV m/eND) 1/2, (1)

530



Volume 100, Number 5, September-October 1995

Journal of Research of the National Institute of Standards and Technology

(a) iY : mesa side
+ 000 0 Q 0 0
zOO 0 O:(t) (t) (t)

(t) (t) (t) (t) 0 0 0
AIGaAs (t) (t) (t) (t) ~ (t) (t) (t)

2DEG

GaAs o o If] (t)o

000 o

A. w
2"

Fig. 2. (a) Schematic diagram of the GaAsI AIGaAs interface region

near one side of the mesa. See Sec. 3.1 for further ex planation. (b) The

ionized donor charge-depletion density distribution ND. (c) The con-

fining potential Vc for negatively charged surface states.

where 8s = Keois the dielectric permittivity of the semi-
conductor, K is the dielectric constant (K = 13.1 for
GaAs), 80 is the permittivity of vacuum, Vm is the value
of the confining potential at :tw/2 andNo is the average
density of ionized donors and impurity sites in the
charge-depletion region. We selected the value of the
charge-depletion width to be .::1= 0.5 J.Lm[15]. This
value is consistent with the results of Choi, Tsui, and
Alavi [9]. We chose the value of Vmto be one-half the
1.50 V separation between the valence and conduction
bands ofGaAs at 1K [14], or Vm= 0.75 V.The value of
the averagecharge-depletiondensity fromEq. (1) is thus
No = 4.3 X 10IS/cm3,which seems quite reasonable.

3.2 Confining Potential Equation

A homogeneous charge-depletion region results in a
parabolic confining potential Vc, with the origin at
Y = A = w/2-.::1,as indicated schematically in Fig. 2 (c).
The confining potential is negativebecause the charges
on the side of the mesa are electrons.

The equations for the confining potential Vc and its
electric field Ec = - VVc are

Vc(y) = - a (y-Ai and Ec(y) = 2a(y-A)

w
for As y $""2 '

Vc(y) = 0 and Ec(y) = 0

for - A< y < A ,

(2a)

(2b)

Vc(Y)= - a (y+A)2and Ec(y) = 2a(y+A) (2c)

w
for -"2 s - y S - A,

where a = Vm/.::12= 3.0 X 1012 V /m2 for.::1 = 0.5 J.Lmand
Vm = 0.75 V, and

\ -~-.::1.
1\-2

3.3 Confining Potential at ISD= 0 /LA

(3)

Given the values of .::1and Vm, there is a surprising
amount that can be deduced about the electron states of

the confining potential when the magnetic field is ad-
justed to be at the center of the i = 2 quantum Hall
plateau and Iso = 0 J.LA.Since there is no applied current,
and therefore no Hall voltage, the Fermi energy 8F is
constant across the sample width and is located halfway
between Landau levels. Under these conditions, states of

the lowest (N = 0) Landau level are occupied up to the
Fermi energy 8F = Iiwc/2, no states are occupied in the
second (N = 1) Landau level, Wc= eB/m * is the
cyclotron angular frequency, m * is the reduced mass of
the electron (0.068 times the free electron mass in
GaAs), and Ii = h/27T'. References [11,16-18] describe
how these states can be defined in the Landau gauge.

Figure 3 shows a schematic drawing of the energy of
the confining potential for Iso = 0 J.LA,with greatly
exaggerated values of .::1and liwc,and only a small frac-
tion of allowed states. The occupied/unoccupied states
are indicated as solid/open circles, and the occupied
(filled) states lie between Ymax and Ymin = -Ymax.In the
presence of the magnetic field, electrons of the 2DEG
occupy Landau level states that penetrate into the
charge-depletion regions near the mesa edge, and cur-
rent circulates aroundthe sample periphery. Under these
conditions

8c(ymax) = Ii;c = - eVc(Ymax)= ea (ymax-A)2

Vm
(y

2

= e .::12 max- A) ,
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where ,\ = wl2 - d.
The occupied states of the right-hand side (rhs) con-

fining potential generate a total current Ie (rhs) that is

Ymax Ymax

Ie(rhs) = f Je(y) dy = f uxyEe(y)dy =
A A

- ~H [Ve(ymax) - Ve('\)], = - Ve~:ax) , (5)

where Je(y) is the current density, Uxyis the off-diagonal
conductivity tensor component, Ve(Ymax)= -a(ymax-
,\)2, and Vc('\) = O. In the absence of significant dissipa-
tive scattering on the quantum Hall plateau, uxy= l/RH
[12]. Similarly,

