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Abstract: A new modeling and test point
reduction technique for analog and mixed-
signal devices has been developed at the
National Institute of Standards and Technol-
ogy (NIST). This technique has been
applied as a case study to a manufacturer’s
thermal transfer standard for potential use in
testing and calibration. An empirical model
is formulated using complete test data from
many devices collected from several produc-
tion runs. The model is then algebraically
reduced using singular value decomposition
and QR decomposition. Once the final
reduced model is obtained, it is used to test
devices which are measured only at a
reduced set of test points. The model allows
accurate prediction of device behavior at all
other test points. Techniques for optimal
model size selection are discussed. Device
modeling results are presented and compared
to complete test data.

I. INTRODUCTION

Testing is an integral part of
maintaining the functionality of electronic
instruments. At production time and
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periodically during the life of an instrument,
the device is tested over a large set of test
states, specified by the manufacturer. This
can be very costly and time-consuming for
both the manufacturer and the user. A
savings of time and money would result if
the instrument could be tested at a limited
number of test points or test states with
subsequent accurate estimation of the
performance at all remaining test points.
The work presented here is a case study of
the application of the analog and mixed-
signal device testing strategies work carried
out at the National Institute of Standards and
Technology over the last several years [1-6].

The NIST testing strategy is based on
building a linear coefficient matrix model
that relates the error response of a device, at
all candidate test conditions, to a set of un-
derlying device parameters. The model can
be generated using physical device informa-
tion, a priori information, or empirical data.
Empirical modeling is especially attractive
for performance testing applications such as
production-line testing. Detailed design
knowledge is not needed to produce the
model. Instead, the model is built using
complete measurement data from a
representative sample of devices [3,4].



Once an accurate model is obtained,
algebraic operations can be performed on the
model to select an optimum set of test points
which will minimize the cost/effort involved
in the testing and maximize the test
confidence. An estimate of the parameter
vector of the model can be calculated from
measurements made at the selected set of
test points. The device response can be
predicted at all candidate test points from the
estimated parameters. The accuracy of the
parameter estimates and response predictions
can be calculated based on knowledge of the
random error in the measurement process

[3].

The subject instrument of this case
study is a multirange thermal transfer
standard, the Fluke 792A%. A thermal
transfer standard converts rms ac voltages to
dc values over a given input voltage range
and frequency range. A large set of thermal
transfer standard device test data was
obtained from which empirical models were
derived. Each data vector consists of a set
of ac-dc differences measured at 255 input
test conditions relative to a standard device
of known accuracy. Data from a total of
139 devices was used. This large data set
was divided into a modeling set of 100
devices used to build models and a
validation set of 39 devices used to test the
models developed. The model was
formulated by algebraically reducing the
number of columns of the modeling set to
approximately equal the number of
parameters governing the behavior of the
device. The number of rows was similarly
reduced to form a square matrix model.

2For completeness, the instrument used
in this case study is identified by manufac-
turer’s name and model number. In no case
does such identification imply recommen-
dation or endorsement by the National
Institute of Standards and Technology.

Additional rows (test points) were then
added via an algorithm involving the
prediction variance ratio to produce an
overdetermined system suitable for solution
using a least-squares error approach.

II. MODEL FORMULATION

The formulation of the model is
begun by obtaining a modeling set of data
vectors, in this case study, 100 vectors of
length 255. A typical data set for the ther-
mal transfer standard is shown in Figure 1.
The manufacturer also specified the uncer-
tainties for each test point. A test point
refers to a specific input voltage range
setting, input voltage, and input frequency.
The data used to create the model are nor-
malized by the uncertainty. This is done by
dividing each data point by the uncertainty
specified for that data point. This allows the
analysis to be performed relative to the
manufacturer’s uncertainty. Thus, the
modeling set is initially a matrix of size
255X100. It is desired to minimize the
model size in a manner such that all of the
useful device information is maintained.
Minimizing the model size ultimately reduc-
es the number of test points required to
calibrate the device. This reduction in
model size occurs in two dimensions,
column and row. Two matrix decomposi-
tion methods are used within the modeling
algorithm to reduce the model size. The
singular value decomposition (SVD) is first
used to reduce the column size and then the
QR decomposition (QRD) is used to reduce
the row size. An algorithm that minimizes
the prediction variance ratio is next used to
add test points to the model to reduce the
effects of measurement noise and to provide
a means of detecting model error [2].
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Figure 1 Typical Error Data

