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Abstract A new deco/ll'olution approach is describedfor
reconstructing fast step-like or impulsive signals that have
been measured with a sampling oscilloscope for which all
impulse response estimate is (l\'ailable. The approach llses
analytic reconstrtlctionfilters to control noise ampl(ficatioll,
and a neU' Ilon-iteratil'e.filter optimiz.ation that is based Oil
a calculated "indicated error" functioll that is similar ill
shape to the true error. The neU' method aids ill reporting
uncertainties of the deconvolution results and it permits the
lise of time-domain weighting to optimize the measurement
of different waveform features. The pelforma/lce of the
proposed approach is compared "H'iththat of the Error
Energy/Regulariz.ation approach that is currently popular.

Introduction

The process of deconvolution is often required to reconstruct
a signal from a noisy, filtered representation of it. In our
application, a time-domain signal representation is obtained
from a samplingoscilIoscope, for which an impulseresponse
estimate is available. Often, the bandwidth of the
oscilloscope is on the order of, or even less than the
equivalent bandwidth of the input signal being measured.
Deconvolution is used to remove the effects of the
oscilloscope's response, via inverse filtering, in order to
obtain a more accurate estimate of the original signal. As
discussed by many authors, deconvolution is an ill-posed
problem: Measurement noise components in the output
signal become highly amplified in the reconstruction of the
input signal at frequencies where the oscilloscope response
approaches zero [1]. Various filtering approaches are used
to control this behavior, but any filter necessarily removes
some components of the original signal. that is being
recovered. Techniques for finding the optimum filter have
been the main concern of many deconvolution studies [2-
II]. (See [I] and its references for a good overview of the
literature.) However, less attention has been given to the
optimization criteria that are used and the relationship of
these criteria to overall goals, including the estimation and
reporting of uncertainties associated with the-deconvolution
process. Filter optimization in this context is the focus of
the work reported here. In particular, we propose (a) the use
of analytic filters with "higherorder Gaussian" form; and (b)
a new non-iterative algorithm to optimize the filter
parameters that can be applied in the time domain. The
optimization algorithm produces an indicated error signal
that can be represented in either domain. This signal is
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similar in shape to the true error, and optimization crite ia
based on it (e.g., mean-squared elTor)are minimized at r
near the same filter parameters that minimize the true err r.
The. advantages of this method for us are threefold: It
permits the use of time-domain weighting functions; t e
filter can be described analytically for our customers; an it
often produces lower errors than competing methods. T e
useof weightingallows optimization of theerrors inselect d
regions of the waveform. For example, weighting t e
transition region of step-like signals more heavily per ts
moreaccurate transition duration measurementsto be ma e;
conversely, weighting non-transition regions more heav ly
allows aberrations to be estimated more accurately. The se
of analytic filter functions aids in reporting the uncertainfes
of the deconvolution results as will be explained later. lor
the types of waveforms used in our work, the meth9d
(without weighting) generally performs as well as or bet.er
than other popular methods such as the error ener~y
regularization method reported in [II]. When weighting:is
used to optimize a selected region of the waveform, t~e
errors in some cases can be reduced by a factor of two lor
ili~. .

Background

For a system with impulse response vet), the output resulting
from an input x(t) is given by

z(t) = x(t) @ v(t) + 11(t)z (1)

where @ designates the convolution operator, and nit) is the
added measurement noise. In the frequency domain, (1) is
represented as

Z(oo) = X(oo). V(oo) + Nz<oo) (2)

Although Nzfw} is unknown, an estimate of the original
input signal can be obtained from a direct deconvolution in
the frequency domain given by

X(O)
2(0)

V(O)
(3)

2(0)

V(O) + N D(O)

where Nf)(w) includes any errors in the estimate of V(w).
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For the work described here, we consider N[)(w) to be
negligibly small. A

Because the noise components of X(w) become large at
frequencies where V((0) is small, the raw deconvolution result
given by (3) is usually low-pass filtered so that (3) becomes

XF ( 00 ) = ~( (0) F( (JJ)
V(w)

(4)

where F(w) is the filter response [I]. A parametric form is
chosen for F(w) and the filter is then optimized based on a
cost criterion. The filter response given in (5) has frequently
been used for F(w) [e.g., 3,4,5, II], and filters of this form
are called regularization operators:

F(w) = V(w) V(w)*
IV(w)12 + A +YIL(w) 12

(5)

where I · I denotes magnitude, superscript * denotes the
complex conjugate and L(w) is the Fourier transform of the
second difference operator (used to control smoothness).
Variables y and Aare the optimization parameters for this
filter and often correspond to specific criteria used in the
cost function [I]. In [1,11], a cost function based on the
estimated error energy has been used effectively.

Deconvolution results based on (4) have two sources of
error. First, the choice of the mathematical form of F(w)
determines the minimum error that can be achieved for a
given problem and levelof noise, Nz<w). Assuming that the
filter parameters can be optimized to achieve the true
minimum error, no additional error is accrued. However,
since the true error cannot be known directly, the filter
parameters must be chosen based on heuristic optimization
criteria, and additional errors are created when. the
optimization fails to minimize the true error.

