DECOMPOSITION OF SULFUR HEXAFLUORIDE BY X-RAYS

J. K. Olthoff and R. J. Van Brunt

Electricity Division National Institute of Standards and Technology[•] Gaithersburg, Maryland 20899

INTRODUCTION

The decomposition of gaseous sulfur hexafluoride (SF₆) by exposure to high-energy photons, and the subsequent formation of toxic and corrosive oxyfluoride by-products, is of interest due to the use of SF₆ as a high-voltage insulator near sources of radiation, such as particle accelerators and X-ray units. Additionally, information about byproduct formation due to radiation exposure can be compared with data obtained for the decomposition of SF₆ in electrical discharges.^{1,2} This comparison is interesting since the volume in which the decomposition occurs is usually many orders of magnitude larger for radiation exposure than for electrical discharges. However, little previous work has been done to determine the effects of radiation upon gaseous SF₆.³

In this paper, we present results of by-product formation in gaseous SF₆ exposed to high-energy X-rays. The identity and concentration of the decomposition by-products are determined by gas chromotography/mass spectrometry techniques that were developed to investigate the decomposition of SF₆ exposed to corona discharges.^{1,4} The production curves of SOF₂ and S₂F₁₀ are determined for a range of SF₆ gas pressures, X-ray energies, and X-ray fluxes. Evidence for the presence of other by-products, such as SOF₄, SO₂F₂, and S₂O₂F₁₀ is also presented. The decomposition data for the SF₆ exposed to X-rays are compared with previously published data for SF₆ exposed to corona discharges.

EXPERIMENTAL DESCRIPTION

The beam of high-energy X-rays used to irradiate samples of SF₆ was produced by a commercial X-ray unit. X-rays were generated in the unit by a high-energy beam of electrons striking a tungsten surface at a 20° incident angle. The energy and intensity of the X-rays were varied by changing the accelerating voltage (V_x) and current (I_x) of the incident electron beam. For the experiments presented here, electron energies of 100 kV and 195 kV were used, with electron currents of 4.0, 2.5, and 1.0 mA. The X-rays then pass through approximately 1 mm of glass and 4 mm of aluminum before exiting the X-ray unit.

417

^{*}Electronics and Electrical Engineering Laboratory, Technology Administration, U. S. Department of Commerce

Gaseous Dielectrics VII, Edited by L.G. Christophorou and D.R. James, Plenum Press, New York, 1994

The SF₆ that was exposed to the X-ray beam was contained in a stainless steel vacuum chamber with a volume of 6.2 ℓ . Prior to filling with SF₆, the vacuum chamber was evacuated by a mechanical vacuum pump down to approximately 1 Pa, and then flushed several times with SF₆. During the experiments, the gas pressures in the cell were maintained at 300 or 600 kPa. The vacuum chamber was equipped with a 10-mm-thick, 100-mm-diameter plexiglass window, through which the X-rays were directed, and a sampling port that allowed the sampling of the compressed SF₆ from inside of the cell by a gas-tight syringe through a rubber septum. The X-ray unit and target cell were placed in a lead-lined concrete bunker, with the two chambers sufficiently close together such that the entire X-ray beam intercepted the target cell. This arrangement is shown schematically in Fig. 1.

To determine the effects of irradiation by X-rays on an SF_6 sample, the X-ray unit was operated for a set period of time at a particular beam current and voltage setting. During the experiment, the X-ray unit was periodically turned off, and the target cell was removed from the radiation bunker for gas analysis. The gas was analyzed using gas chromatography/mass spectrometry (GC/MS) techniques that are described in detail elsewhere.^{1,4} In brief, 0.5 ml samples of decomposed SF₆ were removed from the target cell by gas-tight syringe. The samples were then injected into the GC/MS where the various components of the gas are separated in time as the gas flows through the chromatographic column. The compounds SOF2, SO2F2, and SOF4 were detected using a Poropak[†] column in the GC, whereas detection of S_2F_{10} and $S_2O_2F_{10}$ required use of a Chromosorb[†] column. Both columns were operated at room temperature with helium carrier gas. The various compounds were then detected by monitoring ion: created by electron impact in the source of a mass spectrometer. For example, ion 86 (SOF_2^+) was monitored to detect SOF₂ and SOF₄, and ion 83 (SO_2F^+) was observed to detect SO_2F_2 . Ion 86 was also used to detect S_2F_{10} due to a conversion of S_2F_{10} to SOF_2 that occurs at the heated heated interface between the GC column and the mass spectrometer.4

[†]Certain commercial equipment, instruments, or materials are identified in this paper to specific adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified are necessarily the best available for the purpose.