-A -,\

Ie (1hs) = f Jedy = f UxyEe(y) dy =
Ymin Ymin

1
- RH [Ve(-'\) - Ve(Ymin)], = - Ve(Ymin)RH '

where Ve(Ymin) = - a (ymin+,\)2.
It follows from Eqs. (2) to (6) for the 12906.4 0,

i = 2 plateau at 12.3 T, for the 400 IJ.mwide sample of
Ref. [11], and for ISD= 0 IJ.Athat

/iwe ie2B
Ie (rhs) = 2eRH = 4mn * = 0.81 IJ.A= - Ie (1hs) , (7)

Ymax= - Ymin = 199.559 IJ.m,

and

w
"2- Ymax= 0.441 IJ.m.

Thus, a rather large 0.81 IJ.Acurrent circulates around
the sample at 12.3 T when ISD= 0 IJ.A, L1= 0.5 IJ.mand
Vm= 0.75 V.The maximumextentof this currentis 60
times farther from the sides of the sample than that
produced by skipping orbits bouncing off of a hard wall
with a cyclotron radius or magnet length 18= (hieB)1/2
of 7.3 nm.

Ec(Y)= -eVc(Y) @ 0 J.IA

N=1

f,. w
2

o

Y (J.lm)

Fig. 3. Schematic drawing of the energy of the confining potential

Vc across the sample when ISD-0 J-LA.Values of the charge-depletion
width L1and the Landau energy level spacing /iwc are greatly exagger-

ated. The occupied/unoccupied states of the first two Landau levels are
shown as solid/open circles. The occupied (filled) states lie between
the locations Ymax - - Ymin.

4. Charge-Redistribution Potential

(6)
Section 2 noted that the Lorentz force exerted on the

conducting electrons causes deviations - e8u(y) from
the average surface charge density - euavc = - ens=
- ie2Blh of the 2DEG charge-redistribution across the
sample width. The resulting charge-redistribution
potential, Vr(y), arising from applied currents would be
a linear function of Y if the mobile electrons occupied a
three-dimensional volume. They occupy a two-dimen-
sional sheet, however, and MacDonald, Rice, and
Brinkman [19]expressed this charge-redistributionself-
consistentlyin terms of a charge-redistribution potential
as

(8)
wl2

Vr(y) =- 2:K80 f 8u(y') In [~ Iy' - yl ]dY' , (10)
-wl2

where
(9)

im * d2 ie d2

8u(y) = hB dy2 Vr(y) = hWe dy2 Vr(y), (11)

as shown in Appendix A. Riess [20] extended this po-
tential to a 2DEG with finite thickness. Thouless [21]
then foundan analytic logarithmic approximationof this
potential far from the sample sides, and Beenakker and
van Houten [22] then approximated the near-edge be-
havior by introducing a cut-off at a distance gfrom the
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sample side, and a linear extrapolation for

wl2

Vr(y) = - { f d~2'2Vr(y') In[~ Iy'- YI]dY' (12)
-wl2

from IY I= w 12 - { to IY I = w 12. The characteristic length

{is {= ilJ;7Ta*= ie2/(27TK8ohwe), where 18= (lileB)I/2
is the magnetic length and a * = 47TK801i21m*e2 is the
effective Bohr radius in SI units. Our values of {, 18,
and a* for the i = 2 plateau at 12.3Tare 3.3 nm, 7.3 nm,
and 10.2 nm, respectively.

Balaban, Meirav, and Shtrikman [10] used a nonlin-
ear (quadratic) extrapolation near the sample sides and
obtained the charge-redistribution potential

Vr(y) = - IsoRH [In ~ + {+ 5]-1 In
I

Y+ wl2
12 5 2{ Y - wl2

(13)

for IyI < w 12- 5, where 5 = 18for the i = 2 plateau, and
5 is not the differential 5 of Eq. (10). They successfully
used this potential to describe the sample-widthdepen-
dence for breakdown at small currents, but could not
account for the larger breakdown currents observed in
other experiments [11, 23-28]. Their geometry factor is

[ w { + 5]
-1

In "5+ 2g = 0.08 (14)

for our values of { and 5 at w = 400 J.Lm.

4.1 Charge-Redistribution Potential Equation

The charge-redistribution potential described by
Eq. (13) was calculated for an infinite square-well con-
fining potential, and must be modified for use with a
more realistic confining potential. To do this correctly
wouldrequire a numerical solution of Eq. (12), with the
confining potential included, as is discussed in
Appendix A. We approximated this numerical solution
(and then tested the approximation)by using the form of
the potential in Eq. (13) but introducing two parameters,
Ymin and Ymax,that alter the charge-redistribution poten-
tial due to the presence of the quadratic confining
potential.

