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Abstract - In previous work, methods have been developed for
efficient testing of components and instruments that are based on
models of these units. These methods allow for the full behavior of
these units to be predicted from a small but efficient set of test
measurements. Such methods can significantly reduce the testing
cost of such units by reducing the amount of testing required. But
these methods are valid only as long as the model accurately
represents the behavior of the units. Previous papers on this
subject described many methods for developing accurate models
and using them to develop efficient test methods. However, they
gave little consideration to the problem of testing units which
change their behavior after the model has been developed, for
example, as a result of changes in the manufacturing process. Such
changed behavior is referred to as nonmodel behavior or nonmodel
error. When units with this new behavior are tested with these
more efficient methods, their predicted behavior can show
significant deviations from their true behavior. This paper
describes how to analyze the data taken at the reduced set of
measurements to estimate the uncertainty in the model predictions,
even when the device has significant nonmodel error. Results of
simulation are used to verify the accuracy of the estimates and to
show the expected variation in the results for many modeling
variables.

I. INTRODUCTION

Testing of analog and mixed-signal devices is a very important
part of the electronic device manufacturing process. It affects
both the cost and quality of the devices. The cost of testing can
add significantly to the final device cost. Test engineers must
develop test methods that can screen the good from the bad
devices while trying to minimize test time and cost and
maximize the reliability of the test decisions. Thus, they must
understand both the advantagesand any pitfalls involved in any
techniques that they use to improve the testing process.

A comprehensive approach has been developed at the National
Institute of Standards and Technology to optimize the tradeoffs
in developing an efficient test method for analog and mixed-
signal devices [1-4]. These methods are applicable to devices
ranging in complexity from aid or dla converters up to complete
multirange instruments [5]. The approach is based on the
development of a model that allows the prediction of a large
number of test measurements from a much smaller number of

tests. This model must include all the significant parameters in
the process that can affect the measurement results. The model
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is validated by comparing the full set of results that it predicts
against a full set of measurements. This validation process is
performed on a number of production devices. A model
validated in this manner is adequate so long as the set of
validationdevices representsa wide range of processparameters
and is thus typical of the other devices produced on the same
production line.

This test approach also includes an online method to test the
adequacy of the model. This method involves examination of
the differencesbetween the reduced set of measurements made
and the predicted values for these measurements. These
differences or residuals will increase if the production line
changes so as to cause changes in the measurementsthat are not
included in the model. Prediction intervals (defined in section
III) for the full set of predicted values can be constructed based
on these residuals.

The purpose of this paper is to examine the reliability of this
online test so as to assess the accuracy of the predictions made
by the model. A simulation program is used to generate and
analyze data typical of a well-controlled production line and
then to show the effects of changes in the underlying model.
The results show that prediction intervalsbased on the residuals
from the validation process are valid only if the underlying
model does not change; however, prediction intervals that are
based on the online test residuals are valid even if the
underlying model changes. The online test residuals must be
used with care, because they can have significant variation if
based on a small number of tests.

II. SIMULATION PROGRAM

The simulation program generates data sets that are equivalent
to measurements taken on devices or instruments produced by
a well-controlledproduction line. The data simulatesa behavior
that has been observed for many such devices [1,3], namely,that
the measurements taken on each device are controlled by a
relatively small number of underlying parameters. These
parameters may in turn be controlled by process parameters of
the production line or by variation in the component values of
the device. If the number of significant parameters is small
compared with the numberof measurementstaken, then model-
based testing can reduce the number of tests that need to be
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performed without significantly reducing the accuracy of the
results. The relation between the measurements and the

parameters that control them is usually linear to good
approximation, so long as the parameter changes are relatively
small.

Consider that the number of performance measurements made
on the device is m. Combine the deviations of the m
measurementsfrom the ideal valuesinto an m x I vectory. Let
the number of parameters that control the measurements be
given byp and the set of values for these parameters for device
i be expressed as the p x I vectorxi. The relation between each
of these parameters and the measurement deviation at each test
can be expressed as an m x p matrixA. The relation between
the parameters controlling the measurements and the
measurement deviations can then be written as

yi=Axi+~ (1)

where Ei is an m"x I vector that gives the random error that
occurred while measuring device i. In this paper all vectorsy
will refer to deviations between a measurement and an ideal
value. However, the vector will be referred to as a
measurement. If all m measurementsare similar, then E is often
an independent identically distributed random vector with zero
mean and standard deviation of o.

