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1. Introduction

A recently developed analytic technique that can
correct for probe-position errors in planar near-
field measurements to arbitrary accuracy [1,2] is
also applicable to spherical near-field data after ap-
propriate modifications. The method has been used
successfully to remove probe-position errors in the
planar near field, leading to more accurate far-field
patterns, even if the maximum error in the probe's
position is as large as 0.2 A. Only the error-contam-
inated near-field measurements and an accurate
probe-position error function are needed to be able
to implement the correction. It is assumed that the
probe-position error function is a characteristic of
the near-field range and has been obtained using
state-of-the-art laser positioning and precision opti-
cal systems. The method also requires the ability to

obtain derivatives of the error-contaminated near
field defined on an error-free regular grid with re-
spect to the coordinates. In planar geometry the
spatial derivatives are obtained using fast Fourier
transforms (FF1) [1,2]; in spherical geometry the
derivatives of Hankel functions for radial errors,
and the derivatives of the spherical electric and
magnetic vector basis functions for errors in the 0
and k coordinates are needed.

2. General Analytic Procedure

Let b (x) and b (x; bx) be the error-free and
error-contaminated near fields at position x, and Ax
the probe-position error function. Here the position
vectorx can be given in planar (Cartesian), cylindri-
cal, or spherical coordinates. Then,
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b(x; 8x)=(1+T)b(X), (1)

where T is a differential error operator. Since real
measurements are taken on an irregular grid,
x + Sx, the measured values can be represented in
terms of an unknown error-free near field b (x) and
the Taylor series expansion of this field around the
regular grid x. Thus, the error operator is nothing
but the Taylor series operator without the leading
zeroth-order term. The exact functional form of T
depends on the coordinate system used in repre-
senting the near field. To solve for the error-free
near field eq (1) can be inverted to yield

b (x) = (1 + T)-' b (x; ax), (2)

which can then be expanded to any arbitrary order
in 3x. First, we expand eq (2) as

b(x)=(1-T+TT-T 7T+-T-.T.T. )(x; Ax),

and observe that (3)

T=tl+t2 +t3 +t4...+tk+.... (4)

In general, the kth-order term in the Taylor series

T has the form tk =k (8s)k e (5)

where, in Cartesian coordinates, s is x, y or z, in
cylindrical coordinates s is p, ' or z, and in spheri-
cal coordinates s is r, 6, or /. Equation (4) can
now be used to arrange the terms in eq (3) in an
ascending order of approximation. Thus, to fourth-
order in Ss

b(x)=(1

-tl -t 2 -t 3 -t 4

+ tltl + tlt2 + tlt3 + t2tl + t2t2 + t3tl

-tltlt1- tlt2t - tltlt2 -t2tlt1

+tititltl) 6(X; ax). (6)

The explicit functional forms of T, tk, and eq (6) in
Cartesian geometry (planar scanning) can be found
in [1,2], where the question of convergence of the
n th-order expansion has also been discussed.

The following observations about the structure
of eq (6) are worthwhile:

(a) The first line of the equation is the zeroth-
order approximation to the ideal near field
and corresponds to the first term in eq (3).

(b) Each subsequent term in eq (3) gives rise to
all the terms on a subsequent line in eq (6).

For example, the term TTT gives rise to all
the triple product terms in eq (6); all other
terms originate from another term in eq (3).

(c) The sum of subscripts in each of the terms in
eq (6) is 4 or less, indicating that we have
written down a fourth-order approximation.

(d) All possible combinations of subscripts occur,
subject to the constraint in (c).

(e) Fifth- or higher-order approximations can be
quickly written down using observations (b),
(c), and (d) as guidelines.

