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A Causal Regularizing Deconvolution Filter
for Optimal Waveform Reconstruction

Nicholas G. Paulter, Jr.

Abstract—A causal regularizing filter is described for selecting
an optimal reconstruction of a signal from a deconvolution of
its measured data and the measurement instrument’s impulse
response. Measurement noise and uncertainties in the instru-
ment’s response can cause the deconvolution (or inverse problem)
to be ill-posed, thereby precluding accurate signal restoration.
Nevertheless, close approximations to the signal may be obtained
by using reconstruction techniques that alter the problem so that
it becomes numerically solvable. A regularizing reconstruction
technique is implemented that automatically selects the optimal
reconstruction via an adjustable parameter and a specific stop-
ping criterion, which is also described. Waveforms reconstructed
using this filter do not exhibit large oscillations near transients
as observed in other regularized reconstructions. Furthermore,
convergence to the optimal solution is rapid.

I. INTRODUCTION

HE DATA ACQUIRED from the measurement of a signal

is affected by the measuring instrument and, therefore,
can be described by the convolution of the signal with the
instrument’s impulse response. In particular, discrete measured
data can be described by the discrete convolution equation

N-=1
fr= ngh;_m+nTEg:h;+nT, 0<I'<2N-1.
m=0
(1

Please see the Appendix for a description of all variables used
in this paper. The discrete frequency-domain representation of
(1) is

Fr. =GyH,+ Ni, 0<k<2N-1. 2)

It is necessary to remove the effects of the measurement
instrument from the data to obtain an accurate representation of
the signal. This is accomplished through a reconstruction, the
first step of which is a discrete Fourier transform (DFT) of the
waveforms, the second a deconvolution (division of spectra),
and lastly an inverse DFT. The deconvolution is given by

_Fy = N;
gt g
A subsequent inverse DFT of (3) yields gm, the discretized
replica of the input signal. Because only an approximation
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to H, is known and Ny is not known, G cannot be found.
Therefore, only an approximate solution to this “blind” de-
convolution [1] can be found,

b Fu

e Hkﬂ
where H is an approximation to Hj; and is never zero.
Because of the lack of knowledge on Ny and H}, Hj must
be varied to get the “best” solution. However, a more suitable
approach is not to vary Hy, but to introduce another function,
a regularizing filter, that can be easily varied. The iterative
solution is then given by

Gy ~ G}, = G}Ry )

S}

where Ry is the causal regularizing filter that has an integral
optimizing parameter. The R; is developed here.

Iterative techniques for solving the ill-posed or blind decon-
volution problem have been studied extensively (for examples,
see [2]-[10]). In particular, regularized iterative techniques are
frequently used for this purpose (for examples, see [11]-[17]).
Biemond and his coauthors provide an overview of iterative
image (2-D signal) reconstruction as applied to photographic
images, [18] the concepts of which can be easily applied
to the reconstruction of one-dimensional signals. A good
development of the regularization process in image restoration
is given by Ross [19].

The reconstruction technique described here uses a regu-
larizing operator similar to that developed by Tikhonov and
Arsenin for solving ill-posed problems [20]. The magnitude of
the regularizing filter is developed in Section II, the stopping
criterion and errors in Section III, and the phase of the
regularizing filter in Section IV. Results of this reconstruction
are presented in Section V. The waveforms used consist of
real-valued discrete data representing step or impulse-like
pulses.

1. REGULARIZING FILTER
The criteria for the regularizing filter are the error

and its derivative with respect to Hj
dEy _ d(Fr = Nx)  Fi — Ny [1+ dA’}c]
dHy Hi+ 4, (He+AD? dHy
FiyRy Fi dRy R dF; e

HZ ~ HpdH, HdH;
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equal zero, where A) =(H; — Hy). The H} is unknown
so that only an approximation to Aj, Ag, will be used.
Equation (7) can be simplified using the following assertions:
(a) dNi/dHy = 0, (b) dRx/dH} = 0 because Rj will not
vary with H;. for a given reconstruction, (c) dA}, /dH} ~ 0 for
H; ~ Hi, and (d) the quantity [1/(Hx + A}) — Rx/Hi] = 0
for N < Fj and small Aj. Using these assertions in (7),
setting (7) to zero, and solving for R; gives

