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Binary Versus Decade Inductive Voltage .

Divider Comparison and Error Decomposition
Svetlana Avramov-Zamurovic, Gerard N. Stenbakken, Member, IEEE, Andrew D. Koffman, Member, IEEE

Nile M. Oldham, Senior Member, IEEE, and Robert W. Gammon

Abstract-An automatic Inductive Voltage Divider (IVD) char-
acterization method that can measure linearity by comparing
lVD's with different structures is suggested. Structural models
are employed to decompose an error vector into components
that represent each divider. Initial tests at 400 Hz show that it
is possible to assign independent errors due to the binary and
decade structures with a 20' uncertainty of 0.05 parts per million
(ppm) at the measured ratio values.

I. INTRODUCTION

THE intention of this paper is to introduce an automatic
calibration procedure that will calibrate both the ~~tan-

dard" and. the ~'Test" IVD at the same time. This approach
is possible when the devices that are compared have different
internal structures and the error pattern reflects these structures.
This pennits a unique model to be used for each divider. Using
an automatic IVD bridge [1], measurements can be made at
hundreds of ratios, so statistical methods can be applied in
detennining the measurement uncertainty. The term ~~error
vector" will be used to represent the measured difference
between the outputs of a binary IVD (BlVD) and a decade
IVD (DIVD) for a set of test ratios. -- - - .

An IVD is an autotransformer whose setting defines the ratio
that relates the output voltage to the input voltage. To obtain a
variety of ratios, a number of transformers are cascaded using
relays. In the case of the BlVD, p transformers of ratio 1/2
are connected in a binary sequence to give 2P different ratios.
The DIVD consists of q cascaded transformers, each having 10
uniformly spaced taps that are connected in a decade sequence
to give 10Q ratios.

When an IVD is loaded, the ratio between its output and
input signals differs from the turns ratio, and its errors depend
on the impedance of the load. For each transformer in the
cascaded structure, a less significant transformer is a load
(analogous to a least significant bit in a ladder network digital-
to-analog converter). To obtain different ratios, appropriate
combinations of transformers are used. This means that the
error pattern for the full ratio range of the IVD depends on the
impedance of the transformers in use. The largest differential
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errors will occur at ratio steps where the most significant trans-
fonners in the cascade are switched. These transitions occur at
different ratios in the binary and the decade structures giving
different error patterns. This difference in error pattern makes
it possible to separate the error contributions from each device.

II. LINEARERRORMODEL

To decompose the error vector into decade and binary
components, a linear error model is employed [2] and [3].
In matrix form this model is given by

y=Ax

where y is an m x. 1 vector that contains the measured
errors, A is an m x n model matrix, and x is an n x 1
parameter coefficient vector. The rows of model matrix A
correspond to the different ratios measured, Le., the test
points. lYpically, m is considerably larger than n, producing
an overdetennined system, which reduces the influence of
the random measurement noise, and provides redundancy for
detecting model errors.

The model matrix A is divided into three sections

A = [b Id Is].

The first two sections are the binary b( m x nb) and the decade
d(m x nd) models. The third section s(m x ns) is the system
model, which consists of vectors that represent the behavior of
the measurement system, Le., offset and gain. This partition
separates the parameter coefficients into three groups, with
each coefficient representing the error contribution associated
with the model vectors. The next two sections of this paper
describe the construction of the binary and decade parts of the
model matrix A.

To estimate the parameter coefficients X, the following
least-squares equation is used

x = (AT A)-lATy.

The estimated values of x are used to compare the predicted
to the measured errors. The residual error r is given by

r =y - Ax.

The residual is used to evaluate the model and to estimate the

uncertainty of the predicted errors.
Once the parameter coefficients are estimated, it is possible

to calculate predictions for the binary, decade, and system
errors: peb, ped, and pes, respectively, by setting the appro-
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Fig. 1. A 3-bit BlVD structure. 51,52, and 53 arc double-pole (labeled with dashed line), two-position (up, down) switches for the first, second, and third
bit, IeSpeCtively. N is the number of turns. "IN is the input voltage. VOUT is the output voltage.