Finally, we make the following nontrivial obser-
vation: b(x) and b(x; ix) in eq (6) are both de-
fined on a mathematically regular grid, even though
originally the error-contaminated near field was
obtained on an irregular grid. This shift in the defi-
nition of the error-contaminated field is an essen-
tial mathematical step in the error-correction
procedure under consideration. The redefinition
becomes important when exact derivatives of the
error-contaminated near field on a regularly spaced
grid are required; by definition, such derivatives can
be obtained mathematically, but cannot be ob-
tained experimentally. (In Cartesian geometry, or
for planar near fields, derivatives can be obtained
using Fourier techniques [1,2].)

The terms in eq (6) are differential operators
acting on the error-contaminated near field
b (x; Ax). Terms such as tlt3 and t3t, will yield differ-
ent contributions as can be seen from the explicit
expressions in Cartesian coordinates for probe-po-
sition errors in the z coordinate. Thus,

(7)tl6 = 31 3Z a (3Z)3 M~b
W3 3! Oz az3

and

t3 t11 = !(8Z)3 83 SZ abt~~t]6 = 1 a? a~z'
which show that different derivatives act on differ-
ent functions in the two cases. Further, the deriva-
tives of the error function 3z as required by each of
the terms in eq (6) cannot be measured and are
only defined mathematically [1,2], subject to the
constraint that each term satisfy Maxwell's equa-
tions.

2.1 Simultaneous Errors in Two or More Coordi-
nate Variables

The discussion so far has assumed that probe-
position errors occur in only one coordinate vari-
able at a time. In fact, simultaneous errors in more
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than one coordinate can be treated easily by gener-
alizing eqs (4) and (6). This is accomplished by re-
defining tk in eq (5). We simply write

(9)

where the superscript indicates one of the three
coordinates in use. These are just the three first-or-
der terms that appear in the usual Taylor series
expansion of any function of three variables. The
definition of the second-order expression also
needs to be augmented the same way, but addi-
tional terms must be included to account for the
contribution from mixed derivatives. The general t 2

term is now written as

radial coordinate, the kth-order Taylor series term
is

tk =k! k ar k I (12)

Similar expressions can be immediately written
down for errors in the 0 and 4 coordinates:

(13)tk =k(8) ak

and

tka(8)ak - (14)

t2= E tPS + J tW') (10)
S SOS

where t aS') is

t ats'adsIs' a (11)

Again these are just the second-order terms in the
usual Taylor series expression. The definition of
the third- and higher-order terms tk in eqs (4) and
(6) can be generalized the same way, and when
these general expressions are substituted into eq
(6), we obtain the expression for the error-
corrected near field in the presence of simulta-
neous errors in more than one coordinate. Obvi-
ously the number of terms in eq (6) quickly
increases with the order of correction and with the
number of error-contaminated coordinates consid-
ered.

3. Spherical Error Correction

In spherical scanning, near-field data are ob-
tained on the surface of a sphere of radius ro at
regular AO and AO intervals. The center of rotation
is fixed and the probe points toward this center at
every point of the spherical grid. At each point two
measurements are taken, corresponding to the 0
and 4 components of the measured electric field.

To study the error-correction technique we will
consider probe-position errors in a single spherical
coordinate only. We also assume that the orienta-
tion of the probe is always correct, meaning that
the probe points to the center of rotation indepen-
dent of the position of the probe. To obtain error-
correction expressions for errors in the r, 0, or 4
coordinates the explicit form of tk has to be substi-
tuted into eqs (4) and (6). Thus, for errors in the

These error functions depend on the coordinates:
8r = Br(ro,0,O4), 80 = 80(ro,0,), and 8o = 84(ro,0,4)
for fixed ro. This must be kept in mind when spher-
ical versions of the expressions shown explicitly in
eqs (7) and (8) are evaluated. When eqs (12), (13),
and (14) are substituted into eq (6) we obtain the
error-corrected spherical near field in terms of the
error-contaminated (measured) spherical near
field.