A. COLUMN REDUCTION OF MODEL

The column dimension of the system
model represents the number of parameters
used by the model to characterize the sys-
tem. Ideally, this dimension should equal
the number of significant underlying vari-
ables governing the manufacturing process.
If the dimension is too small, the model will
not adequately describe the system perfor-
mance. If it is too large, then it will not be
efficient because the data must estimate
insignificant parameters, and too many test
points will be required. Unfortunately,
there is no straightforward a priori method
to determine the exact number of process
variables in a typical manufacturing process,
or their relative importance. However, the
number can be deduced by algebraic analysis
of suitable measurement data (e.g., the
modeling set) to produce an efficient yet
complete column size for the model.

A method found to be very effective
in performing the column reduction of the
modeling set, A, is the SVD. The SVD
factors a matrix into a product of three
matrices,

A = USVT @

where U and V are orthonormal matrices, ()7
signifies the transpose of a matrix, and S is
a diagonal matrix whose elements are the
singular values associated with the A matrix
[7]. The singular values occur along the
diagonal of S in descending order. The U
matrix is created by orthogonalizing linear
combinations of the vectors in A and there-
fore, has the property that it spans the same
space as the modeling set, A. However, the
columns are orthogonal and thus, fewer
columns of U can contain information that is
contained in more columns of A. Therefore,



the U matrix is a more efficient model of the
device characteristics.

Decomposing the original 255X 100
modeling set of the case study using the
SVD produces a U matrix that has size
255%100. The singular values of A are, in
a sense, a ranking of the information in the
columns of the U matrix. This information
is used to establish a bound for determining
the number of columns (parameters) to be
used by the model. The first j columns of U
are selected for the model based on their
corresponding singular values using the
criterion

2
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where s is the i element of the main
diagonal of S, i.e., the i singular value, n
is the original column dimension and m is
the row dimension of A, and ¢,,, is the
standard deviation of the measurement noise.
If too many vectors are required to satisfy
(2), then an alternative bound can be used,
for example

n
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where ¢ is determined based on specific
accuracy needs. The bound ¢ corresponds to
the rms accuracy needed for the specific test
or calibration. In this example, the
measurement noise, 0,,,,, was significantly
smaller than the accuracy requirements. In
addition, due to normalization with respect
to the manufacturer’s specified uncertainty,
0,meas 1S DOt constant for all test points in
normalized units. Instead, a reasonable
bound of 0.027 was selected for ¢ to meet

the measurement requirements. Using this
value in equation (3) gives a value for j of
20. This value was checked against the
results obtained by applying this model to
the validation set. These results are de-
scribed below. They show that 20 para-
meters give an rms error of 0.036, which
was considered adequate for this work.

The SVD creates the U matrix such
that the columns are already ordered in
terms of desirability for use in the reduced
model. After comparing the residual errors
of differently sized models, the first 20
columns of U corresponding to the 20
largest singular values of A are selected for
the model. The model size is now 255 %20
and the system equation is represented as

3 =L )]

where the matrix U, is a column-reduced
version of the U matrix, y is the vector of
measurement data taken at the 255 test
points, and x is the vector of 20 unknown
parameter values specific to the device being
tested.

B. ROW REDUCTION OF MODEL AND
TEST POINT SELECTION

The SVD cannot be used to perform
the row reduction of the model because the
original test point identity would be lost.
The QRD is used because it maintains the
identity of the columns or test points. In the
QRD, a matrix A is factored into two other
matrices,

PA = QR. )

where P is a pivot matrix which reorders the
columns of A such that the diagonal of R is
monotonically decreasing, the Q matrix is a



