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Abstract

Intrinsic carrier concentrations of narrow-gap Hg;_,Cd.Te alloys (0.17< z <0.30)
have been calculated as a function of temperature between 0 and 300 K by using the
new nonlinear temperature dependence of the energy gap obtained previously by two-
photon magneto-absorption measurements for samples with 0.24< z <0.26. We report here
experimental values for Ey(z,T) for samples with z = 0.20 and 0.23 obtained by one-photon
magneto-absorption measurements. These data confirm the validity of the new E,(z,T)
relationship for these z values. In this range of composition and temperature, the energy
gap of mercury cadmium telluride is small, and very accurate values are needed for the gap
to obtain reliable values for the intrinsic carrier density. Large percentage differences exist
between our new calculations and previous values for n; at low temperatures. Even at 77
K, differences approaching 10 percent exist, confirming the importance of using the new
n; results for materials and device characterization and a proper understanding of device
operation in long-wavelength materials.

Introduction

The intrinsic carrier concentration, n;, of mercury cadmium telluride is an important
quantity that must be known accurately for understanding and characterizing a wide va-
riety of material and device properties. A great deal of effort has gone into calculating n;
from measured band parameters [1-3]. The calculations of Madarasz et al. (2] and Hansen
and Schmit (1] are in reasonably good agreement, but are only as good as the values for
the parameters that define them. The most important parameter that must be known
is the band gap, which varies greatly with temperature T and composition z. Recently,
two-photon magneto-absorption measurements {4] on samples of HgCdTe with 0.24< = <
0.26 were used to accurately determine the nonlinear temperature dependence of E,(T')
for T <77 K, yielding a new Ey(z,T) relation:

E, = —0.302+1.93z—0.810z%-0.83223 4 5.35 x 10~ %(1~22)(—1822+T%)/(255.2+T?), (1)

where B, is in eV, T in K, and 0.2< z <0.3. For samples with 10-um cutoff wavelengths
(i.e., x = 0.2), the predicted maximum deviation of the new relation from that of Hansen,
Schmit, and Casselman (HSC) [5] is approximately 3 to 4 meV at 10 to 12 K. Here we
also report on further, experimental values of Ey(z,T) for samples with x = 0.201 and x
= 0.229 that confirm the use of the new relationship for lower z-value samples.

We have calculated the intrinsic carrier density, n;, as a function of T between 0 and
300 K and as a function of = between 0.17 and 0.30 for use in materials-characterization
studies and for the prediction of device operation. The model we have used to determine
the nonparabolicity of the conduction band is Kane’s three-band k-p model [6]. This
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model has also been used in the most recent calculation of n;, which was performed by
Madarasz et al. [2]. Their calculation was an improvement on earlier work [1,3,7] by not
making any approximations other than those inherent in the k-p theory itself. We have
used full Fermi-Dirac statistics and & momentum matrix element that did not vary with
composition or temperature over our range of calculations. The results show values of
n; that differ from those of Refs. [1] and [2] by more than an order of magnitude at 5
K for all z-values studied. Differences approaching 10 percent occur even at 77 K for
samples throughout the compositional range studied. Thus, it is important to include the
nonlinear temperature dependence of the energy gap of Hg; _,Cd.Te when modeling the
low temperature operation of long-wavelength detectors.

Theory

Our calculations follow the general outline of Madarasz et al. [2] except that the
band-gap dependence given by the HSC relation is used in Ref {2]. As in Madarasz et al.
[2], the theory of Kane [6] was used to calculate the E(k) relation for the conduction band
of mercury cadmium telluride. This method uses k-p perturbation theory to calculate the
conduction band in the vicinity of the I point. Interactions with the light-hole and split-off
valence bands are included. To first order the conduction band does not interact with the
heavy-hole band, and therefore, this band is not included. The value of A, the energy of the
split-off band, is taken to be 1 eV [8], and the value of P, the momentum matrix element,
to be 8.49x1078 eV cm [8]. Madarasz et al. [2] vary the value of P with composition by
a few percent to obtain better agreement with measured effective masses. However, we
have kept P constant in order to deal directly with the effect of the nonlinearity of the
temperature dependence of the energy gap and because any effective variation in P is very
small over our range of z.

The intrinsic carrier density is determined by solving the following equation, from Eq.
(1) of Ref. [2], where energy is in Ry and length is in atomic units:

3 v\ —3/2 % 2 dv(z/B)
283/2 (mhh) o x/ﬁ Y13 (z/B) g —dr 1, (2)

m1/2 ™mg E, 1+ e(z—n)

where 8 = 1/kgT, m}, is the heavy hole mass, ¥ = k?, n = BEp, EF is the Fermi energy,
and k is the electron wavenumber. Note that the lower limit of the integral in Eq. (2)
is the reduced band gap because the zero of energy is the top of the valence band. The
heavy-hole mass is taken to be 0.55 as in Ref. [2]. The value of 0.55 was used by Madarasz
et al. because it gives better agreement with experiment. This value is also within the
range of uncertainty for the spatially averaged effective mass determined from Weiler’s
cyclotron resonance data [8).

The computation time for the integral in Eq. (2) can be significantly reduced by
performing an integration by parts to remove the derivative from the integrand. The
resulting equation is:

R (i [ 3Pa/6)f(a)(1 = fleN)de =1, ©

3‘]!‘l /2 mp E,

where f(z) = 1/(1 + e(*=™), and f(z) is the Fermi-Dirac distribution function.