3.1 Spherical Near Fields

In spherical geometry, we really have two inde-
pendent near fields, which are the 0 and 4) compo-
nents of the electric field E measured by an ideal
dipole. The tangential electric field E, with wave-
number k, can be expressed [3] in terms of an in-
finite sum of products of spherical Hankel
functions of the first kind hn(')(kr) and spherical
vector basis functions Xnm(0,O). We can write (us-
ing P for the unit vector in the radial direction)

E, (r, ,O, ) = E I [hn)hm Pn) (kr)X~m 0, 0
n m

+a(e) g(,)'(kr) P XXnm(0, ))], (15)

where, with x =kr,

g.(l) (x) =x [xh (l)(x)]. (16)

The near-field quantities b and b in eq (6) are iden-
tified with either the 0 or 4 component of Et and
E,, respectively, where E, is the error-contaminated
electric field. Only one set of electric coefficients
anem and one set of magnetic coefficients allhm appear
in eq (15), and the error-correction procedure
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corrects both components of the measured spheri-
cal field simultaneously.

To obtain the coefficients %-nm in eq (15) we use
the explicit definitions and orthogonality relations
obeyed by the vector basis functions Xnm [3]. These
are V-n (n + 1) Xnm (0,4) =LYnm (0, )), where L =
-i(r XV) is the the well-known angular momen-
tum operator widely used in quantum mechanics,
and the spherical harmonics Ynm (0,4) =Pm (0)
exp(im4), where Pnm are associated Legendre func-
tions. In component form,

-\In (n + 1) n (0,) =-m Y." i aym. (17)

The orthogonality properties are [3]

f2Jr f X'n. Xn m sin OdOdo =An'n'Am'm (18)
0 a

with a similar relationship for P xXA,*, and

f2ir rr
o XJ m P XXnm sin OdOdO =0

0o T

(19)

To obtain the coefficients a2n(m) numerically we
rewrite eq (20) as

2atnmhn) hl) (kr) =

2wrr Efr (r,0) *X i (0)Isin 01d0. (22)

Here the factor 2w is the result of the 4) integral
and the factor 2 on the left is introduced to offset
the effect of extending the range of integration in
0. Etm(r,0) and knm(0) are the +-transforms of
E,(r,0,0) and Xnm(0,0), respectively, extended
into the range [-'rn,0]. The integrand in eq (22) is
now an even function of 0, and can be expanded in
a Fourier series,

(23)

where the coefficients crm can be obtained by
Fourier transforming the data. Since only the coef-
ficient conm will survive the term by term integration
of the sum in eq (23), we immediately obtain from
eqs (22) and (23)

an(rh) h(l) (kr) = 27r2 cm. (24)

for all n, n', m, m', where Ann' is the Kronecker
delta. The coefficients can now be obtained [3] us-
ing eqs (15), (18) and (19):

r27r 7rr

a$nmh (1 )(kr)- Ef (r,0,0*X,,. sin OdOd4i (20)

and

&(Xnr g,(")(kr) =

27r 7r

12 JE,(r,0,0) *; AX Xu*n sin OdOdo. (21)

With eqs (18), (19), (20) and (21), any spherical
near field, error-free or error-contaminated, can be
cast into the form of eq (15), and given a set of
coefficients anm, a spherical vector function can al-
ways be constructed using eq (15). Consequently,
each of the terms appearing in eq (6) and any fac-
tor tk in eq (6) can be evaluated in spherical coordi-
nates. On a regular grid the summation can be
accomplished using an efficient FFT summation,
but on an irregular grid the sum must be evaluated
directly, or by a Taylor series as described in [1,2].

Similar expressions can be written for am in eq
(21).

