Rotating-wave-plate Stokes polarimeter for
differential group delay measurements of

polarization-mode dispersion

Paul A. Williams

We present a description and detailed uncertainty analysis of a polarization-mode dispersion (PMD)
measurement system that uses the Jones matrix eigenanalysis measurement technique based on a
rotating-wave-plate Stokes polarimeter. The uncertainty of the system is 8.2 fs (~95% confidence
interval) and is due primarily to PMD in the fiber leads of the measurement system.

OCIS codes: 060.2270, 060.2300.

1. Introduction

We have assembled and tested a Jones matrix
eigenanalysis (JME) measurement system for
polarization-mode dispersion (PMD) measurements
based on a rotating-wave-plate technique. This
technique was used as the primary technique for cal-
ibrating a National Institute of Standards and Tech-
nology (NIST) Standard Reference Material (SRM
2518) for the generation of mode-coupled PMD.1
Here, we calculate the uncertainty of the measure-
ments.

2. Description of Apparatus

Our JME system is shown schematically in Fig. 1.
Light from a tunable laser diode is coupled into a
single-mode fiber and goes through a polarization
controller and then through the specimen. The po-
larization state of the exiting light is measured with
a Stokes polarimeter. The unusual aspect of our
system, which differentiates it from other JME
systems,2-4is that the Stokes polarimeter is based on
a rotating-wave-plate design that uses a single detec-
tor (as opposed to four in other designs). Our design
was chosen to minimize the possible errors in
multiple-detector systems such as the gain mismatch
that results from temperature gradients. Although
multiple-detector implementations can calibrate out
static gain mismatches between detectors and peri-

P. A. Williams (paul.williams@nist.gov) is with the Optoelec-
tronies Division, National Institute of Standards and Technology,
MS 815.02, 325 Broadway, Boulder, Colorado 80303-3328.

Received 20 April 1999; revised manuscript received 12 July
1999.

6508 APPLIED OPTICS / Vol. 38, No. 31 / 1 November 1999

odically recalibrate to minimize the effects of transi-
tory gain mismatch due to thermal gradients, the
single-detector design is simpler in that it does not
require these calibrations. A personal computer is
used to control the system and to analyze the inten-
sity measurements.

The tunable laser has a range of 1480-1570 nm
with a linewidth of less than 100 kHz. The free-
space polarization controller consists of A/4 and \/2
wave plates, followed by a polarizer. The wave
plates are used to manipulate the polarization state
between the laser and the polarizer in order to opti-
mize the power throughput. The polarizer P, has an
extinction ratio of >40 dB from 1470 to 1570 nm.
The orientations of the wave plates and the polarizer
are computer controllable (the polarizer’s orienta-
tional resolution is 0.18°).

The Stokes polarimeter consists of a graded-index
lens that launches the light from the fiber onto a \/4
waveplate (true zero-order polymer) spinning at 1450
rpm (~24 Hz). The light is then incident upon a
Glan-Thompson analyzer P, whose extinction axis
orientation is defined as horizontal. Exiting the an-
alyzer, the light is incident on a lens and focused on
an InGaAs photodiode. The output of the photo-
diode is read by a lock-in amplifier and a digital volt-
meter (DVM). Measuring the de, 2f, and 4f
components of this signal allows the calculation of the
Stokes vector of the light (see Appendix A for details
of the analysis).

The PMD of the test device is measured according
to the technique of Heffner.2 For a given test spec-
imen, the Stokes vector of the transmitted light is
measured at a particular wavelength for three dif-
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Fig. 1. Schematic of the rotating-wave-plate Stokes polarimeter
for measuring DGD.

ferent launch polarization states (in our case, we
use P, to generate three linear states at ¢ + 0°, ¢ +
45°, and ¢ + 90° where ¢ is an arbitrary reference
angle). From these three measured Stokes vec-
tors, the Jones transfer matrix of the test specimen
(including the fiber leads) is calculated at the test
wavelength. Then, the wavelength is changed and
the process repeated giving a second Jones matrix
at the new wavelength. Again following Heffner,
we calculate the differential group delay (DGD; or
At,) as

Ar = arg(p:/pe)
5 = |8/ P2
Aw

g

) (1)

where p; and p, are the eigenvalues of the matrix
product

T(o + Aw)T Hw), (2)

formed from the Jones transfer matrices T(w) and
T(o + Aw) of the test device measured at the two
optical frequencies w and o + Aw.

