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INTRODUCTION

A new waveguide equivalent-circuit theory

guarantees causality of the network parameters of

passive devices. It fixes both the magnitude and phase

of the characteristic impedance of a waveguide by

marrying a power normalization with constraints that

enforce simultaneity of the theory’s voltages and

currents and the actual fields in the circuit.

THE CAUSAL CIRCUIT THEORY

The power-normalized waveguide equivalent-

circuit theory of [1] begins with  a waveguide that is

uniform in the axial direction and supports only a single

mode of propagation at the reference plane where v and

i are defined. The voltage v is defined by

(1)

and the current i by

(2)

where r = (x,y) is the transverse coordinate, E  and Ht  t

are the total electric and magnetic fields in the guide, et

and h  are the modal electric and magnetic fields of thet

single propagating mode, � is the modal propagation

constant, and c  and c  are the forward and reverse+  -

amplitudes of the mode. The time dependence e  in (1)j7t

and (2) has been suppressed, and all of the parameters

are functions of 7. The two factors v  and i  define v0  0

and i in terms of the fields, and can be thought of as

voltage and current normalization factors.

The total time-averaged power p in the waveguide

is found by integrating the Poynting vector over the

guide’s cross section S:

(3)

The power normalization in [1] is achieved by imposing

the constraint

(4)

which ensures that the time-averaged power is

p = ½vi .*

The characteristic impedance Z  of a waveguide is0

defined by

(5)

Equations (1), (2), and (4) give

(6)

Equation (6) shows that the phase of Z  in the power-0

normalized circuit theory is equal to the phase of p ,0

which is a fixed property of the guide uniquely

determined by the modal field solutions e and h .t  t
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The causal circuit theory of [2] requires that Z (7)0

be causal. That is, the theory requires that  for

t < 0, where  is the inverse Fourier transform of

Z (7). This condition ensures that the voltage in the0

waveguide responds to input currents after, not before,

the onset of the current.

The theory also requires that  Y  � 1/Z (7) be0  0

causal so that the current in the waveguide responds to

input voltages after, not before, the onset of the voltage.

These two constraints imply that Z (7) is minimum0

phase [3], [4], [5]. 

The minimum phase constraint is a strong one. The

real and imaginary parts of the complex logarithm of a

minimum phase function are a Hilbert transform pair:

that is, ln|Z | and arg(Z ) are a Hilbert transform pair.0   0

The result is that we can determine ln|�Z |, where � is0

a constant, from the inverse Hilbert transform of

arg(Z ). 0

The scalar multiplier � sets the overall impedance

of the system, is linked to the units of voltage and

current chosen in the theory, and is the only free

parameter not determined by the causal theory of [2].

LOSSLESS COAXIAL TRANSMISSION LINE

The power flow p  is real in a lossless coaxial0

transmission line, so the phase of Z  is 0. The set of0

constant functions form the null space of the Hilbert

transform, so in the causal circuit theory |Z | must be0

constant.

DOMINANT TE  MODE OF10

LOSSLESS RECTANGULAR WAVEGUIDE

The power flow p  and therefore Z  are real in a0   0

lossless rectangular waveguide above cutoff and

imaginary below cutoff. So arg(Z ) is equal to ±%/20

below cutoff, and 0 above. The inverse Hilbert

transform of a function that is equal to -%/2 for

-7  < 7 < 0, %/2 for 0 < 7 < 7 , and 0 elsewhere is [6]c           c

(7)

The causality constraint therefore requires that

(8)

where � indicates proportionality. That is, Z  must be0

proportional to the wave impedance of the guide: the

choice |Z | = 1 is not admissible in the causal theory.0
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