TABLE I
AN EXAMPLEOF 3-Brr BINARYSETIINGS

Switch I NOMINAL RATIOS
positioa
.mh model I0 0.125 8.25 0.375 o.s U25 0.75 8.175
WdDrs

Sa ICIOwaCIOwaCIOwaCIOwa., ., ., .,
v.

Sa ICIOwaCIOwalip ., , ...
Va

Sa I110_ lip dowa lip IIowa lip IIowa lip
Va

Switch positions with associated model vectors (VI, V2 AND V3) for all
possible nominal ratios for 3-bit BlVD. Nominal ratio is equal to the ratio
of VOUT over "IN.

priate sections of the model matrix A to 0

peb = [b I0 I O]x

ped = [0 Id I O]x
pes = [0 I 0 I s]x.

Smaller residuals indicate better predictions of peb, ped,
and pes. For this reason it is very important to develop a
model that will extract as much structure as possible from the
measured data.

ill. BINARY REPRESENTATION

The BlVD used for this analysis consists of 30 transformers
connected in such a way that it is possible to obtain 230
different ratios in the range between 0 and 1.

The basic structure of a 3-bit BlVD is given in Fig. 1. The
output voltage is determined by the switch positions, which are
shown for all eight possible ratios in Table I. Corresponding
model vectors based on this structure are called independent
binary switch functions and are used to model the error pattern
of the BlVD.

Using this vector representation, it is also possible to extract
the error associated with the interaction of two switches. This
kind of error is called a "multibit" error. The exclusive-
or of two independent switch functions gives the multibit
function that is used to describe the interaction of the two
independent switches. The number of these functions increases
exponentially with the number of bits included in the analysis.
Only the multibit errors that are significant have been included
in the model.

IV. DECADE REPRESENTATION

The DIVD used in this analysis consists of seven transfonn-
ers with 10 uniformly spaced taps, which can be arranged to
form 107 ratios in decade steps. Decade switch functions are
used to model the error structure of the DIVD.

The' structure of a two-decade DIVD is given in Fig. 2.
Each decade is controlled with a switch. The switches in each

decade are ganged so that one and only one switch is closed.
Fig. 3 shows the decade switch functions that result from this
switch structure.

The proposed decade model consists of switch functions that
represent the digits independently. Multidecade interactions
are approximated by an analytic function described later.

V. ERROR DECOMPOSmON METHOD APPLIED
TO THE BlVD VERSUS DIVD COMPARISON

During a comparison, both dividers are set to selected ratios.
The full test set would have 230 test points; however, a set of
only several hundred random test points was. used to uniformly
cover the full range of ratios between 0 and 1. Because of

the structure of two dividers, they cannot be set at exactly the
same ratio. The DIVD has a resolution of 10-7, and the BlVD

has a resolution of approximately 10-9, so the difference in
set ratios can be as large as 0.5 x 10-9. This error is not
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Fig.2. Two-decade DlVD stIUcture. SaO, Sa 1, ..., Sa9 are ganged. double-pole (labeled with dashed line). two-position (open. closed) switches used
for dials 0,1,...,9 on the first decade. ShO, Sbl,.. . , Sb9 are single-pole. two-position switches used for dials on the second decade. SblO. and Sa9
are used to obtain a nominal ratio equal to 1.

s.,
S..
S'7
Sw
Sid

S..
S..,
SIa2
.S..
S..
Sat
S.
S.7
S-,
SaS

SaC

SaS

S4

Sal

S..

o 0.2 0.3 0.4 0.5 0.6 0.7
NOMINAL RATIO

0.8 10.90.1

Fig. 3. Model vectors for a two-decade DlVD obtained from switch positions shown on Fig. 2. When a switch is closed the vector has a low value.

significant because the statistically estimated normalized noise
level is 0.005 ppm (5 x 10-9).