Here a couple of clarifying notes are appropriate.
A DGD measurement requires measurement of the
Jones matrix of the test specimen at two different
optical frequencies. We usually refer to this differ-
ence in terms of wavelength as the step size. Ifthe
Jones matrices were measured at \, and \,, then the
calculated DGD would be reported as the DGD at the
average of those two wavelengths. For example, ifa
scan of DGD versus wavelength involved measuring
the Jones matrices at 1500, 1502, 1504, and 1506 nm
(a 2-nm step size), then it would yield DGD values at
1501, 1503, and 1505 nm. For clarity, we use the
term DGD to refer to the instantaneous group delay

between the two principal states of polarization at a.

given wavelength. The term PMD is used to refer to
the mean of multiple DGD measurements over a
given wavelength range.

3. Uncertainty Analysis

The purpose of developing this JME measurement
system was to provide accurate measurements of a
NIST SRM for characterizing mode-coupled PMD.!
The SRM is a stack of ~35 quartz wave plates
cemented together with random angular orienta-

tions and pigtailed with single-mode fiber. Uncer-
tainties in the assembly of this device prevented us
from calculating its theoretical PMD; therefore the
calibration of this device depends solely on the cal-
ibration of the JME system used to do the measure-
ment.

We estimated the measurement system’s type A
(statistical) (Ref. 5) uncertainties from the standard
deviation of multiple measurements. We also com-
pared this result with the quadrature sum of esti-
mated type A error sources.

Type B (nonstatistical) (Ref. 5) uncertainties,
however, cannot be directly measured with self-
consistency arguments (standard deviation, etc.).
To identify them, we used two approaches. First, we
tested the system by measuring a single pigtailed
quartz plate (non-mode-coupled) with a known PMD.
Second, we estimated the systematic uncertainties
from the known inaccuracies of the experimental
equipment.

The algorithm that derives PMD from the mea-
sured intensities is a complicated expression that
does not lend itself to error analysis through simple
propagation of errors. The best way to estimate
PMD measurement uncertainty is through computer
simulation. We wrote a program to generate the
wavelength-dependent Jones matrices that represent
a non-mode-coupled PMD element measured in the
presence of equipment inaccuracies (polarizer mis-
alignment, improper wave-plate retardance, etc.).
These Jones matrices were fed into the same algo-
rithms used by our JME system to calculate the mea-
sured DGD, and then this value was compared with
the true theoretical value. The discrepancy is the
error due to the equipment inaccuracies. This sim-
ulated experiment was repeated multiple times with
various fiber pigtail orientations and different theo-
retical DGD values. The difference between these
simulated DGD values (measured and true) gives an
expected uncertainty due to equipment inaccuracies.
Our simulations were run with DGD values uni-
formly distributed from 0 to 1 ps—the expected mea-
surement range of our JME system for measuring the
SRM artifacts.

In summarizing the uncertainties due to equip-
ment inaccuracies, we found that most resulting
measurement errors are random and that the sig-
nificant systematic ones are systematic only for
fixed measurement conditions. That is, if multiple
measurements are made with the input state of
polarization varied between measurement runs, all
significant error sources will be random with a
mean error of zero. We accomplished this by
changing the launch polarizer offset (¢ as men-
tioned above) before each DGD-versus-wavelength
run. We also varied the launch polarization state
by changing the orientation of the fiber leads con-
necting the specimen. Six possible sources of ran-
dom error due to equipment inaccuracies were
identified and are described below.
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A. Random Uncertainties