It was necessary to do this because the potential
distribution of Eq. (13), with a cut-off distance 5 = 18,
gavethe correct quantum Hall voltage VH= RHIsDacross
the sample,but the electric field Er == - VVr did not
increase quickly enough for increasing current to satisfy

- -- ---

the ISD = 0 J.LAconditionsof Sec. 3.3 and then reach
the electric field values necessary for quasi-elastic inter-
Landau level scattering (QUILLS) transitions [11, 16-
18,25-28] at high currents.

We use the same form for the charge-redistribution
potential as Balaban et at [10], but with a different
geometrical factor and very different cut-off values, Ymin
and Ymax,which vary with applied current. Our charge-
redistribution potential is

Vr(y) = _ IrRH [In Ymax + WI2
]

-1 In
I

Y+ W12
1

,
2 wn-~ax y-wn

(15)

for -~ . <.: <.: ~
2 < Ymm- Y - Ymax< 2

where Ir = ISD- Ie (rhs) - Ie (lhs). (16)

Ie(rhs) and Ie(lhs) are defined by Eqs. (5) and (6), and
the geometry factor G in Eq. (15) is

G(w, Ymax)= [In Ymax + wl2
]

-1

wl2 - Ymax . (17)

We assume G is current-independent, and assign the
value

G =0.147 (18)

to Eq. (17) by using the value of Ymax= 199.559 J.Lm
found in Sec. 3.3 for ISD= 0 J.LAand w = 400 J.Lm.
Our value of G is thus somewhat larger than the value
G = 0.08 that would be used by Balaban et at [10]. The
cut-off values

5max= w 12 - Ymaxand 5min= w 12 + Ymin (19)

will be determined in Sec. 5. Appendix B discusses the
agreement between our Eq. (15) and the self-consistent
Eqs. (10) and (11).

The electric field Er = - VVrdue to redistribution of
the 2DEG with applied current is

IrRH w (20)
Er(y) = 2 G [(wI2)2_ y2] .

We now have nearly all the information necessary to
determine the potential and current distributions.
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5. Calculations

Figure 4 shows the confining potential - Vc(y) and
the charge-redistribution potential - Vr(y) across the
sample for greatly exaggerated values of L1,l)max.and
l)min,and for an arbitrary value of Ir,where Ir is defined
by Eq. (16). Vrbecomes infinite at :tw 12,but that is of
no concern because it is only the occupied states which
contribute to the Hall voltage, and those states occur
only between Ymaxand Ymin'The potentials are therefore
finite and well-behaved in the region of interest.

~
y(ij

E
Q)

(5
a..

cE

-t.. t.. L1 :
~:

-L1 :
~

W
-2"

o w
2"

?>i

Fig. 4. The confining potential- Vc(y) and the charge-redistribution
potential - Vr(y) across the sample for greatly exaggerated values of

..::1,5..uu = w /2 - Ymax,and ~in'" W/2 + Ymin.

5.1 Total Potential

Of course the electrical transport properties depend
on the total potential Vt(y), but we can unambiguously
separate Vt(y) into the confining and charge-redistribu-
tion potential components

Vt(y) = Vc(y) + Vr(y) . (21)

We have uniquely defined the potentials Vc(y) and Vr(y)
in Eqs. (2) and (3) of Sec. 3.2 and Eqs. (15) to (18) in
Sec. 4.1, plus Eqs. (5) and (6) in Sec. 3.3. The current-
independent parameters for the confining potential and
the charge-redistribution potential are: L1 = 0.5 JJ.m,
Vm= 0.75 V, and G = 0.147. For a given sample we know
the applied current Iso and the sample width w, but there
are still two free parameters: Ymaxand Ymin'

Ordinarily, it would not be possible to uniquely deter-
mine the values of Ymaxand Yminsince the only other piece
of information is that the quantum Hall voltage VH is

VH= RHIso = Vt(Ymin)- Vt(Ymax), (22)

and there is a range of values for Ymaxthat satisfies this
equation. It is possible, however, to determine the value

of Ymax for a particular type of experiment, and we
believe that the results are representative of most other
experiments since our calculations agree with the ex-
perimental data of Fontein et al. [8]. We first note that
E (y) = - VV(y). Therefore

Et(ymax) = Ec(ymax) + Er(ymax) . (23)