3.2 Derivatives of Spherical Near Fields

To evaluate the terms and factors appearing in eq
(6) in spherical coordinates, we must be able to ob-
tain first- and higher-order derivatives of arbitrary
spherical near fields with respect to any of the
spherical coordinates. Derivatives with respect to 4,
are the simplest, since the 4 dependence is only
through the factors exp(imo) in the vector basis
functions. Hence, a kth-order derivative with re-
spect to 4 will merely alter the coefficients in eq
(15) according to the substitution,

stnm _ (iM )k anm, (25)

after which the summation can be performed with-
out change to the summation procedure in use. Ra-
dial derivatives are only somewhat more
complicated; we obtain kth-order derivatives of
Hankel functions with respect to x after repeated
differentiation of the recursion relation [3],

(2n + 1) dx2@ --nhn(') I(x) - (n + 1)h1(1 Y I(x). (26)
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After substitution of derivatives of Hankel func-
tions in place of the functions themselves in eq
(15), the existing summation procedure can be
used without modification to obtain radial deriva-
tives of the components of the near field. However,
derivatives with respect to 0 cannot be accom-
plished with ease, since no simple recursion rela-
tionship exists that can be utilized in a
straighforward manner in a computer algorithm.
To obtain 0 derivatives we have to use Fourier se-
ries. If we assume that the 0 dependence of the
components (denoted by superscript s) of Et has
been written in the form

Eco) efl8 (27)

then the kth-order 0 derivative is

I (il)kcs) e10. (28)

The coefficients c,(5) can be obtained using a fast
transform; after modification of the coefficients by
the factors (il)k, the same FFT can be used to per-
form the summation indicated in eq (28). Since the
data must be periodic with a period of 27r for anal-
ysis by an FFT, a near field defined on the 0 inter-
val [0,'rr] must be extended to the interval [0,2 7r] or
[- 7r,'r] using the symmetry properties of the basis
functions [4,5].

3.3 Data Analysis

As is evident from the discussion in the preced-
ing sections, we need efficient numerical proce-
dures for two basic computational problems arising
from eq (15):

(i) Given a spherical vector function E,(0,4)), we
must be able to analyze it to obtain the coeffi-
cients an,, and

(ii) Given a set of coefficients anm, we must be
able to synthesize the spherical vector function
E,(0,4) by performing the sum.

Focusing on a specific term of the full error-correc-
tion expression as given in eq (6), we can appreci-
ate the role of these two computational
procedures. We have, for the case of errors in the r
coordinate,

t1t2 Or i (8r) 2-b (r,0,4) (29)

where b now stands for the components of E,. The
following six steps must be executed to evaluate
this expression numerically:

(1) We analyze the components of E, to obtain co-
efficients a(nm, as defined in eq (15).

(2) We obtain the second-order radial derivatives
of the components of E, by performing the
summation in eq (15) using second-order
derivatives of the radial functions.

(3) We multiply the result by the function (8r)2 ,
thereby obtaining a new spherical near field.

(4) We analyze the fields obtained in step (3) to
get a new set of coefficients a,,m, as defined in
eq (15).

(5) We obtain the first-order radial derivatives of
the components of E, by performing the sum-
mation in eq (15) using first-order derivatives
of the radial functions.

(6) We multiply the result in step (5) by 0.5 8r to
obtain the part of the error-corrected spheri-
cal near field denoted by tlt2b in eq (6).

Similar sequences of steps will correctly evaluate
any and all of the terms in eq (6) to obtain the
ideal error-free near field. The procedure is highly
recursive, and a few well designed subroutines can
provide the result of the extensive and complex
computational task called for in eq (6). The proce-
dure is the same for errors in the 0 and 4 coordi-
nates.

3.4 Computer Simulations

Computer simulations were performed for
probe-position errors in a single spherical coordi-
nate only; simultaneous errors in two or three coor-
dinates were not considered. The following
sequence of steps were performed for errors in
each of the spherical coordinates:

(1) We start with an error-free spherical near
field and analyze it to obtain its expansion co-
efficients a., [(see eq (15)].

(2) We define a probe-position error function
18xj=8s(0,0) to be studied, and choose its
amplitude.

(3) We construct an error-contaminated near field
by performing the summation in eq (15) at the
irregular grid points x + Ax. This requires a di-
rect sum at each point of the grid, since no
efficient method of summing is known to exist
on an irregular grid.