1. Polarizer Misalignment

We measured the Jones matrix of the test device by
launching three states of polarization with relative
orientations of 0°, 45°, and 90°. Alignment errors of
the polarizers cause negligible uncertainty in the
measured DGD. As stated before, the 0°, 45°, and
90° angles are only relative orientations with respect
to some arbitrary alignment. That means polarizer
orientations of 10°, 55°, and 100° would give identical
DGD values. It is only the relative offset between
polarizer orientations that might cause trouble (0°,
46°, and 90° for example). We found from simula-
tion that polarizer misalignments as large as +2°
give worst-case DGD errors less than +6 X 1074 fs.
Since our expected alignment errors are on the order
of 0.18°, polarizer misalignment is a negligible error
source.

2. Lock-in Amplifier Phase Errors

Appendix A shows that the phase setting of the
lock-in amplifier can be important. The signal dis-
tribution between the sine and the cosine components
at 4f is determined by the phase setting of the lock-in
amplifier. Phase errors at 4f cause leakage between
S, and S, (horizontal and 45° linear states). This
corresponds to a rotation of the defined Poincaré
sphere about its polar axis. This leakage has no
effect on DGD measurements, where the important
parameter is the relative travel of the polarization
state on the Poincaré sphere as a function of wave-
length. However, incorrectly identifying S; and S,
(C and D in Appendix A) does affect our measurement
of degree of polarization (DOP). DOP is calculated
as

So - (S12 + 822 + S32)1/2
So )

Since C and D are not used symmetrically in the
Stokes parameter definitions of Egs. (A6), phase er-
rors at 4f cause us to misreport the DOP. This is
important because we use DOP measurements to en-
sure that the system is well behaved during the mea-
surement (we know that the DOP should be close to
1.0 and be a constant independent of measurement
parameters). We easily set the 4f phase by launch-
ing a linear polarization state into the Stokes polar-
imeter (a bulk polarizer is placed immediately in
front of the rotating wave plate at 90° with respect to
the analyzer P, in Fig. 1). This vertical linear state
has only a negative C component and no D compo-
nent. We set the phase at 4f on the lock-in accord-
ingly.

However, the phase setting at 2f directly affects the
measured DGD, but fortunately by a small amount
and in a random way. Since there is no 2f cosine
term in Eqgs. (A2)—(A5), errors in setting the phase at
2f reduce the amplitude of B. This distorts the Poin-
caré sphere by flattening it at the poles and can result
in a second-order error in measurement of arc length

DOP = (3)
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on the sphere. We set the phase at 2f by launching
a nearly circular state into the Stokes polarimeter
and then adjusting the phase to optimize the ampli-
tude of the B component. Our repeatability in set-
ting phase is always less than 1°. So, we simulated
the error in PMD measurements resulting from 1°
phase errors on both 2f and 4f measurements and
found the standard deviation to be 0.06 fs (for Aw step
sizes—see Eq. (2)—corresponding to 3 nm). Thus
phase errors represent a negligible contribution to
the measurement uncertainty.

3. Stokes Polarimeter

The primary source of errors in the measurement of
the Stokes vector comes from imperfections in the
quarter-wave retarder. The derivation of Appendix
A assumes the retarder to be exactly quarter wave.
If it is not, the result will be errors in the measured
Stokes parameters. These errors are correctable if
the true retardance of the wave plate is known. For
a non-quarter-wave retarder, the true Stokes param-
eters are given by

Sy =A — C/tan’(3/2),

S, = 2C/2 sin*(5/2),

S, = 2D/2 sin%(8/2),

S = B/sin(d), 4)

where 8 is the true retardance of the nominally
quarter-wave plate. These equations reduce to Egs.
(A6) when & = 90°. So, if the actual retardance of
the quarter-wave plate is known, the true Stokes
parameters can still be obtained. A problem occurs
when there are unknown retardance variations in the
quarter-wave plate.