In an experiment described in Ref. [II] we measured
the quantized longitudinal voltage drops along a GaAsi
AIGaAs sample between potential probes 4 and 6 of
Fig. 1 at high currents, and deduced the maximum elec-
tric field Emaxfrom a quasi-elastic inter-Landau level
scattering model. The results were

Emax = 1.1 X 106 Vim @ Iso = 215 JJ.A (24a)

and

Emax= 4.2X 106 Vim @ Iso = 225 JJ.A. (24b)

The value Emax= 1.1 X 106Vim at Iso = 215 JJ.Awas just
sufficient to excite the lowest, M = 1, QUILLS transi-
tions [11,25-28]. It is clear from Fig. 4 that Emaxwill
occur at Ymax,so

Et(ymax) = Emax. (25)

We can therefore use Eqs. (23) and (24) to determine
Ymax,and then Eq. (22) to obtain Yminfor the sample of
Ref. [11]. Note that changing the values of Ymaxand Ymin
also alters the values of Ic(rhs),IcOhs),and thereby the
value of Ir in Eqs. (5), (6), and (16). Thus there are no
free parameters, and one can obtain unique solutions to
the total potential and other transport properties.

5.2 Results

Relevant values for the solution at Iso = 0 JJ.Aare
shown in Table I. Most were calculated in Sec. 3.3; the
remainder were found from Eqs. (2), (3), and (15) to
(22). Note that Ymaxand Yminare predicted to be about 60
magnetic lengths from the sides of the sample.

We calculate the values shown in Table 1 at
Iso = 215 JJ.Aby increasingthe value of Ymax until
Et(ymax)= 1.1X 106Vim, adjusting the value of Yminto
obtain the correct Hall voltage, and remembering that
changingthe valuesof Ymax and Ymin also changesthe
values of Ic(rhs), IcOhs), and Ir. The solution is unique,
with no free parameters. The same procedure is done at
Iso = 225 JJ.A,except that the value of Ymaxis increased
until Et(Ymax)= 4.2 X 106 V1m. Note in Table 1 that Ymax

is still about 13 magnetic lengths awayfrom the side of
the sample at Iso = 225 JJ.A.
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We also calculate the relevant quantities at Iso = 25
J1.A,which is a current often used in precision quantized
Hall resistance measurements. In this case, however, we
do not know the value of Et(Ymax),so we use a linear
interpolation of the value of Ymaxbetween its values for
Iso = 0 /-LAand 215 /-LA.The quantities shown in Table 1
for Iso = 25 /-LAare relatively insensitive to this choice
forYmax.

5.3 Plots

We now plot the potentials, using Eqs. (2), (3), (15)
to (19), and (21). Figure 5 shows Vc(y) and Vr(y) for the
parameters used in Table 1 at Iso = 215 /-LA,except that
the plot is between :!::0.99999 w12(:!::199.998 /-Lm)
rather than Ymaxand Yminin order to show the sharpness
of the confining potential and the extent of the charge-
redistribution potential at these extreme values of y.
Figure 6 showsVt(y) plotted between Ymaxand Yminusing
the parameters in Table 1 at Iso = 215 /-LAand 225 /-LA.
Other than movingfarther to the right, the total potential
does not significantly change shape with increasing
current.

Figure 7 showsVt(y) at Iso= 25 /-LA.The shape of this
predicted potential is in excellent agreement with the
experimental measurements shown in Fig. 6 of Fontein
et al. [8]. It is this agreement which provides the best
verification of our results. The "linear" part of the po-
tential distribution within the sample interior, attributed
in Ref. [8] to heating effects which cause Rx= VxlIsoto
increase, is accounted for by our charge-redistribution
potential in a samplewhich has minimal heating at these
currents [24].

The electric fields Ec(y) = - VVc(y) and Er(y) = -
VVr(y)are shown in Fig. 8 for Iso = 215 /-LA;they were
determined from Eqs. (2), (3), (18), and (20). The value
of Ymax= 199.599 /-Lmis such that Et(Ymax)= 1.1X106
VIm in equation (23). The contribution to the total elec-
tric field at Ymaxis slightly more for the confining
potential than for the charge-redistribution potential at

this current. Table 1 shows that the confining potential
also provides the dominant contribution to Et(ymax)at
other currents.