square matrix with orthonormal columns,
and the R matrix is an upper triangular
invertible matrix the same size as matrix A
[8]. The main diagonal of the R matrix
contains values corresponding to how much
independent information a column of A
contributes relative to the previous columns
in A. The QRD is applied to the transpose
of the model in order to operate on the rows
of A, which correspond to test points. The
QRD method is used to select the j rows (j
is the column dimension) which provide the
most independent information about the row
space of the model. In our example case, 20
rows (test points) are selected reducing the
model size from 255%20 to 20X20. A
model row size of 20 corresponds to using
only 20 test points to predict the behavior of
the device at all 255 of the test states
specified by the manufacturer. To minimize
errors caused by measurement noise, it is
good practice to use more than the minimum
number of test points (j). Therefore, more
rows (test points) should be added to reduce
the effects of measurement noise (lower
prediction variance) and to provide redun-
dancy so that model errors can be detected.
Adding rows will create an overdetermined
model that can be solved using a least-
squares procedure. An overdetermined
system is one in which there are more equa-
tions than unknowns. An algorithm which
minimizes the prediction variance ratio is
used to determine which test points to add to
increase the row size. The ratio of the
prediction variance, ¢,’, to the measurement
variance, ¢°, is calculated using the equation
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where ¢,” is a vector of the prediction
variance at each of the 255 test points, U, is
the full model (length 255), and U_ is the

row reduced model (length 20). To get
additional test points, the test point with the
largest prediction variance is selected, and
the row of U, corresponding to that test
point is added to the row-reduced model to
produce a model of length 21. The
prediction variance ratio (6) is recalculated
using the length 21 model and the point of
largest prediction variance is selected. This
procedure is repeated until the desired model
size is achieved. To keep track of which
test points or test states are used by the
model, there must be a test point vector
containing the rows of the length-255 model
that are included in the reduced model. As
each new test point is added to the reduced
model, the test point vector is updated with
the index pointing back to the corresponding
row of the length-255 model. As more test
points are added to the model, the overall
prediction variance will decrease. Since
more test points ultimately implies longer
test time, the decision to stop adding test
points is an economic one. It is generally
appropriate to have 2-4 times as many test
points as parameters. In this case study, 50
test points were chosen because that number
gave a suitably low prediction variance and
still afforded substantial savings in test time,
i.e., 50 vs. 255 measurements to be made.
Therefore, the resulting model chosen for
the Fluke 792A has size 50X20. This
reduced model gives the reduced system
equation

j=U.x ™

where § represents the measurement data at
only the reduced set of test points, in this
case, 50. Using only the data at the selected
test points, a least-squares estimate of the
parameter vector, x, can be calculated as

£ = (0,0)'0,5. ®



Then the complete set of test point data, vy,
can be predicted from X and the length-255
model via the system equation

j = U, )

The reduced model determines at which
reduced set of test points to take
measurements and is used in the calculation
of the parameter estimates and the length-
255 model is used to predict the response at
all specified test points.

III. RESULTS

Along with the modeling set of 100
measurement vectors, a validation set of 39
measurement vectors was obtained from
devices coming off the production line.
This set was used to perform a check on the
validity and accuracy of the model

developed. Validation measurements are
taken at all test points. Thus, a residue can
be determined at these points using

L2 S
i 10
- O.X. (10

During production, test measure-
ments are taken only at the reduced set of
test points. Because more than the
minimum number of test points are
measured, the residue at these points can be
calculated using

e, =y - Uz (1n

This residue can be monitored during
production testing to assure that the derived
model continues to reflect the production
process.
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Figure 2 Prediction Errors of Validation Set (Errors in Percentage of Specified Uncertainty)
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Figure 3 Histogram of Prediction Errors

When tested with the validation set,
the 50 X20 model produced an rms error of
0.036 or 3.6 percent of the manufacturer’s
specified uncertainty. Figure 2 shows the
residue error vectors (calculated from (10))
produced from applying the 50 X20 model to
all 39 of the validation vectors. All 39 error
vectors are overlaid. Figure 3 displays the
same data in histogram form. More than 98
percent of the errors were less than 10
percent of the uncertainty values. All but
two of the 9945 residues were less than 20
percent and the remaining two were less that
30 percent of the manufacturer’s specified
uncertainty. Weighing the small loss in
accuracy against the reduction in test effort,
this addition to the uncertainty of the testing
process is acceptable.

IV. CONCLUSIONS

The technique illustrated in this
paper allows for fewer measurements to be
taken to fully characterize a multirange
instrument. Fewer test points will reduce
test time and calibration cost. This
technique can generally be applied to other
types of instruments for which enough
exhaustive measurement sets are available to
construct and test a model. Since the
development of the test model is usually
only done once (with periodic checks and
updates), the greatest cost of testing will
likely be incurred with taking the
measurements needed to build the model.
Therefore, this method could prove very
useful in production line testing and in
calibration.
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