The retardance of the wave plate is specified within
1.2° (manufacturer’s specification of spatial uniformi-
ty). Computer simulations show that a 1.2° retar-
dance error yields random measurement errors with a
standard deviation of 8 fs. Other errors in retardance
can result from a tilt between the wave plate and the
incident beam and the wavelength dependence of the
retardance. We measured the wavelength depen-
dence of the quarter wave-plate retardance using the
NIST rotating-polarizer polarimeter.® This wave-
length dependence is used with Egs. (4) for automatic
correction of the wavelength-dependent retardance er-
rors during the measurement,

Another potential source of uncertainty comes
when the wave plate is tilted off axis. Wave-plate
tilt takes two forms: Wobble is tilt of the wave plate
in its mount with respect to the rotation axis, and
axis tilt is tilt of the mount (rotation axis) with re-
spect to the beam (Fig. 2). Pure wobble causes the
light to enter the wave plate at nonnormal incidence,
but with a constant angle of incidence with respect to
the fast and the slow axes of the plate during rotation.
This results in a systematic bias to the effective re-
tardance of the wave plate. On our setup, we mea-
sured the wobble to be less than 0.4°. This
translates to an internal (to the wave plate) incidence
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Fig. 2. Two possible types of wave-plate angular misalignment.

angle of 0.26°. This nonnormal incidence causes a
systematic error in the wave-plate retardance of
+0.001°7 This is orders of magnitude below the un-
certainty owing to wave-plate uniformity and is con-
sidered negligible. The effects of axis tilt are more
difficult to quantify. The source of errors is still the
same as with wobble—nonnormal incidence alters
the effective retardance of the wave plate. However,
as the plate rotates, the effective retardance changes,
depending on whether the tilt is toward the fast or
the slow axis (or somewhere between). We did not
derive a closed-form expression to quantify this error,
which depends on the DGD of the device being mea-
sured. Instead, we used computer simulation to
predict the possible range of errors resulting from
axis tilt. We measured the axis tilt to be <0.4° (ex-
ternal angle). Our simulation used a conservative
estimate of 1° axis tilt, which gave a random error
with a worst-case value of <0.03 fs. This represents
a negligible error source.

4. Laser Wavelength

A significant source of uncertainty in the experiment
can be attributed to uncertainty in laser wavelength.
Using a wavemeter, we calibrated the wavelength
error of the tunable laser (agreement between the
target wavelength and the actual wavelength).
Since we did not have a wavemeter available for real-
time monitoring of the actual laser wavelength, we
treated the wavelength uncertainty as an error
source. In the measurement of DGD, a critical pa-
rameter is the wavelength difference A\ between ad-
jacent measurement points. This is because the
instantaneous DGD is given as |dS/dw}, the change in
Stokes vector for a given change in optical frequency.
An error in AN therefore produces a proportional er-
ror in DGD. This error increases as the wavelength
step size decreases. Our tunable laser exhibited a
wavelength uncertainty of 0.008 nm (one standard
deviation). At, say, 8-nm step sizes, this represents
only a 0.1% error, but at 0.8-nm step sizes, it becomes
a 1% error. Fortunately, this error can be reduced
by averaging of data (or by real-time monitoring of
the laser wavelength with a wavemeter).

Computer simulation supports these statements.
We ran simulations using worst-case wavelength er-
rors of three times the observed +0.008-nm standard
deviation. For wavelength steps of 1 nm, random
PMD errors with standard deviation ¢ = 12 fs oc-
curred, 2-nm step sizes yielded o = 5.7 fs, and 3-nm
steps gave o = 3.6 fs, for a nominal DGD of 0.5 ps.

Table 1. Estimated Random Uncertainties
Standard
Error Source Uncertainty, fs
Wavelength uncertainty (3-nm step size) 3.6
Muitiple reflections (0.2% per surface) 3.6
Retardance error in \/4 plate 8
Combined Standard Uncertainty 9.5