3

2
I

~ Vr(Y)@ 215~
~'

~
/

o
~....
~ -1

0<' ~ V,IY) @ 215 ""
-2

-3
-200 -100 0 100 200

Y (11m)

Fig. 5. Vc(y) and Vr(y) plotted between :to.99999 w/2 for the
parameters used in Table I at ISD-215 J1.A. The parameters common

toallplotsinFigs.5-11arei - 2 (12906.40), B - 12.3T,W = 400
J1.m,I( - 13.1, ..:1- 0.5 J1.m,Vm= 0.75 V, and G - 0.147.

The location, Ymax,of the last-filled state on the right-
hand side of the sample increases with applied current
Iso. We can use Eq. (A-3) and Table 1 to determine what
part of this increase in Ymaxis due to the increase in the
total electric field at Ymax'The percentage contributions,
relative to the values of Ymaxand Et(ymax)at Iso = 0 /-LA,
are 4 %, 5 %, and 3 %, for ISD= 25 /-LA,215 /-LA,and
225 /-LA,respectively. Therefore, most of the increase in
Ymaxis due to the Lorentz force pushing the electrons
closer to the side of the sample.

The current density Jt(y) for electrons moving in the
positive x direction is

ie2
Jt(y) = UxyEt(y) = h [Ec(y) + Er(y)]. (26)
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Thble1. Values of some quantities obtained from the calculations in Sec. 5 for ISD-0 J1.A,25J1.A,215 J1.A,and 225 J1.A.The quantities
common to all the calculations are i - 2,B - 12.3T, I( - 13.1,w -400 J1.m,..:1-0.5 J1.m,Vm- 0.75 V,a - 3.0X 1012V/m2,A- 199.500
J1.m,G - 0.147, and IB= 7.3 nm. See Sees. 2-5 for the defiaitions of these symbols

ISD Ic(rhs) Ic(lhs) Ir Ymax Ymin Vc(Ymax) Vr(Ymax) Ec(ymax) Er(ymax) EI(Ymax) f>max/lB

(J1.A) (J1.A) (J1.A) (J1.A) (J1.m) (J1.m) (V) (V) (MV/m) (MV/m) (MV/m)

0 0.81 -0.81 0.00 199.559 -199.559 -0.010 0.000 0.354 0.000 0.354 60.3

25 0.94 -0.68 24.74 199.564 -199.554 -0.012 -0.160 0.382 0.054 0.436 59.6

215 2.30 -0.05 212.75 199.599 -199.515 -0.030 -1.392 0.596 0.504 1.100 54.8

225 37.36 -0.00 187.64 199.901 -198.044 -0.482 -1.477 2.405 1.795 4.200 13.5
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2

~

~ Vj(y)@ 225~A
...............

-::: ~ v,(y) @ 215~
o .............................

-1

-2
-200 -100 100 200o

Y (Ilm)

Fig. 6. Vt(y) plotted between Ymaxand Ymin,using the parameters in
Table I for ISD -215 J-LAand 225 J-LA.The values of Ymaxand Yminare

199.599 J-Lmand -199.515 J-Lm,and 199.901 J-Lmand -198.044 J-Lmfor

ISD - 215 J-LA and 225 J-LA, respectively.

~ V,(y) @ 25~A

-100 o 100 200

Y (Ilm)

Fig. 7. V1(y) at ISD= 25 J-LA.This potential is in excellent agreement
with the experimental measurements shown in Fig. 6 of Fontein et al.
[8].

-2x105
-200 -100 o 100 200

Y (Ilm)

Fig. 8. Electric fields Ec(y) - - VVc(Y) and Er(y) -- VVr(y) for
ISD = 215 J1.A.

536

Figure 9 shows Jt(y) for Iso = 25 J.LA,215 J.LA,and 225
J.LA.The maximum two-dimensional current density is
at Ymau and is 85 Afm and 325 Afm, respectivelyat Iso
= 215 J.LAand 225 J.LA.There is current in the negative
x direction in the vicinity of Yminat small currents due to
the dominance of the confining potential. When
Iso = 215 J.LAand 225 J.LA,however, Er(Ymin)> IEc(Ymin)1
and no current flows in the -x direction anywhere across
the sample.

/J,(y) @ 225f1A

/Jt(Y) @ 215f1A

50

o

-50
-200

/ Jt(y) @ 25JlA

-100 o

Y (Jlm)

100 200

Fig. 9. Current density Jt(y) for ISD-25 J-LA,215 J-LA, and 225 J-LA.