Often the matrixA is unknown. Parts of it can be derived from
circuit models of the device or from physical models of the
production process. These parts can be supplemented or the
entire model can be developed by empirical methods from full
sets of measurementsmade on a large number of devices. The
simulationprogram used to generate the data for this paper is an
enhancement of the one described in [6]. The model used for
the simulated device has ten parameters p and uses random
model vectors with amplitudes in arbitrary units that vary from
0.03 to 0.3. The number of measurements m is 256 and the

average amplitude of the simulated deviation vectory is 0.6 in
the arbitrary units. The standard deviation 0 of the
measurement noise vector E is 0.1. The derivation of the
estimateE of the true modelA is described in [6]. That method
uses the singular value decomposition (SVD) on a number, ne'
of simulated random device measurement vectors, yi, and then
determines the optimum number of model vectors, k. The
reduced set of measurements is derived from E as described in
[3]. For the simulation examples considered here, newas set to
130 and k was evaluated to be 10.

There is not a one-to-one correspondence between the columns
of A and E, nor between x and the parameters T)used with the
estimated model E. Rather, the columns of E span
approximately the same space as the columns of A, so the values
of T) estimate a corresponding linear combination of the
parameters x.

III. RANDOM MEASUREMENT ERROR

When the only errors present in the modeling process are the
error due to approximating the true model A with the estimate
E and the measurement error E, then an estimate of the accuracy
of the predictions can be derived [7]. These estimates are based
on the full m x k model estimate, E, and the reduced 1x k model
estimate, E, which is the rows of E at the 1 reduced
measurements. The prediction variance P of the measurement
predictions, due to a measurement noise E, which has a standard
deviation of 0, is given by the diagonal of a matrix as

P .. Pc 82 .. diag{E(E'i)-IE'}82, (2)

where Pc is the prediction variance coefficients, and E' is the
transpose of E. The noise estimate 0 is obtained by applying
the model to a set of n validation devices as

"
E Iy I _ Y 112

82 = 1.1, (3)
n (m - k)

where I·12is the s~m of squares of the vector elements, and y i

is the vector of predicted measurements for device i given by

yi.. E"I .. E(i' E)-I i'y.l. (4)

Here ,,1 is the estimate of the parameters for device i and y.1is
the vectorof 1reducedmeasurementsfordevice i. Definethe
matrix

Z(i) = 1+E(E' itl E'. (5)

Using this matrix, prediction intervals can be constructed for
each predicted measurement y, which have a I -a probability
of containing the measured value. The prediction interval for
the j th measurement is [7]

I
" I " y. tyj - yj s: a Wjj l-ul2' (6)

where Wjj is the j th diagonal element of Z(i) and ll-u/2is the
1 - a/2 quantile of the t distribution with n (m - k) degrees of
freedom. Note that Wjj is just one plus the prediction variance
coefficient for measurementj, 1 + Pej.

Similar to prediction intervals, which define an interval about
the predicted value that contains the measured value with some
probability, confidence intervals define an interval about the
predicted value that contains the true (i.e., expected) value with
some probability. For devices that follow (1), the true
measurements yare

y.. Ax. (7)
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Fig. 1 Standarddeviation of difference between the measurementsand
predicted measurementsPINand the estimate for PINwith no nonmodel error.

For simulated devices this true value is known, but for real
devices it must be estimated by taking many repeated
measurements on a device and averaging the measurements to
reduce the random errors. The confidence interval for
measurementj,

I~ - Y}I s: {PC})'!.a t1_«I2' (8)

has a probability of 1-a of containing ~.

Simulations were run on 32 different models A. For each
model, A, an empirical model, E, was developed using 130
simulateddevices based on A (130 different random parameter
vectors,x, wereused). Then 32 additionaldevices generated in
the same way, were analyzed as the validation set. Thus,
validation data was obtained on 32 times 32 or 1024 total
devices. For each model the number of reduced measurements,
t, was varied from 11 to 256. The average prediction variance
for all m measurements was calculated for each number of
reduced measurements using (2). Equation (6) shows that Pm'
the standard deviation of the difference between the
measurements and the predicted measurements, is
approximately

Pm =
ly-yl2
(m-k) ::: a~. (9)

Fig. 1 shows Pmand this approximation plotted as a function of
t for a = 0.1. The approximation is close. Equation (8)
shows that P" the standard deviation of the difference between
the true value of the measurement and the predicted
measurement, is approximately equal to the square root of the
prediction variance, as
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Fig. 2. Standard deviation of difference between the expected value of the
measurements and the predicted measurements P, and the estimate for P,
with no nonmodel error.

li-Yl2 ::: a rp._
(t- k) V" c

Fig. 2 shows that P, closely follows this approximation a

~

a
function of t. Thus, when there is no nonmodel error he
estimate for 0 obtained from the validation process, a, wo ks
well for prediction and confidence intervals.

P,. (10)

IV. NON MODEL ERROR

This section will show that when nonmodel error is present, se
of the (j from the validation process gives an inaccur te
estimate for Pm' and that use of the online test residuals give a
good estimate for Pm. A device has nonmodel error, if, a a
result of changes in the production line, the devices exhi it
behavior not captured in the original empirical model. For s h
devices, the relation between the measurements and the origi al
model is

Y I = A x I + J.11+ ei, (11)

where the nonmodel component Ii is orthogonal to A.
or expected measurement is then given by

il = A x i + J.1i.