5. Multiple Reflections

One error that could occur independent of deficiencies
in the measurement apparatus comes from multiple
reflections. If two reflections somewhere in the test
system occur with one on each side of the test speci-
men, then the effect will be a cavity with the test
device inside. This means that the measured PMD
includes coherently added PMD contributions from
the multiple paths of the device. This type of phe-
nomenon has been discussed in depth with regard to
measurements of optical retardation.® In the case of
PMD, the critical parameters are the same. The
higher the quality factor @ of the cavity created by
the reflections, the larger the distortion of the mea-
sured PMD. However, the saving fact is that the
multiple delays with each reflection add coherently
and so are very sensitive to wavelength and cavity
length. Thus in PMD measurements, the effects of
multiple reflections may be averaged away by multi-
ple measurements either at slightly different temper-
atures (fractions of 1°C should be enough) or at
wavelengths that are different by fractions of 1 nm.,
Computer simulation showed that a cavity with in-
tensity reflections of 0.2% (—27 dB) at each end and
a true DGD of 0.5 ps generates a random DGD mea-
surement error with a standard deviation of 3.6 fs.

6. Polarization Extinction Ratio

The two polarizers used in the system have extinction
ratios =40 dB. However, the extinction ratio of the
polarizers is not critical since the JME measurement
calculates the DGD only from the portion oflight that
is completely polarized. A poor extinetion ratio of Py
would reduce the degree of polarization through the
test device, but only the polarized part of the light is
used in the DGD measurement. Poor extinction by
P, would underreport the DOP of the light going
through the test device. But, low extinction ratios in
either P, or P, do not directly affect the PMD accu-
racy. The only reason for high extinction ratios on
the polarizers is to optimize the optical throughput
for purposes of noise reduction.

7. Summary of Random Uncertainties

Table 1 lists the theoretical sources of random uncer-
tainty (one standard deviation) and their combined
standard uncertainty (quadrature addition) total of
9.6fs. We directly measured the standard deviation
of DGD measurements with a pigtailed quartz plate
(0.4464 ps). We made 50 scans over the range
1480-1569 nm, giving a total of 1008 data points.
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Fig. 3. Schematic illustration that the distance AS between two
Stokes vectors (S, and Sy,) is systematically biased by the presence
of random Stokes noise (of amplitude ).

The measured sample standard deviation was 5.2 fs,
and the standard deviation of the mean was 0.20 fs.
This 5.2-fs experimental standard deviation is well
within our 9.5-fs estimate.

B. Systematic Uncertainties

1. Systematic Errors from Random Noise

It is possible for a random-noise source to add a sys-
tematic bias to PMD measurements. This comes
from the fact that DGD is a scalar quantity resulting
from a vector measurement. The JME measure-
ment of DGD is equivalent to measurement of the
change in the output Stokes vector in response to a
change in the optical frequency of the source [AS/Aw|.
Figure 3 shows the Stokes vectors (S, and S,) mea-
sured at A, and \,, respectively. If the measured
Stokes vectors are subject to some noise v, they will
randomly describe a set of points within a circle of
radius  whose center is the location of the noise-free
Stokes vector. When measuring arc length on the
sphere, the average of multiple JME system mea-
surements really averages the distance between
points randomly located within circle @ and points
randomly located within circle 5. This operation
does not average to the distance between the circles’
centers (AS =[S, — 8y|) but rather to something
greater than that. This seems counterintuitive, but
consider the case in which AS approaches 0; measur-
ing AS then amounts to the average distance between
two points randomly chosen within a circle of radius
M. Clearly, this average distance is greater than 0;
thus we have a positive systematic bias. This nor-
malized error in measuring DGD in the presence of
noise can be approximated as

o
o
73
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o

g
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Normalized Error, d
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Fig. 4. Normalized systematic error d{«) versus noise fraction a.
Solid curve is theoretical prediction from Eq. (5), and circles are
data points from two different quartz plates sampled at different
wavelength step sizes.

where the noise fraction « = n/AS. This normalized
theoretical bias is plotted as a function of « in Fig. 4
(solid curve). The data points are experimental data
from measurements of two quartz plates of PMD at
0.218 and 0.4464 ps. We varied o experimentally by
sampling with various wavelength step sizes. As
Fig. 4 shows, the systematic bias in the measure-
ments agrees well with theory for small values of .
To determine « for the experimental data, we knew
the target value of AS, and we used n as the free
parameter. The points in Fig. 4 are scaled with n) =
0.015. These values agree fairly well with the esti-
mated m values for our apparatus. We can estimate
M as mg + 7y, where 15 is a direct measurement of the
random noise on the Stokes vector and v, is the es-
timated noise due to the random wavelength varia-
tions. The expression mg + m, yields a value
between 0.006 and 0.009. This discrepancy between
predicted and fitted values of v implies that there are
still other random-noise sources that we have not
accounted for.