(4) We perform the computations in eq (6) to ob-
tain the error-corrected near field. The steps
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taken to accomplish this were outlined above
in some detail (see eq (29) and the brief dis-
cussion following it).

(5) We calculate error-free, error-contaminated,
and error-corrected far fields.

(6) We compare error-free, error-contaminated,
and error-corrected fields to study the effec-
tiveness of the error correction.

3.5 Results and Discussion

The near field used in all the simulations was
generated by a microstrip array antenna consisting
of four 16 x 16 element subpanels operating at 3.3
GHz. The scan radius was 128 cm. Figures la and
lb show perspective plots of the amplitudes of the
0 and 4 components of the error-free near field.
The near field was obtained by summing the terms
in eq (15) with n =30, after the original near-field
data were analyzed to obtain coefficients up to
n = 87. With n = 30, direct summations on irregular
grids could be performed in about 6 hours on a
personal computer. Figures 2a and 2b show per-
spective plots of the amplitudes of the 0 and 4
components of the error-free far field.

We chose periodic probe-position error func-
tions of the form

3s(0,4) =A cos2 ot0 cos2 A+, (30)

wheres =r, 0, or 4), and a=f3=3. For errors in the
radial coordinate we chose A = 0.1 X= 1 cm, and
for errors in the angular coordinates, we chose
A = 0.01 X, which corresponds to a maximum angu-
lar error of 3.60. The magnitude of these errors are
unrealistic, since, on the NIST spherical near field
scanner, the probe's position errors are estimated
to be less than 8r=0.1 cm, and 80 =8)=0.5'. Pe-
riodic probe-position errors were chosen, because
such errors in the near field could lead to large
errors in the far field. This is a well known phe-
nomenon in planar near-field to far-field transfor-
mations [6,7J. The procedure, however, could be
easily performed with nonperiodic error functions.

The results of the simulations are presented in
the figures 3-26: perspective plots of ratios of
error-contaminated and error-free fields are pre-
sented for errors in the three coordinates sepa-
rately, followed by perspective plots of ratios of
error-corrected and error-free fields. Similar plots
are presented for the far fields. Both amplitudes
and phases are shown for all cases.

An examination of the plots immediately reveals
the success of the error correction. By comparing

the amplitudes of the error-contaminated and
error-corrected ratios, we immediately observe
insignificant levels of residual errors almost every-
where on the sphere. The same quantitative obser-
vation can be made about the phase difference
plots, where the residual error in the error-
corrected phases approaches 0. The following addi-
tional qualitative observations are worthwhile:
(i) The correction is most successful in the for-

ward hemisphere, especially around the main
beam at 0 = 0 in all cases. This is true for both
the near and the far field.

(ii) The correction is least successful in the back
hemisphere, especially around 0 = + 180°,
where the data are ill-determined and small
in amplitude.

(iii) There are no large regions on the sphere
where the correction technique fails.

(iv) At isolated points the correction seems to be
less successful as evidenced by peaks in the
perspective plots. These points correspond to
deep nulls in the original error-free near field,
and, consequently, can be understood as arti-
facts of the ratio field, rather than some more
serious problem with the technique.

(v) The radial error function 8r(0,4) clearly
shows up in figures (3b) and (4b), as ex-
pected, since we have essentially plotted the
phase of the ratio of Hankel functions of the
form exp(ikr)Ir at r + 3r(0,4) and r, with
Sr _ r.

(vi) The three-lobe structure of the periodic error
function over an angular interval of 180° in 0
and 4, shows up clearly in all the error-con-
taminated plots, as expected. This structure
also shows up in the error-corrected plots, in-
dicating that the error-correction procedure is
a systematic global reduction of the error
without altering the functional form of the er-
ror. This agrees with the structure of eq (6).