The current I (y) for electrons moving in the positive
x direction is

Y

I(y) = J Jt(y) dy = - V~~) , (27)
o

where

Ymax

Iso = f Jt(y)dy = /(Ymax)+ I (Ymin),
(28)

Ymin

and

!::J = I (Y2)-I (Yt) . (29)
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We divide the sample width into 20 equal segments in
Fig. 10 and determine the percentage of current flowing
through each segment for Iso = 25 f.LA,215 f.LA,and 225
f.LA.We do not show a plot for Iso = 0 f.LA,but ft.I would
be -0.81 f.LAand +0.81 f.LAfor the left-hand side and
right-hand side segments, respectively, and zero for the
other 18 segments because Ic(rhs) = -IcOhs) = 0.81 f.LA.

225 J.lA

-100 o 100

Y (Jlm)

200

25 ~A & 215 ~A

-100 o 100

Y (Jlm)

200

Fig. 10. Percentage of current flowing through 20 equal segments

across the sample width for ISD ... 25 ILA, 215 ILA, and 225 ILA.

The current distributions in Fig. 10are virtual1yiden-
tical between 25 f.LAand 215 f.LA,even though large
numbers of electrons are being excited into higher
Landau levelsat 215 f.LA.The left and right side distri-
butions are nearly symmetric. There is, however, a sig-
nificant transfer of current from the left-hand side seg-
ment to the right-hand side segment at 225 f.LA.We saw
in Sec. 5.2 that no current flows within 60, 55, and 13
magnetic lengths of the sample side for Iso = 25 f.LA,
215 f.LA,and 225 f.LA,respectively.Also, 68 %, 70 %,
and 51 % of the current is in the 19 segments to the left
of the right-hand side segment where the edge channel
current would flow for these three applied currents. The
current density was negative in the left-hand side of
Fig. 9 at ISD= 25 f.LAbecause electrons were flowing in
the -x direction at Ymin-199.554 f.Lm,but that contribu-
tion to ft.I in the left-hand side segment of Fig. 10 is so
smal1that the net current is positive.

Final1y, we investigate the charge-redistribution
-e8u(y) of the electrons in the 2DEG in terms of the
deviation 8u(y) in the number of electrons/cm2from
the average number ns = 5.94X 1011/cm2on the i = 2
plateau at 12.3 T, where

im* d2
8u(y) = hB dy2Vt(y)

(30)

from Eq. (A-5). Figure 11 is a logarithmic plot of
18u(y)1versus y for ISD= 215 f.LA.There is an excess of
electrons on the +y side of the sample, and a depletion
on the - y side.

An assumption made in deriving Eq. (A-5) was that
the charge density varies slowly across the sample, i.e.,
that p (y) ::=p (y+dy), or 8u(y) « ns. This assumption
is valid here because the largest value of 8u(y) occurs
at Ymax, and is 2 %, 2 %, and 6 % of nsat ISD= 25 J.1A,
215 f.LA,and 225 J.1A,respectively.

One of the consequences of our approximate form of
the charge-redistribution potential is that the net charge
does not vanishwhen the charge-redistribution-e 8u (y)
is integrated across the sample width. The area under
the curves in Fig. 11 is 4 % larger for the +y side than
for the -y side. Therefore, there is an unaccounted
excess of electrons; so this is not quite the actual shape
of the charge-redistribution function. However,it is the
potential and current distributions that are of primary
importance to the transport properties-not the charge-
redistribution. The charge was certainly conserved in
the experiment of Fontein et al. [8], and yet their mea-
sured potential distributions are symmetrical. This fact
demonstrates that the slight charge asymmetry does not
significantly affect the potential and current distribu-
tions.

18a(y)I@ 215~

100 200-100 o

Y (/lm)

Fig. 11. Logarithmic plot of the charge-redistribution lou(y)1 across

the sample for I SD-215 IJ.A, where ou (y) is the deviation from the

average number density ns. The "-" region represents an excess of
electrons, the "+" region a depletion of electrons.
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We could conserve the charge by adjusting the origin
slightly to the right until the area under the curves are
equal for:!: Y in Fig. 11,and then self-consistentlyrecal-
culating the potentials with the new coordinates. This
would greatly complicate the calculations however, and
with all the approximationsthat have been made in this
paper, and with the excellentagreement with experiment
[8], it seems unnecessary. It may be a consequence of
this charge nonconservationproblem that the value of
Ymin is inside the confiningpotentialfor the case in
Table 1 when ISD= 225J.l.A.