F. — N H E
Hie= .
P @
Another solution for R; comes from setting (6) to zero:
iy
Ry = : 9
. [ Fe ||Hi+ 4 b

Because (8) and (9) are not equal, (8), (9), or their combination
must be used to represent Rj. Furthermore, approximations
to (8) and (9) will be used to obtain the regularization filter
because N is unknown and Hy = — A will cause instabilities
in G These approximations to (8) and (9) will not contain any
phase information (examined in Section V) and are given by

| H|
- M, . |
PR H + A
g bo |Hy|?
2.k = 2 p)
|He|? + 2|Hi Ax| + | Ak
|H|?
Rap = ——m0———o—00. 10
2T TH P + A o

Other approximations are possible but they can be easily ruled
out, as can be R, ; which was maintained to illustrate how
the other possible filters were ruled out. To select which of
the functions in (10) will provide the optimal reconstruction,
compare the differences of the errors between a regularized
solution and a target solution:
2
| F| R}_,k} ;

~|Hy

o oL T,
k= { k !HkIR"k] [ k
4,5 =1,2,3:1 # j; (11)
where T} is a target solution |Fi|/|Hk|,|Fk|/|Hk + Ak|, or
|Fr. — Ni|/|Hi + Agl;|Fx|/|Hi| being the least realistic and
|Fr — Ni|/|Hy + Aj| the most realistic. Using (11) it can
be shown that the errors associated with Rj y-regularized
solutions are greater than those for R; ;- and Rj j- regularized
solutions for the target solutions |Fy|/|Hy| and |Fy|/| Hy+ A |
for all k. No such result arises using the target | Fy. — N |/|Hx+
Apr| because the sign of Ej is Ni-dependent. However, one
can rule out R as a possible filter based on the comparison
using targets |Fi|/|Hy| and |Fy|/|Hx + Ak|- The sign of
Ey using R ;- and Rji-regularized solutions exhibits a
k-dependence for all target solutions. Consequently, it is
necessary to determine the form of Ay and the bounds on
the regularizing filter before a possible selection can be made.
The bounds on R; are 0 < |Ri| < 1. The strict in-
equalities are necessary because (a) the search is for an
approximate solution and |Rx| = 1 implies |H}| is known
exactly, and (b) |Rx] = 0 is not of interest. Furthermore,
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it can be assumed that the deconvolution errors are pri-
marily in the high-frequency end of the spectrum where
N;. and uncertainties in Hj have the greatest effect. This
assumption was also made by others [21] who, in their
work, separated the spectrum into two parts, one containing
primarily “information” and the other primarily “noise.” That
separation was based on the bandwidth of the bandlimiting
element in the measurement circuit. In an example, they used
an information band of dc to 80 GHz for a 40-GHz test-
device bandwidth [8]. Their filter attempted to control the
magnitude of the noise without significantly affecting the
information portion by keeping the standard deviation of the
rms frequency error (defined therein as the difference between
the iterative result and spectral division) over the information
band small [8].

To preferentially attenuate the high-frequency components,
| Rx| should be a decreasing function of k. Also, |Rj| should
vary smoothly to avoid ringing. Further insight into the form
of Ay can be obtained by rewriting (5) and considering only
its magnitude with, as an example, |Ri| = Ry x:
|Fel _ |He|  _ |Fil | F|
|Hee| [He| + |Ak| — [Hi| |Fe| + [AxG"1|
The AxGY is the DFT of two convolved time-domain func-
tions, and its magnitude must increase with k so that |R;|

decreases with k. These requirements can be satisfied by A
being the DFT of a difference operator

|Ax| = a| Dy ;]

|Gyl = (12)

(13)

where « is the adjustable parameter of the regularizing filter
and Dy ; is the spectrum of the jth-order difference operator
(7 =1,2,3,...). For examples, the first two difference oper-
ators are: d,, ; = {1,-1,0,...} and dp, 2 = {1,-2,1,0...}.
Because of the bounds placed on |Rj|, the limits on a are
0 < a < oo. To select the optimal order, compare, for
example, Ry ;-regularized solutions to the target |Fi|/|Hy/:

P e r
A |Hi| + | Dy 4]
iy 2[ a|Dy 1| r (14)
H; |Hk|+a|Dk,1|3

The |Dy ;| = |Dx.1)’ and |Dy 1| = [2 — 2cos(27k/2N)]* /2,
so that 0<|Dp;|<1 for 0<k<N/3,|Dii1|=1 for
k=N/3, and |Dy1| > 1 for N/3 < k < N. A comparison
of the ratios of (14) for j and j + 1 and for k> N/3,
where it is already assumed the majority of deconvolution
errors resides and where |Rj| has the greatest effect, shows
that Fj ; < Ei j+1. Accordingly, choose j=1 and set
Ar=aDy ;. Experiments support this choice in that any
ringing observed in g, increases with j.