Both the qualitative and quantitative features of
the results show that the error correction outlined
in this study can be very useful in providing more
accurate spherical near-field data to determine ac-
curate far fields of antennas.

4. Suggestions for Further Study

Here we have demonstrated the effectiveness of
a novel error-correction technique that removes
probe-position errors in r, 0, or k from spherical
near-field data. For completeness, the technique
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should be applied when errors in all three coordi-
nates are present simultaneously. This is the most
realistic case. Such a complete error-correction
technique would be computationally more compli-
cated and extensive, but in principle not more
difficult, and should also be effective and success-
ful. Finally, more realistic probe-position error

0o

120:

:1z

(a)

functions should be used, and the correction tech-
nique should be applied to real error-contaminated
spherical data. The success of this error-correction
technique is especially desirable at higher frequen-
cies, where the realistic amplitudes of the probe-
position errors on a spherical near-field range are a
significant part of the wavelength.
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Figure 1. The amplitude of the error-free near field at 3.3 GHz, (a) the 0 and (b) the 4 component.
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Figure 2. The amplitude of the error-free far field at 3.3 GHz, (a) the 0 and (b) the 4 component.
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.2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

(a) (b)

Figure 3. The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to
the error-free near field in the case of errors in the r coordinate.
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Figure 4. The amplitudes of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to
the error-free near field in the case of errors in the r coordinate.
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Figure 5. The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the
error-free near field in the case of errors in the r coordinate.
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Figure 6. The phase of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the
error-free near field in the case of errors in the r coordinate.
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Figure 7. The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the r coordinate.
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Figure 8. The amplitudes of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the r coordinate.
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Figure 9. The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the r coordinate.
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Figure 11. The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to
the error-free near field in the case of errors in the 0 coordinate.
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Figure 12. The amplitudes of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to
the error-free near field in the case of errors in the 0 coordinate.

402

Co
'10

a1
10
N

10.

I d
- I

1.00
ISo-
1,

q) ,0 -
'�) O.%
�) 0.00,

-0 -
(�, -SO

1.0I -I0 ,
1) - ,%,

2.00

I--
,Zs

IR



Volume 96, Number 4, July-August 1991

Journal of Research of the National Institute of Standards and Technology

I-'

&1

1,

(a) (b)

Figure 13. The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the
error-free near field in the case of errors in the 0 coordinate.
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Figure 14. The phase of the 4 components of the ratios of (a) the error-contaminated and (b)
error-free near field in the case of errors in the 0 coordinate.
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Figure 15. The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the 0 coordinate.
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Figure 16. The amplitudes of the 4. components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to
the error-free far field in the case of errors in the 0 coordinate.

404

Co

'10

Zb
'10

10
*'1

1 11



Volume 96, Number 4, July-August 1991

Journal of Research of the National Institute of Standards and Technology

lb\

'lb

I-
U)
10
'10

lb1
lb

10)

10
U)
10"1

"1

�.O
1 -

.S ,

1.0

0'S-

0'O,
10
- S -

1.0 -
_1.�

<3D
Q

(a) (b)

Figure 17. The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the 0 coordinate.
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Figure 18. The phase of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the 0 coordinate.
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Figure 19. The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to
the error-free near field in the case of errors in the 4 coordinate.
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Figure 20. The amplitudes of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to
the error-free near field in the case of errors in the 4 coordinate.
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Figure 21. The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the
error-free near field in the case of errors in the 4 coordinate.
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Figure 22. The phase of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the
error-free near field in the case of errors in the 4 coordinate.
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Figure 23. The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the
error-free far field in the case of errors in the 4 coordinate.
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Figure 24. The amplitudes of the 4 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to
the error-free far field in the case of errors in the 4 coordinate.
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Figure 25. The phase of the 0 components of the ratios of (a)
error-free far field in the case of errors in the 4 coordinate.
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Figure 26. The phase of the 4 components of the ratios of (a)
error-free far field in the case of errors in the 4. coordinate.
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