This possible systematic error in measurements
must be considered when the PMD-induced Stokes
vector change is small with respect to the absolute
noise on the measurement. In our calibration mea-
surements, this was not a factor since our measure-
ments were carried out with step sizes between 2.7
and 8 nm (a < 0.009), which yields negligible system-
atic uncertainties. However, as can be seen from
Fig. 4, the experimental data level off without reach-
ing zero at the smallest values of «. This effect,
which likely comes from some other source of error

0 0

d(a) =

27 27w
f f [(1 + o cos 6 — o cos ¢)* + (1 + a cos 0 — « cos 9)?]72 dode
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Table 2. Summary of Measurement Uncertainty for JME Measurement System

Standard
Uncertainty Source Method Uncertainty, fs
Experimental random errors Measured standard deviation of the mean of repeated 0.20
independent measurements
Systematic bias due to random noise From random-noise estimates 1.0
Uncertainty of quartz artifact calibration Theoretical calculation 1.2
Combined standard uncertainty u, = [Su, 22 1.6
Expanded uncertainty U= 2u, 3.2

than was considered here, can be taken into account
by addition of a conservative +0.2% (~1 fs for our
~0.5-ps device) contribution to the uncertainty. Al-
though these systematic errors are practically negli-
gible for the current measurements, this bias
mechanism must be kept in mind because it limits
the minimum wavelength step that may be used in
measurements. For example, given the noise of this
system, a <0.25% systematic uncertainty require-
ment means that a 0.1-ps device must be measured
with a step greater than 0.5 nm and that a 1-ps device
requires steps greater than 0.2 nm.

2. Comparison to Artifact

To calibrate our JME measurement system and iden-
tify systematic errors, we measured our well-
characterized pigtailed quartz plate (Appendix B).
As described above, 1008 measurements were made
over the wavelength range 1480-1569 nm with step
sizes between 2.7 and 8 nm. The average of the
measurements was 0.4465 ps with a sample standard
deviation of 5.2 fs. The difference between our mea-
surement of the PMD of the quartz plate and the
0.4464-ps theoretical value is 0.1 fs, well within the
1.2 fs uncertainty of the quartz plate’s theoretical
PMD.

3. Quality of Data

Since much of the uncertainty analysis of this system
relies on assumptions about the uncertainties of the
measurement equipment, it is useful to have an in-
dependent means of judging if the data has been
taken under the assumed conditions. The measured
DOP was used for this purpose. Particular error
sources such as wave-plate retardance errors, lock-in
phase errors, Stokes noise, and dc measurement er-
rors cause the measured DOP to fluctuate around its
true value. For these error sources, the size of DOP
fluctuations can be an indication of the magnitude of
the measurement uncertainty. We have found
through simulation that for uncertainties within
ranges that support our error-analysis assumptions,
the DOP varies by as much as +5% or so. So, to be
conservative, we measure DOP simultaneously with
DGD and use only those DGD values that fluctuate
about the mean by less than 3%. Experimentally,
we find a mean DOP of 0.97 for measurements with
our system. So we throw out DGD values that have
an associated DOP outside of the range 0.94 <
DOP < 1.0. As a test, we compared mean DGD

measurements made on the pigtailed quartz-plate
artifact with and without this DOP criteria and found
only a 0.01-fs difference. This supports our assump-
tions regarding equipment uncertainties and implies
that this DOP criteria was not necessary.