Figure 2. Production curves for SOF₂ in a SF₆ sample exposed to X-rays. The X-ray voltage and SF₆ gas pressures used to obtain these data are: (•) $V_x = 195 \text{ kV}$, P = 600 kPa; (•) $V_x = 100 \text{ kV}$, P = 600 kPa; (•) $V_x = 195 \text{ kV}$, P = 300 kPa. The beam current (I_x) of the X-ray unit was 2.5 mA for all data in this figure. The solid lines are the least square fit for the 600 kPa data, while the dotted line is the least square fit for the 300 kPa data.

To calibrate the response of the GC/MS to the presence of the decomposition products, injections from reference samples containing known concentrations of SOF₂, SO₂F₂, SOF₄, or S₂F₁₀ were made immediately before and after injections from the target cell. Uncertainties in the relative concentrations of by-products in the target cell due to variations in injection sizes and changes in GC/MS sensitivity were calculated to be less than $\pm 4\%$. However, the absolute concentrations of oxyfluorides in the prepared reference samples used to calibrate the GC/MS were observed to vary by as much as $\pm 25\%$, which significantly increases the uncertainties of the measured production rates.

RESULTS

The GC/MS analysis of the SF₆ exposed to the X-ray beam indicates that SOF₂ is probably the primary gas-phase decomposition product from the interaction of the radiation with the gas. Figure 2 shows the production curves (solid lines) for SOF₂ inside the cell for $V_x = 195$ kV and 100 kV, with $I_x = 2.5$ mA and a SF₆ pressure of 600 kPa. The SOF₂ concentrations are given in parts in 10⁶ by volume (ppm_v). A clear voltage dependence is observed indicating that the production rate is dependent upon the energy of the irradiating X-rays. The production curve represented by open circles and a dotted line in Fig. 2 is for an SF₆ pressure of 300 kPa with $I_x = 2.5$ mA and $V_x = 195$ kV. The agreement between this data and the data obtained at 600 kPa, clearly shows that the production rate of SOF₂ by exposure to X-rays is not dependent upon the SF₆ gas pressure.

Figure 3 illustrates the dependence of SOF_2 production upon the intensity of the X-ray beam, by showing the production curves for different setting of I_x with V_x held constant at 195 kV. As expected, the production rate of SOF_2 increases with increasing I_x , corresponding to higher X-ray beam intensities. However, the observed dependence does not scale linearly with I_x .

Production of SO_2F_2 and SOF_4 was also observed for all of the experimental conditions investigated. Unfortunately, SOF_4 and SO_2F_2 have nearly the same GC retention times which results in significant signal interference if both are present in the gas sample.¹ Therefore, production rates for SO_2F_2 and SOF_4 inside the target cell could

419

Figure 3. SOF₂ production curves for 600-kPa SF₆ samples decomposed by exposure to X-rays produced with $V_x = 195 \text{ kV}$ and (**a**) $I_x = 1.0 \text{ mA}$, (•) $I_x = 2.5 \text{ mA}$, and (•) $I_x = 4.0 \text{ mA}$.

Figure 4. Production curve for S_2F_{10} formed in a 300-kPa SF₆ sample exposed to X-rays produced with $V_x = 195 \text{ kV}$ and $I_x = 2.5 \text{ mA}$.

not be determined. However, the magnitude of the combined signal observed in these experiments does not preclude the possibility that concentrations of SO_2F_2 and SOF_4 in the decomposed SF_6 may be of the same order as those measured for SOF_2 .

Production of S_2F_{10} and $S_2O_2F_{10}$ was also observed in the target cell, and a production curve for S_2F_{10} is shown in Fig. 4 for a 300-kPa SF₆ sample irradiated by the X-ray beam with $V_x = 195$ kV and $I_x=2.5$ mA. The production rates of S_2F_{10} are nearly a factor of ten lower than those observed for SOF₂. No quantitative analysis was performed for $S_2O_2F_{10}$ due to the lack of a reliable reference sample.