This Ax, however, does not help in choosing between
Ri i or Rs ;. Using either one in waveform reconstructions
did not provide consistent results in that failure of R;;
or R3; was not predictable. However, if one filter failed,
the other provided a good solution (minimal amount of
unrealistic oscillations). Consequently, it was decided to
use both filters with weights, w;, for Rr; and w3z,
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for Rp3, and an appropriate weighting criterion. The
weights should vary only with o because a variation
in k describes a new filter. To determine the weights
consider the difference between Ry ;- and Ry 3-regularized
reconstructions:

R [lel | Hi|? _ |F| | H|
* 7 & | |Hi| [Hk?> + @®|Dal*  |Hi| [He| + o Di 1|
o Z QFFkl
(IHk|e| Die,1 (| Hi|* + 02| D 11?)

k
X (|Hl|Dxa| = alDi|?)

= Ca Y _(|Hi||Dk1| - @|Di,1[?) = CaYa (15)
k
where Y, will be used to determine the weights. The
weighting criteria are: (a) w; o =w3 for Y, =0 because
Ry and Rz are equally valid, (b) wi, is a mini-
mum when Y, is a maximum because R3; would be
preferred, and (c) wie + w3. = 1. The weights are
then
1 by > ]

W=l ot —
2 Yor,max T Ya,lim

(16)

W30 = 1- W1 e

where Y, jim is the value of Y, when o is so large
that the computer result of |Dyi||Hk| — a|lDx1l? is
—a|Dy,1|%. The weight wy o is set to 1 for Yo < Yo im-
Other weighting schemes may be used; however, this is
straightforward and works well (see Section V). Using
these weights, the magnitude of the reconstructed spectrum
becomes
_ [Fl |F|

|G;c(a)| = |Hkl (wl,aRl.k " w3,aR3,k) = m'Rkl (17)

III. STOPPING CRITERION AND ERRORS

The stopping criterion for the iterative reconstruction (17)
is examined. Using (10) and (13) in (17) it can be shown that

1Gk(e)] Z |Gi(a + 6)] (18)
for all k, where § is a positive increment, so that
’
M <0. (19)
O

Adding the contributions of (19) for all k gives the total change
in the magnitude of the reconstructed spectrum:

total relative error (%)

log (alpha)

Fig. 1. Total relative error for Hy = H i = DFT of a Gaussian, exponential,
rectangular, or impulse function.

the most stable to changes in a. This value of « is the optimal
stopping criterion and is designated .
The relative errors for the proposed technique are

1G] = |G}
Epg = ——=F
R, K |le
|H | | H|
=1- W) g ——
|He | % Hil + a0l Di 1]

+ W3,a 21

|Hy|?
|Hi|? + o3| Dral? |

To analyze the error let H; = H} and then (21) becomes (22)

at the bottom of the page.

Fig. 1 displays the total relative error, Y, E% ., as a
function of ag for Hy = H} equal to the DFT of a Gaussian,
e~Im=25"/9. an exponential, e~(™~11/2; a delta, §[m — 1]; or
a rectangular pulse, u[m — 51] — u[m — 100]. For Hy = H},
being an exponential or delta, ap < 103, and the total
relative error was less than 0.01%. When H, = Hj is a
rectangular pulse, a9 < 10720, Because this value of o
provides virtually no filtering, ag is set to zero, Erx goes
to zero, and the reconstruction result is accurate (Fig. 2(a)).
When Hj = H, is Gaussian, the reconstruction errors can be
large (Fig. 2(b)).