4, Conclusions

Table 2 lists the significant uncertainties (in femto-
seconds) that we have calculated for our measure-
ment system for measurements on a ~0.5-ps device.
Adding the three uncertainties in quadrature and
multiplying by a coverage factor of 2 gives an ex-
panded uncertainty of 3.2 fs. For comparison, we
are aware of one other published uncertainty analy-
sis for a polarization-state analyzer that uses the
Stokes vector arc analysis technique for DGD mea-
surement.4

Appendix A: Operation of Stokes Polarimeter

The polarization state of the light is determined with
a rotating-wave-plate Stokes polarimeter.? As Fig.
1 shows, the Stokes polarimeter is simply a spinning
quarter-wave plate in front of a fixed polarizer, fol-
lowed by a detector. Using a phase-sensitive lock-in
amplifier and a dc voltmeter allows the measurement
of the dc, 2f, and 4f (both in-phase and quadrature
components). The four Stokes parameters can be
found from these components. At the detector, the
intensity as a function of wave-plate orientation 6
and the Stokes parameters of the incident light is®

1
I(6) = 2 (So + S; cos® 20 + S, sin 20 cos 20

+ S5 sin 26), (A1)

where S, is the first Stokes parameter of the incident
light, and so on. One can find the Stokes parame-
ters by Fourier analyzing the transmitted intensity.
The dc signal is measured, with a DVM, as

1 20
a=1 j 16)ds, (42)
T

0
where 1(0) is the detected intensity when the wave

plate has orientation 6. The 2f component is mea-
sured with the lock-in amplifier to give

2
B= %J‘ I(0)sin(20)de. (A3)

(1]
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Fig. 5. Diagram of non-mode-coupled PMD test artifact. With
removable polarizers that can be inserted to make a wavelength-
scanning measurement independent of lead PMD.

The 4f components are

2 fon
C=— f 1(0)cos(40)do, (A4)
'1T
0
2 (om
D=— f I(8)sin(40)de. (Ab)
v
0
The Stokes parameters are found by combination of
the measured values A, B, C, and D to give

So=A-C,

S, =2C,

Sy = 2D,

S;=B8B. (A6)

The resulting Stokes vector is then used along with
the two other Stokes vectors measured for different
orientations of the input polarizer to calculate the
Jones transfer matrix of the device under test. This
procedure is also included in Heffner’s letter.2

The advantage of the rotating-wave-plate method
of measuring the Stokes parameters is that all four
parameters are measured with the same detector.
This eliminates the errors that can result from a
four-detector system with mismatched gains.

The dc level A is measured with a DVM as opposed
to the lock-in amplifier used for B, C, and D. This
means that errors in the absolute calibration between
the DVM and the lock-in could be important. How-
ever, the dc level is used only in the calculation of
DOP and has no effect on measured DGD.

Appendix B: Quartz-Plate Reference Device

To assess the accuracy of the measurement system,
we measured an artifact of known PMD and com-
pared our measured result with the known value.
We did this by assembling a non-mode-coupled arti-
fact from a single quartz plate pigtailed with single-
mode fiber (Fig. 5). We measured the thickness and
wedge of the quartz plate accurately and combined
that information with group birefringence data to
calculate the expected DGD for propagation through
the quartz plate. The uncertainty of the DGD of the
plate comes from uncertainties of the thickness and
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index measurements, birefringence in the fiber pig-
tails, and multiple reflections off the endfaces of the
quartz.

We measured the thickness of the quartz plate with
a coordinate-measurement machine. The plate’s
thickness was 14.243 = 0.002 mm (+0.014%), mea-
sured at 20.2 + 0.2 °C. Another factor in the uncer-
tainty is the effective thickness of the quartz plate.
Although we accurately know the thickness of the
plate, if the probe light enters the plate at a nonnor-
mal incidence, the optical path length will be differ-
ent. We measured the angle of incidence ¢ for
He—Ne light at 632.8 nm to be 0.31°, which translates
to an internal angle 0of 0.21°. Assuming this angle to
be the same as for light at the actual wavelength of
use (~1550 nm), we calculate the tilt-induced length
error to be +0.0001 — 0 mm, or <0.0007%, again
negligible in light of the absolute thickness uncer-
tainty of =0.014%.