The function y(z/B) is found by inverting Kane’s secular equation which is cubic
in energy and solving for 4. The resulting cubic equation for v is solved directly. A
Newton-iteration technique finds the value of 7. Note that full Fermi-Dirac statistics have
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been used for the conduction band while nondegenerate statistics have been used for the
valence band because the valence-band edge is more than the required 4kgT below the
Fermi energy.

Once the Fermi energy is found, the intrinsic carrier density is computed by calculating
either the hole or electron density. As in Eq. (2) of Ref. [2]:

g C0 () “

4 mo

Results and Discussion

One-photon magneto-absorption data were taken at various wavelengths in order to
extract accurate values for the band gap for a particular temperature. A modified Pidgeon-
Brown energy-band model and a free exciton binding energy of 2 meV were used to deter-
mine E, [9]. First we show comparisons between the energy gaps obtained from the data
and the predictions of Eq. (1) for the energy gap as a function of composition z and tem-
perature T'. Figures 1(a) and (b) show the excellent agreement between predictions and
experiment for the temperature dependence of the energy gap for samples with £=0.229
and 0.201. The slope of the curves of E,-vs-T initially rises rapidly and then decreases
slightly beyond about 20 K to reach the asymptotic value of the HSC relation at tempera-
tures above about 100 K. The agreement between prediction and experiment is excellent.
The agreement that has been obtained between Eq. (1) and data over the compositional
range of 0.20 to 0.26 from this and our earlier work now gives us the confidence to use Eq.
(1) to predict the intrinsic carrier density over the narrow-gap compositional range of 0.17
to 0.30.

The result of our n; calculation between 4 and 100 K for £=0.17 is shown in Fig. 2a.
We plot the logarithm of n; for both Eq. (1) (solid) and the HSC relation (dotted). One
can see that at 5 K the difference is more than an order of magnitude while the differences
become small above 77 K. We show the percentage difference between n; computed with
our new relation and with the HSC relation, relative to the values computed with our new
relation in Fig. 2b for the same composition. Even at 77 K the percentage difference is
about seven percent. We show the same set of graphs in Fig. 3 for an z-value of 0.22.
It is not possible to see the difference between our results and those based on the HSC
relation directly in Fig. 3a because of the rapid variation of n; with T. However, from
the percentage differences given in Fig. 3b, one observes that the overall differences are
similar to those of Fig. 2b, which shows that our relation is important throughout the
long-wavelength region of mercury cadmium telluride. Similar results are also obtained for
£=0.30.

The differences between the n; results of Hansen and Schmit [1] and Madarasz et al.
[2] are small in the range of z-values between 0.17 and 0.30. Part of the difference is due to
the larger effective mass used in Ref. [2], which leads to an approximately fifteen percent
increase in n;. However, there are compensating effects due to the use of full Fermi-Dirac
statistics in Ref. [2] that reduce the differences to generally less than ten percent. Thus,
whether one compares the results from our calculations with either those of Refs. [1] or
{2], the overall behavior is similar. At temperatures below about 50 K, our new relation
gives significantly larger values of n; than either previous one, while at temperatures above
77 K, the differences are small among all three sets of calculations. Analytic functions are
being fit to the n; curves for use in modeling.

These results have important implications for HgCdTe material characterization and
device operation. In device operation it is usually necesary to compute diffusion currents
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for minority carriers, which depend on n?. Recombination is also sensitive to n; with
radiative and Auger recombination varying as nl. A quantity of great importance to
the operation of infrared detectors, the resistance-area product Ry 4, also depends on n?.
Tunneling currents and impact ionization depend exponentially on the energy gap so that
there is a definite need to use Eq. (1) in expressions for these quantities, especially at low
temperatures. The reason that such quantities depend so critically on the value of E,; at

low temperatures is that the thermal energy, kgT, is so small.

Conclusions

We have computed the intrinsic carrier density of Hg;_,Cd,Te for ¢ between 0.17
and 0.30 as a function of temperature between 4 and 300 K. A new and highly accurate
relation for the energy gap has been used, which was determined from one- and two-
photon magneto- absorption spectroscopy. These data are presented in this and earlier
work. Kane’s theory has been used to treat the nonparabolicity of the conduction band.
The results of the calculations show the need to include the nonlinearity of the temperature
dependence of the energy gap, even though the nonlinearities are only several millivolts.
Therefore, our new relation for the energy gap has important consequences in HgCdTe
material characterization and device operation at temperatures below 77 K.
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Figure 1. a.) Energy gap of sample
with z = 0.229 as a function of tem-
perature. The fit by our new relation
with z = 0.2285 is the solid line. b.)
Energy gap of sample with z = 0.201
as a function of temperature. The fit
by our new relation is the solid line.
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Figure 2. a.) Logarithm of the in-
trinsic carrier density, n;, (cm™3) as a
function of temperature for z = 0.17.
The solid line is with our new relation
and the dotted line is with the HSC re-
lation. b.) The percentage difference
between n; from our new relation and
nH from the HSC relation, relative to
our new relation.
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Figure 3. a.) Logarithm of the in-
trinsic carrier density, n;, (cm™3) as a
function of temperature for z = 0.22.
The solid line is with our new relation.
b.) The percentage difference between
n; from our new relation and nf’ from
the HSC relation, relative to our new
relation.
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