IV. PHASE

The |Rj| is a magnitude-only function and, therefore, is
not physically realistic unless a causal phase function can be
associated with it; that is, Ry = |Ri|exp(ifx), where 0 is
the phase of Ry. If Ry is also a minimum phase function, then

o 9|Gy(a)] B can be found from R through the Hilbert transform. [22]
Fosh Z do £0- (20)  The first step is to determine if |Ry| is square-summable,
k=0
A stable and optimal solution is found when 7,, the optimizing Z |Ri|? < o0 (23)
functional, exhibits a maximum; this is where the spectrum is k
o = D
frou it S |Hi|(|Hk| = ool D]) + 0| Di1|(1Hi| + 0| Dk a|)

(IHk| + o Dep)(|Hx|* + of| Dk ?).-

(22)
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Fig. 2. Reconstruction of analytic waveforms with and without Vy.. The plots in (a) show the result of the iterative process and spectral division (SD) on
the reconstruction of a Gaussian pulse from a convolution of the same Gaussian and a rectangular pulse. The time shift is artificial. The far right trace is an
overlay of the three traces shown to its left. The curves in (b) display the iterative and SD reconstructions of a square pulse. The target rectangular pulse is
also shown. The curves in (c) are similar to those in (b) except that 1% zero-mean noise was added to the convolved waveform. (See text for an explanation
of this percentage.) The traces in (d) show the results of the iterative reconstruction using 5%, 10%, 50%, and 100%additive zero-mean noise.

and if it is, then its DFT exists. Because |Ry| < 1 for all £
and |Rj| becomes vanishingly small at k = N, |Ry| is square-
summable. Next, |Rj| must be shown to be the magnitude of
the DFT of a causal function. This is established using the
Paley—Weiner criterion [23], which states that if a function is
bandlimited or if there are any regions over which it is zero
then it cannot be the Fourier transform of a causal function.
Since 0 < |Rg| < 1 for all k, it is not bandlimited, and there
are no regions over which it is zero; therefore, |Ry| is the
DFT of a causal function. Consequently, there exists some
mg such that r,,, the time-domain representation of Ry, is
zero for m < my.

To determine the phase of Ry, note that R, can be de-
scribed by three parts: (a) the minimum phase, (b) the all-pass
principal, and (c) the all-pass linear parts [24]. Parts (b) and
(c) both have unit magnitude and, consequently, do not affect
| Rk |. Therefore, Ry, is defined to be a minimum phase function
and 6}, is obtained from |Ry| through the Hilbert transform.

V. RESULTS

The results of using a causal regularizing filter, Rj, in
reconstructions are presented here. Section V-A contains the
results of the iterative reconstruction of waveforms described
by analytic functions. Also, a comparison to the SD of Fj. by

H;. is made and the effects of N} are examined. Section V-B
displays the results of two reconstructions and the associated
stopping criterion curves. Lastly, selected statistics of pulse
parameters describing 59 reconstructions are presented and
compared to the method indicated in [17]. This number
of reconstructions is taken from an arbitrary selection of
waveform pairs.

A. Reconstruction of Analytic Waveforms
Involving Gaussian Waveforms

The results of the iterative and SD reconstruction of a
Gaussian pulse from the convolution of the same Gaussian
with a square pulse are shown in Fig. 2(a). The calculated
10-90% and 20-80% rise times, for the input Gaussian, the
iterative result, and the SD result are identical. Fig. 2(b) shows
the results of the reconstruction of the square pulse for the
iterative technique and the SD. In Fig. 2(c), the reconstructions
of the square pulse for the iterative technique and SD are
presented where 1% n,, has been added to the convolved
waveform. Fig. 2(d) shows the results of the effect of 5, 10, 50,
and 100% n, on the iterative technique. These percentages are
given as the ratio of the peak-to-peak noise amplitude to that
of the convolved waveform. The noise was generated using a
pseudo-random number generator.
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Fig. 3. Reconstruction of real data using an approximate system response (Gaussian). The plots in (a) and (b) correspond to the measured data and

reconstruction result, respectively.
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Fig. 4. Reconstruction of an impulse response. The waveform in (a) was deconvolved from that of Fig. 2(a); the result is shown in (b).