The empirical model E will approximate the original model
and will therefore be approximately orthogonal to Ii.
standarddeviationof J1is designated v. Fig. 3 shows the efti

1

ts
on Pm with various amounts of nonmodel error present in
addition to the 0.1 level of measurement noise. As e
amplitude of the nonmodel error increases, Pm incre es
proportionally the same for all t. For large t, as

t -+ m, Pm -+ V 02 + v2 . (13)
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Fig.3. Standarddeviationof difference between the measurementsand
predicted measurementsPmand the estimate for Pmwith 0, 0.02, 0.05 and 0.1
nonmodel error.

Fig. 4 shows that as the amplitude of the nonmodel error
increases, P, increases most for the larger number of reduced
measurements. At the larger number of measurements the value
of P,is most dramatically reduced so one would expect the
effects of nonmodel error to be most significant there.

Figs. 3 and 4 show that the approximations of (9) and (10) are
not valid for devices which have non model error. An estimate,

which is not sensitive to the presence of nonmodel error, can be
expressed in terms of the residuals at the reduced measurements.
The standard deviation of the residuals, rs, is given by

r =I
IYI - .v112

(t - k) ,
(14)

where .vI is the vector of predicted measurements at the reduced
measurements. This quantity estimates for each device the
magnitude of the combination of measurement error € and
nonmodelerror fJ. The accuracyof this estimate is a functionof
the number of reduced measurements. Fig. 5 shows the mean,
the mean plus and minus one standard deviation, and the
extremes of rs for each of the reduced number of measurements.
Note how large the range is for rs for small t. This large
variability in rs is due to the small number of degrees-of-
freedom, t - k, when (is close to k, (k is 10 here). The variance
of rs,v(rs)' is proportional to

t
v(rI) - t _ k . (15)

Thus, a stable estimate for r.frequires that ( be at least three to
five times as large as k. For smaller ('S the variance of rswill be
large and so will any prediction intervals based on r.f.
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Fig.4. Standarddeviationof difference between the expected value of the
measurementsand the predicted measurementsP, and the estimate for P,
with 0, 0.02, 0.05. and 0.1 nonmodel error.

0.2 . - - - - - . . - . - . - - . -. - - . .

(ij
::J

"'0
'00
~

§0.1

o
10 100 1000

number of reduced measurements, t
Fig. 5. Meanof residual rs.. mean plus and minus one standard deviation, and
extremes for 1024simulations with 0.05 nonmodel error.

An estimate for Pm that is insensitive to nonmodel error is
obtainedby using rsin place of 0 in (9). The new estimate, Pm!'
is given by

Prm = rsp. (16)

Fig. 6 shows the mean values of Pm! and Pm for the 102
simulations plotted as a function of ( for 0 and 0.1 levels 0
nonmodel error, v. This new estimate approximates the corree
value very well with nonmodel error when t is greater than 16
Thus, except for very small t, this estimate appears to b
unbiased. However, because of the variation in rs, this estimat,
has a widevariationfor small t. This can be seen in Fig. '1'

which shows the mean ratio of Pm!to Pmand the mean plus an
minus one standard deviation and the ratio extremes of the 102

simulations with a nonmodel error of 0.1. When (is greater
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Fig. 6 Standard deviation of difference between the measurements and the
predicted measurement P...and the estimate p"" with 0 and 0.1 nonmodel error.

1000

than 44 (greater than four times k), one standard deviation of Pm!
is less than 10 percent of the mean value of Pm. This
demonstrates the validity of the remark made after (15) that t
must be at least three to five times as large as k to get a stable
value for 's.

The estimate for P, can not be extended to account for nonmodel
error as easily as for Pm. But since Pmis always greater than p"
Pmcan be used as a bound for p,.

V. CONCLUSIONS

With nonmodel error present, the predicted measurements will
be inaccurate. The estimates for the uncertainty in these
predictions that do not take nonmodelerror into account will be
low. However, with the use of the residuals at the reduced
measurements, a nearly unbiased estimate for this uncertainty
can be calculated. This analysishas shown that this estimatehas
a good accuracy if the number of reduced measurements is at
least three to five times the numberof parameters being used in
the model. Thus, this estimate of the uncertainty in the
predictions can be used to assess the reliability of the model-
based testing results.

This paper has not described how to monitor the measurements
to detect a change in the underlying model and to update the
model estimate. This can be done by performing statistical tests
on the ratio of (} to 's to detect a change in the model. The
appropriate action then depends on the frequency and level of
the model changes and the desired testing accuracy.
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