DISCUSSION AND CONCLUSIONS

The by-products produced in SF₆ during exposure to X-rays are essentially the same as the by-products produced by corona,^{1,2} sparks,⁵ and arcs⁶ in SF₆. This implies that the chemistry of by-product formation in decomposed SF₆ is essentially independent of the dissociation mechanism. Interestingly, the relative production rates of S₂F₁₀ and SOF₂ for dissociation of SF₆ by X-rays are nearly the same as for cases where SF₆ is decomposed by exposure to corona discharges.^{1,2} This implies that the SF₅ radical, the precursor to S₂F₁₀ formation, must possess a relatively long lifetime under the conditions used here, because of the large volume in which S₂F₁₀ formation occurs during

exposure to radiation (a factor of 10^9 larger than in a corona discharge).⁷ The data also show that a significant concentration of toxic by-products can be produced by X-ray exposure in a relatively short period of time (hundreds of minutes). This fact should be taken into account when dealing with the safe handling of SF₆ that has been exposed to radiation.

The dissociation of SF_6 in the presence of X-rays may be caused by either of two processes: (1) direct photodissociation of the gas by K-shell absorption by the sulfur and the fluorine, or (2) dissociation or dissociative attachment induced by secondary electrons generated by X-rays striking the back wall of the target cell. Direct photodissociation of SF_6 is due to K-shell absorption by the sulfur and fluorine, with absorption edges at 2.3 keV and 0.68 keV, respectively.⁸ Dissociative attachment is due to the capture of a free electron to form a temporary negative ion that dissociates into a stable negative ion and a neutral fragment.⁹

The fact that the concentration of decomposition by-products in the target cell is independent of pressure (see Fig. 2) suggests that the primary dissociating process under these conditions is photodissociation, since the number of secondary electrons produced by the X-rays will not change significantly with gas pressure. In order to verify this conclusion, a curved, perforated stainless steel plate was installed inside the target cell, 2 mm from the back wall of the chamber. A dc voltage (20 kV) was then applied to the plate in order to produce an electric field inside the target gas while the sample was exposed to the X-ray source. Since the dissociation or dissociative attachment processes are highly dependent upon the energy of the free electrons, the rate of by-product formation would vary with the applied electric field if these processes played a significant role in SF₆ dissociation. However, the production rates of the decomposition by-products were observed to be unaffected by the applied field, thus indicating that secondary electrons do not play a major role in the dissociation of SF₆ under these conditions. This confirms that photodissociation is the primary means of decomposition of SF₆ in the presence of high-energy photons.

REFERENCES

- R. J. Van Brunt, Production rates for oxyfluorides SOF₂, SO₂F₂, and SOF₄ in SF₆ corona discharges, J. Res. Natl. Burcau Standards, 90:229 (1985).
- R. J. Van Brunt, J. K. Olthoff, and M. Shah, Rate of S₂F₁₀ production from negative corona in compressed SF₆, *in*: "Conference Record of the 1992 IEEE Symposium on Electrical Insulation," IEEE, Piscataway, NJ (1992).
- R. Hergli, J. Casanovas, A. Derdouri, R. Grob, and J. Mathieu, Study of the decomposition of SF₆ in the presence of water, subjected to gamma radiation or corona discharges, *IEEE Trans. Electrical Insul.* 23:451 (1988).
- J. K. Olthoff, R. J. Van Brunt, J. T. Herron, and I. Sauers, Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromotography/mass spectrometry, Anal. Chem. 63:726 (1991).
- I. Sauers, By-product formation in spark breakdown of SF₆/O₂ Mixtures, Plasma Chem. Plasma Process. 8:247 (1988).
- 6. B. Belmadani, J. Casanovas, A. M. Casanovas, R. Grob, and J. Mathieu, SF₆ decomposition under power arcs, *IEEE Trans. Electrical Insul.* 26:1163 (1991).
- R. J. Van Brunt and J. T. Herron, Plamsa chemical model for decomposition of SF₆ in a negative glow discharge, in preparation.
- CRC Handbook of Chemistry and Physics, R. C. Weast, Ed., CRC Press, Boca Raton, FL (1986).
- H.-X. Wan, J. H. Moore, J. K. Olthoff, and R. J. Van Brunt, Electron scattering and dissociative attachment by SF₆ and its electrical-discharge by-products, *Plasma Chem. Plasma Process.* 13:1 (1993).

DISCUSSION

J. CASTONGUAY: Can you comment on the reaction schemes that produce a similar relative ratio of S_2F_{10}/SOF_2 in your "diffused" reaction volume compared to the "minute" and very localized corona discharges?

J. OLTHOFF: The fragmentations of SF₆ by X-rays and by corona both produce SF₅ radicals. The surprising aspect of S_2F_{10} formation in the large volume exposed to X-rays, is that the SF₅ radicals exist long enough to find each other and form S_2F_{10} -