B. Reconstruction of Real Waveforms and
Stopping Criterion Curves

For illustration, two iterative reconstruction results for real
data are shown, one each in Figs. 3 and 4. The figures also
include plots of the deconvolution inputs. Fig. 5 shows the I',-
vs-a curves for the reconstructions presented in Figs. 3 and 4
and for two other reconstructions. These curves can be viewed
as displaying the solutions’ stability with respect to changes
in a; the slope of these curves corresponds to an acceleration.
The far left and far right regions of each I', versus a curve
indicate areas of under and over filtering. For a stable solution
to the reconstruction, a search for a maximum between the
over- and under-filtered regions is performed. However, more
than one maximum may exist. If this occurs, the maximum
with the greatest expanse (height and width) has been shown
to give the best results.

Looking at Fig. 5(d) we see that the I',-vs-a curve does
not have a maximum similar to the curves in Figs. 5(a)—(c),
but instead has an inflection point. However, by taking the
derivative of this curve with respect to o, a new curve is
obtained which has attributes that can be used as a stopping
criterion. In this new curve, a location is selected that has a
zero-valued slope and occurs after the location of the global
minimum in the I', versus a curve. This new point corre-

sponds to a constant acceleration point and is the secondary
stopping criterion.

C. Reconstruction-Waveform Pulse Parameter Statistics

The reliability of this iterative reconstruction was checked
by performing 59 reconstructions and comparing certain pulse
parameters with those of the input pulse. Of the 59 recon-
structions, only six required the secondary stopping criterion.
Five of these six are nonsensical reconstructions in that the
numerator and denominator functions contained data corre-
sponding to the measurement of two different pulses by
the same instrument. The search for ap was performed in
two steps: a coarse search started at a = 10725, stopped
at @ = 10%°, and was incrementally multiplied by 10%%;
a second search started at one-tenth the o found in the
coarse search and was incrementally multiplied by T ol
All reconstructions used 150 iterations, 110 iterations for
the coarse search and 40 for the second. Each reconstruc-
tion took approximately 12 s using a 33-MHz 80486-based
personal computer. The technique of Bennia and Riad, in
comparison, which is a performance-enhanced Van-Cittert
method, requires 250000 iterations to converge to a “good”
solution. [8]

The pulse parameters compared are: overshoot, undershoot,
10-90% rise time, and 20-80% rise time. For the purpose of
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Stopping criterion, I's versus o curves. The plots in (a) and (b) correspond to the reconstructions of Figs. 2 and 3. The inset in (a) is an expansion

of the curve directly above it and is the region where aq is found. The plot in (c) shows a curve with a very apparent stopping point. The curve in (d) does
not have an obvious maximum, but it does have a conspicuous inflection point. The secondary stopping criterion is used in this case to find ag.

this paper these parameters are defined as follows:
(a) overshoot:

R Awo]
0S =100 ——— 24
[ Ao — Ao @9
(b) undershoot:
Ao — g:-n,min -

and (c) rise time: the time interval between the specified
amplitudes.

The pulse parameter comparisons are made by comparing
the difference between a reference value and the reconstruction
value. For the rise time comparisons, the reference values are
obtained from the Gaussian approximation

tr = \/ t?-,m g tg,s'

The Gaussian approximation provides a good estimate of the
reconstruction’s rise times (see Table I). For the overshoot
and undershoot comparisons, the reference values are the
measured data’s values because the effect of the instrument on
these parameters is difficult to approximate. A distribution of
the differences between the reconstructed and reference pulse
parameter values illustrates the comparisons; Table I provides
statistics of these distributions.

Ringing (undershoot/overshoot) may be observed in g, and
is caused by deconvolution of data that has steep amplitude
transitions [15] and/or discontinuities at the ends of the record.

(26)

TABLE 1
MEAN, STANDARD DEVIATION, AND RANGE OF THE DIFFERENCES BETWEEN
THE RECONSTRUCTION AND REFERENCE PULSE PARAMETERS
FOR RECONSTRUCTIONS USING THE REGULARIZING FILTER DESCRIBED
HERE (MIDDLE COLUMN) AND A [17] SOLUTION (RIGHT COLUMN)

PULSE PARAMETER |Real = Wi Rip + W Ry, Ref. 17
DIFFERENCE
OVERSHOOT (%)
mean 4.54 5.32
standard deviation 6.24 9.84
range -1.88 to 13.1 -4.42 to 41.6
UNDERSHOOT (%)
mean 1.13 3.27
standard deviation 2.486 6.03
range =0.658 to 15.1 =0.732 to 25.0
RISE TIME (ps)
10%-to-90%
mean -0.0714 12.2
standard deviation 7.11 48.9
range -18.3 to 22.§ -13.3 to 242
RISE TIME (ps)
20%-to-80%
mean 0.452 4.32
standard deviation 4.12 10.2
range -3.60 to 16.0 =5.33 to 35.2

The effect of record discontinuities on the reconstructions
[25], [26] has been eliminated or minimized. Any ringing
observed in the reconstructed data is increased when higher-
order difference operators are used, such as those used in
some Tikhonov—Miller techniques [17]. Another test for the
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proposed algorithm is to set Hy equal to F. In this case the
algorithm correctly selects the Kroneker-delta as the optimal
solution.