We obtained the quartz birefringence in two differ-
ent ways. First, comparison of the numbers from
the literaturel0-12 illustrates a discrepancy in the
quoted values (>0.18%). So, as a second approach,
we measured group birefringence ourselves. The
quoted journals report phase birefringence as op-
posed to group birefringence. It is the group bire-
fringence that determines the DGD. The relation
between the two is!3

\ d(An,

i (B1)

Ang, = An, —

We made the group birefringence measurement by a
wavelength scan of the quartz plate (Fig. 5). We
inserted polarizers between the graded-index lenses
of the fiber pigtails and the quartz plate to eliminate
birefringence due to the leads. The transmitted in-
tensity versus wavelength was recorded for the po-
larizers in a crossed orientation. The 90-nm scan
range (centered at 1525 nm) yielded multiple nulls
corresponding to the condition that the retardance
AnL/\ of the quartz plate was an integer. For the
conditions described, those integers were near 77,
depending on the order of null. Therefore, as long as
our estimate of AnL/\ was better than 0.5 parts in 77
(0.65%), we would be able to determine the order
number of a given null unambiguously. Then, forc-
ing AnL/\ to be equal to that integer gives a more
accurate estimate of An. As stated, published val-
ues of An differed by 0.18%. Since this uncertainty
is significantly less than the required 0.65% (as are
the 0.014% thickness uncertainty and the 0.0005%
wavelength uncertainty), we can identify the order of
each fringe. For example, using a literature value
Any, (), for a particular null Ay, AngO\ )L/ A ey =
77.009. Our accuracy is good enough to say that the
true order of this null is 77 (not 76 or 78). We then
correct for the least accurate parameter Ang(\) so
that An . (N u)L/Nyun = 77 exactly. Doing so over
the 90-nm wavelength range, we have improved the
accuracy of our Az estimate by an order of magnitude




so that it is limited by the length uncertainty of
0.014%.

The PMD of the quartz plate is AnL/c (where c is
the speed of light), and we found it to be equal to
0.4467 ps for a 89-nm scan centered at 1524.5 nm.
The uncertainty on this number is due to the uncer-
tainty of L (0.014%) and An (+0.014%). Adding in
quadrature gives £0.02% or 0.09 fs. The birefrin-
gence of the fiber leads themselves was measured (in
the absence of the quartz plate) to be approximately
1.2 fs. This is not an exact estimate of the error due
to lead birefringence since as the leads are reposi-
tioned, the PMD of the leads add to or subtract from
the PMD of the device. Moving the leads between
measurements averages the effect of lead birefrin-
gence, but not completely. Some birefringence is
likely to be in the graded-index lenses themselves,
and their orientation does not change when the leads
are moved. We therefore estimate the uncertainty
on the PMD of the artifact to be the quadrature sum
of the 0.09-fs uncertainty of the quartz plate and the
1.2 fs of the leads, giving an overall 1,2-fs uncertainty
dominated by lead birefringence. We obtain an ap-
proximately 95% confidence interval by using a cov-
erage factor of 2. Therefore we estimate the PMD of
the pigtailed quartz plate to be 0.4467 + 0.0024 ps at
1524.5 nm and 20.2 °C,

Our JME measurements of the quartz plate’s PMD
were carried out at a temperature of 23.3 + 0.1 °C.
We therefore modify our estimate of the PMD to this
temperature. The thermal expansion of quartz, o =
13.6 X 1075/°C (Ref. 14) couples with the tempera-
ture dependence of the birefringence to give a tem-
perature dependence to PMD. The temperature
dependence of the retardance of quartz at 1525 nm is
assumed equal to a value measured at 1535.59 nm,15

v = (1/AnL)d(AnL)/dT = —1.232 X 107*/°C.
Using v, we estimate the PMD of the quartz plate to
be 0.4464 * 0.0024 ps at 23.3 °C and 1524.5 nm.
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