5.4 Sample-Width Dependence of the Critical
Current

Balaban, Meirav, and Shtrikman [10] have found that
the critical current for breakdown of the quantum Hall
effect, leu scales logarithmically with the sample width
w for all Landau levels. We verify this dependence by:
(a) using the result in Sec. 3.3 that Ie(rhs) = - Ie(1hs) =

0.81 J.l.Afor the i = 2 plateau at 12.3 T when ISD= 0 J.l.A;
(b) calculating the value ofYmaxfrom Eqs. (2) and (5) for
each value of w at ISD= 0 J.l.A;(c) calculating the value
of G from Eq. (17) for each value of w; (d) defining Ier
as the applied current ISDsufficient to excite the lowest,
M = 1, QUILLS transitions [11,25-28]; (e) assuming
the value of Ee(ymax)is the same for all values of ISDthat
excite M = 1 QUILLS transitions (The value used is
Ee(ymax)= 5.96x 105 Vim, obtained from Table 1 at
ISD = 215 J.l.A,w = 400 J.l.m,and Et(ymax) = 1.1 X 106 Vim.

This is equivalent to fixing the value of Ie(rhs) to be 2.30
J.l.Afor each value of Ier);(t) calculating the value of Ymax

from Eq. (2) for each value of w; (g) adjusting the value
of Ir so that Et(ymax)= 1.1XI06 Vim in Eqs. (2), (17),
(20), and (23); and (h) adjusting the value of Yminto give
the correct Hall voltage for each current by using Eqs.
(2), (15), (17), (21), and (22).

The results of Ierversus w are plotted in Fig. 12. The
shape of the curve is identical to the experimental data
of Balaban et al. [10]. The scaling is very different,
however because their critical currents are about two

orders of magnitude smaller than ours. We note that the
experiment of Haug, von Klitzing, and Plog [29] tends
to agree with the experimental curve shapes of Balaban
et al. [10], but the experiment of Kawaji, Hirakawa, and
Nagata [30] found a linear, rather than a logoarithmic,
dependence of Ierwith w. Perhaps this difference is due
to nonuniformities in the values of the charge-depletion
width ~ along the sides of the samples, e.g., we have
observed different values of Ieralong the lengths of some
of our samples. If we assume that the value of Vm

remains constant along a sample edge, allow ~ to vary
by changing the average ionized donor density ND, and
assume the ratio Ee(ymax)1Et(ymax)remains constant, then

we find that the critical current required to excite M = 1
QUILLS transitions with Et(ymax)= 1.1X 106 Vim
decreases when d decreases and ND increases, i.e., the
steeper the confining potential, the smaller the critical
current.

M=1 Transitions

100 200 300 400

W (flm)

Fig. 12. The critical CUITentlerversus sample width w. Refer to Sec.
5.4 for details of the calculation.

6. Conclusions

Wehave calculated potential and current distributions
across the width of a GaAslAIGaAs heterostructure

sample for applied currents between 0 J.l.Aand 225 J.l.A,
using: (a) a quadratic confining potential Ve(y) arising
from charge-depletion regions along the sides of the
sample; (b) parameters for that potential obtained from
a localization experiment [9]; (c) a logarithmic charge-
redistribution potential Vr(y) of the 2DEG; and (d) a
maximum electric field Et(ymax)calculated from break-
down measurements and a QUILLS model [11]. Our
predictionsare in excellent agreement with experiments
[8,10].

Referring to Table 1, the confining potential compo-
nent Ee(ymax)of the electric field at Ymaxcontributes
88 %,54 %, and 57 % to Et(ymax)at 25 J.l.A,215 J.l.A,and
225 J.l.A,respectively. The maximum current density
Jt(Ymax)is 34 Nm, 85 Nm, and 325 Nm, respectivelyat
these three currents. A significant amount of current is
distributed within the sample interior. For example, Ir is
99 %,99 %, and 83 % of lSD,respectivelyat these three
currents. Wepredict the current to be much farther from
the sides of the sample than in other models, e.g., no
current flows within 60, 55, and 13 magnetic lengths of
the sample side for these currents. It would require a
lateral resolutionof about 0.1 J.l.m,rather than the 70 J.l.m
resolution of Fontein et al. [8], to verify this result.
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7. Appendix A. Derivation of Eqs. (10)
and (11)