The right column shows the statistics using the algorithm de-
scribed in [17] where the stopping criterion used time-domain
errors. In particular, this technique has been implemented
using the change in power of the imaginary components
of the reconstructed time-domain waveform as a criterion
because a correlation between reconstruction appearance and
imaginary-component power was more evident than when
using the real-component or total power. Consequently, this
stopping criterion necessitates the existence of finite-precision
arithmetic errors and the use of complex arrays for real-valued
inputs to the FFT. That algorithm failed when the positive and
negative halves of the spectrum of the iterations were forced to
be complex conjugates of each other. The proposed filter and
stopping criterion were not affected by these conjugacy errors
and functioned using either the entire spectrum or one half. The
algorithm of [17] typically provided “good” results though the
results contained ringing near steep transitions and occasion-
ally failed to converge to a “good” solution (see Table I).

VI. CONCLUSION

A new regularizing filter and its associated stopping crite-
rion have been described for use in selecting an optimal so-
lution to reconstructions using the blind deconvolution of one
transient waveform from another. The filter uses a weighted
average of two functions, both of which consist of difference
operators and a common variable parameter. The optimal solu-
tion is found by varying this parameter until the change in the
sum of the magnitudes of the reconstruction’s spectral compo-
nents exhibits a maximum. Convergence of this technique was
rapid, approximately 12 s using a 33 MHz 486- based com-
puter. The proposed filter also reduced the ringing observed in
reconstructed waveforms that is caused by steep transitions in
the measured (input) data. Variations in the pulse parameters,
overshoot, undershoot, and rise time were also reduced.

APPENDIX
Variable List and Description
Apg an approximation to A}
Al difference between the spectra of the exact

(but unknown) and approximate
measurement system
impulse responses
Ag baseline amplitude value of waveform
A1o0 topline amplitude value of waveform
Dy, spectrum of a difference operator
dm.j» Drj the jth-order difference operator, its discrete
Fourier-transform (DFT)
a value used to simplify the selection of the
weights of the filters used in the
regularizing operator
E; spectrum of deconvolution error
Ey ; difference-operator-dependent errors between
different regularized reconstruction spectra
E, difference between spectra of R; ; and

Ca

Rj3 i-regularized reconstructions

Erx error of regularized reconstruction relative to
the ideal reconstruction

fm, Fr  data acquired from the measurement of
input signal, its DFT

gm, Gy  discrete representation of the input signal
and the ideal solution to the deconvolution,
its DFT

ghn, G regularized stable reconstruction, its DFT

g’m, max maximum amplitude value of the
reconstructed waveform

9m min  Minimum amplitude value of the
reconstructed waveform

Gr, unstable approximation to the deconvolution

H; spectrum of the approximation to hy,

k.., H, impulse response of the measurement

instrument, its DFT

k discrete frequency index

m discrete time index

N number of time points over which the
data is defined

Tom, Nx  additive measurement noise, its DFT

(0N waveform overshoot, time-domain parameter
Tm, Rx  the causal regularizing filter, its DFT

R; magnitude-only approximations to Rg;i =1,2,3

5 reference rise time

b rise time taken from measurement data

o rise time of the measurement system impulse
response

T target solution, as explained in text

UsS waveform undershoot, time-domain parameter

W1,a, W3,o Weights for the two filters, Ry j and R3 k+ used in
the regularizing filter

¥ the value from which filter weights are deter-
mined
Yo iim limiting value of Y, explained in text

Yo max  maximum attainable value of Y
o the adjustable parameter of the regularizing filter
aqg the value of giving the optimal reconstruction
] B a-dependent change in the spectrum of

the reconstruction
6 positive increment in o
O phase of the regularizing function
r delay
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