The model used in the error decomposition method has
. binary, decade, and system components. Each of these struc-

tures is represented with vectors that span the appropriate
vector space. Separately, each basis is orthonormal. But the

combined basis, called the model basis, is not orthogonal and
may contain linearly dependent vectors. Several techniques,
including selection of test ratios, were used to eliminate all
linear dependence between the vectors [6].

In addition to selecting test ratios that give good separation
of the model components, another technique was employed
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Fig. 4. Measured difference between BlVD and DIVD.

to increase the separation between the binary and decade
components. Extra test points for the binary transitions of
the three most significant bits were added to the test set
Those transitions occur at the ratios 0.125, 0.25, 0.375, 0.5,
0.625,0.75, and 0.875. 1\\'0 measurements were made for each
transition, leaving the setting on the DIVD on the nominal
value while the BlVD was switched from the nominal setting
to the setting that is one least significant bit less than nominal.
In generating model matrix A for these test points, the two
subsequent rows have the same decade elements, but almost
totally different binary elements, making a clear distinction
between the binary and decade components of the error.

In generating the binary model, independent binary switch
functions were used to represent the binary structure, and a
multiswitch function that represents the interaction l)e1Ween
the first and second bits was added. Decade switch functions
were used to represent the decade structure where vectors
that represent the 0 digit were omitted in order to satisfy
the linear independence requirement. The errors associated
with digits 0 through 9 of each decade are linearly dependent
upon either the gain of the divider or the vectors of the
next most significant decade. ~ince the gain is considered
a system component, these redundancies were eliminated by
removing the digit 0 vectors from each decade. Most of the
measurements show that the errors of the DIVD are small for
the ratios that include digit 0 in the first decade. A constant
value vector was added to represent a system offset. A third-
degree polynomial curve (S shape) is derived as an error
pattern for the influence of the interwinding impedances in
the first decade of the DIVD [4], and a vector was added to
represent this behavior. Also, a study of the influence of the
load impedance when transformers are cascaded [5] showed
that the capacitive coupling is predominan~ Three vectors
were added to model this effect. The vector that represents
the output resistance of the DIVD is added to the model to
cover the influence of the residual current when the balance
is not perfect.

VI. REsULTS

The decomposition scheme proposed allows the separation
of the measurement (Fig. 4) into binary (Fig. 5) and decade
(Fig. 6) error predictions, and residual error (Fig. 7). Using
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Fig. 7. Residual errors.

the extra vectors mentioned above, it was possible to reduce
the rms value of the residuals to 0.017 ppm for a 400 Hz
comparison. The rms value of the residuals and noise level
combined give a total 20-uncertainty less than 0.05 ppm. The
model consisted of 99 vectors for 680 measured ratios, and
the error predictions and residual errors shown in Figs. 5, 6,
and 7 Were generated using the tested ratios.

Another test was performed where the set of 680 measured
ratios was divided into a "model" set and a "validation" set

.0.4
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Fig. 5. Binary error predictions.
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Fig. 6. Decade error predictions.
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The model set was used to generate parameter coefficients
for the binary and decade structures. The calculated parameter
coefficients were applied to predict the errors for the ratios
in the validation set. The standard deviation of the difference
betWeen the measurements and predictions was 0.022 ppm.
This additional test gives a more accurate predictor of the
measurement method.

The completeness of the model is defined as the degree to
which a model can describe the measured response of any
system for which the model is intended. A model that is
complete should produce randomly distributed residuals with
an nns value equal to the measurement noise.

The nns of the residuals obtained in the above example is
very good with reference to the desired calibration accuracy.
Since the rms value is roughly three times the noise level
and the residuals show a structure, a more complete model is
possible.

More sophisticated analysis of the interactions within the
binary and the decade structure is necessary to obtain new
multibit or multidecade vector representations. Care must be
exercised to assure that the errors are properly assigned to
either the binary or decade device.
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