We first derive Eq. (10) of Sec. 4. The Lorentz force
exerted on the conducting electrons causes deviations
- e8u(y') from the average surface charge density
-ens = - ie2B/hof the 2DEG at each point y' across the
sample width. Consider a strip of this redistributed
charge of width dy', located in the x-y plane at position
y' and pointing in the x direction, with a charge/length
A (y') = -e8u(y')dy'. Gauss's law is then used to obtain
the electric field dE (y) at some pointy in the x-y plane,

due to one of these line charges: K80fE. dS = q, and
thus K80dE(y)21Tly'-yILx = A (y')Lx for a cylindrical
Gaussian surface of radius Iy'-yl and length Lx. The
potential dV (y) of this line charge is

y

f - A (y') ~ f ' 1 dy
dV(y) = - dE (y )dy - - 21TKBo W y'-w/221y -y I/w

= A (y') In 2Iy'-yl .
21TK80 w

(A-I)

The total potential, when summed over all the line
charges, is Eq. (10)

e
V(y) = - 21TK80

w/2

f 8u(y')ln[~ IY'-YI]dY.-w/2

(A-2)

Now we derive Eq. (11) of Sec. 4. We found in Eq. (3)
of Ref. [11] that the center of mass coordinateYoof each
state undergoing cycloidal motion in a Landau level is

E(y) likx
Yo=-+-;

weB eB
(A-3)

so the states move to the right as E (y) increases. The
total charge 8Q transferred into the volume lxhdy, out-
lined with solid lines in Fig. A-I, is

8Q = 8plxhdy = Ixh[~yo(y)P(y)

-~Yo(y + dy)p(y + dy)]. (A-4)

X)-y
z

Fig. A-I. Geometry factors for the calculations in Appendix A.

If the volume charge density is slowly varying, then
p(y) ~ p(y + dy), where ph = -eu and 8ph = - e8u.
Thus, from Eqs. (A-3) and (A-4),

8u(y)dy = u(YB) [E(y) - E (y + dy)],
We

or

8u(y) = _ u(y) dE(y) = u(y) d2V(y)
weB dy weB dy2 .

But u(y) = ieB/h, so we obtain Eq. (11)

8u(y) = J!: d2V(y) _ im * d2V(y)
hWe dy2 - hB <iJ2. (A-5)

Equation (11) considers the charge-redistribution
- e8u(y) due to the second derivative of the charge-
redistribution potential Vr(y). The charge-redistribution
that we calculated in Sec. 5.3 depends also on the
second derivative of those regions of the confining
potential Ve(y) which differ from the YmaxandYminvalues
at ISD = 0 J.t.A.

8. Appendix B. Eigenvalue Equation

We saw in Eq. (12) of Sec. 4 that

wl2

Vr(y) = - ~ J d~~2 [Vr(y')] In[~ IY'-YI]dY', (B-1)
-w/2

where the characteristic length ~is

ie2
~= 21TKBohwe. (B-2)
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MacDonald, Rice, and Brinkman [19] have pointed out
that Eq. (B-1) has the form of an eigenvalue equation
8[F(y)] = CF(y), where

w/2

8(y) = - J d~212 [ ]1n[~ lyl-YI]dY'
-w/2

is an operator acting on the function F(y) = Vr(yI),and
C = 1/g is a constant.

The function F (y) = Vr(YI) should have a second
derivative that satisfies Eq. (B-1). Our function, from
Eq. (15) of Sec. 4.1, is

Vr(y') = - Ir~H [In W~~=axT' In I~: ~ :~~ I, (B-3)

where the cut-off is ()max= 1- Ymax,

d , IrRH[1 W-8max ]-' - W
dy' Vr(y) = -""2 n s:;:- [(w/2)2_ (y')2] ,

and

d2 1 IrRH [ W-8max ]-' 2wy'
dy'2Vr(y) =""2 Ins:;:- [(W/2)2_ (y1)2]2.

(B-4)

We can see if the potential given by Eq. (B-3) is a
valid solution to the eigenvalueexpressionEq. (B-1) by
substituting Eq. (B-4) into Eq. (B-1) and integrating
only between the limits - ()min to ()maxbecause 8u (y I) is
zero beyond these two cut-off values. Surprisingly, we
obtain nearly exact solutions to the eigenvalue ex-
pression at an values of y when gis less than 2.0 J.Lmand
()max= ()min = g. This choice of ()max= ()min= gfor the
cut-off values was used by Beenakker and van Houten
[22]. Our value of g is 3.3 nm, so we would be wen
within this exact range if ()max= ()min= g.The values of
()maxdo not equal ()minhowever,and are much larger than
the value of g. Also, we have a confining potential,
Very), parts of which should be included in Eq. (B-1).
It would be interesting to see how wen the values of
Vt(y) obtained in Eq. (B-4) agree with the values
obtained in the eigenvalue expression Eq. (B-1) when
using the values of quantities obtained in Table 1.
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