In the next sections, we discuss a new form for the filter,
F(w), and a new optimization criterion that can be used to
select the filter parameters.

"Measurement bandwidth" and selection of filters

NIST provides measurement services for reference pulse
generators that customers in turn use to calibrate other
instrumentation. For these services, we not only need to
estimate the test signal accurately, but we also need to derive
confidence bounds associated with our estimates. Clearly
though, if the measurement and deconvolution processes are
band limited, we cannot give unqualified bounds for the
signal estimate because arbitrarily large signal components
could go undetected if their frequencies are sufficiently high.
Generally, the prescribed noise filter determines the
limitingbandwidth of the signal estimate, assuming that vet)
is accurately known.

The plan at NIST is to report the filter used to establish the
"measurement bandwidth" that ultimately limits our

measurement capability. Then the true signal, x(t), when
convolved with the reported noise filter,f(t), will be asserted
to lie within stated bounds around theestimated signal, i(t),
with a given confidence .(e.g., 95%). This avoids the
dilemmaof tryingto bound an estimate when there are signal
components beyond the bandwidth of the measurement
process. However, if the "measurement bandwidth" as
determined by the noise filter is significantly greater than
either the bandwidth capability of the customer or of the
bandwidth of the signal, there is no important infonnation
lost. The customer can test this by measuring the signal
himself, and low-pass filtering the datarecord with our noise
filter. If the filter has no appreciable effect, then all
significant information has been covered by the test report.
If the filter does have an appreciable effect, the test report is
still valid when applied to the filtered data. Since the noise
filter will be reported and possibly implemented by our
customers, we prefer simple analytic filters that do not
depend on our impulse response estimate, vet). Choosing
low-pass filters that are not dependent on the impulse
response estimate is most appropriatefor applications where
the impulse response itself is a low-pass filter. Fortunately,
this typifies the response of sampling oscilloscopes.

Thecomputation of the confidence bounds themselves will
be the subject of a future paper.

In addition to having an analytic form, the filter should be
compact in both the time and frequency domains.
Significant ringing in the spectrum, F(w), of the noise filter
is detrimental to the deconvolution because noisy high
frequency components are passed through the filter. In the
time domain, the impulse response, f( t), of the filter should
also be compact, i.e., limited ringing, to localize its effects.
Ideally,f(t), t> 0 and F(w), w > 0 are both monotonically
decreasing functions assuming symmetric centered
responses. As suggested by N. Paulter of NIST, filters of
the forms given in (6) and (7) were considered as candidates
that could approximate these characteristics, where m > 1,
and a,and af are variables that establish the "widths" in the
respective domains. (While these are monotonically

f(t)
_ _o.sl~ l

nr

_e (1,
(6)

_os
l

w lm
F(w) = e ~ (7)

decreasing functions for t, 00> 0, their Fourier Transforms
are not.) Analytical expressions for the Fourier transforms of
these filters can only be determined for m = 1 or 2. Based
on computersimulations however,f(t), t> 0, and F(w), w
> 0, are both found to be strictly monotonic only for 1~
m ~ 2 for either filter. However, all m ~ 1were considered
for the filter design since higher power
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arguments in exponentials produce sharper time and
frequency domain transitions. Values of m greater than 2
produce some ringing in their Fourier transform, but as we
will show, in some cases it dies out quickly. The
performance of di fferent filters were compared using
Gaussian signals for x(t) and 1'(t),normally distributed noise
for "/1), and the minimum mean squared error in x(t) as the
criterion for comparisons. Among filters of the form given
in (6), the Gaussian form (l1l =2) consistently produced the

Time (s)

Figure 1. "Higher-order Gaussian" filter, m =8.
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Figure 2. Indicated error (multiplied by 2) and true error.

lowest minimum mean-squared error (varying a,). Filters
with l1l< 2 did not provide a sufficiently sharp cutoff, while
filters with l1l > 2 did not adequately attenuate high
frequency noise components because of frequency domain
ringing. In contrast, filters of the form given in (7)
performed best for m ;? 2. The time-domain ringing
produced by the higher order filters dies out quickly, and the
sharp cutoff afforded by larger values of m allowed the
cutoff to be extended to higher frequencies, resulting in less
attenuation of the signal components. Figure I shows a
time-domain (inverse Fourier transform) plot of a filter given
in (7) for m = 8. Further, the reconstruction errors at
optimum af and m were smaller than those produced by the
optimum filter of the type given in (6). Based on the
comparisons, the filters given by (7) are preferable, where af
and m are the two parameters to be optimized. Such filters
were also compared to the regularization filter given in (5),

. . -- --- . -- - .-------

where A and y were optimized using the minimum error
energy criterion [II]. Results are given in a later section.

Optimization
An obviouserror criterionis the mean-squareddifference
betweenthe signalestimateand the truesignal,yielding

N-(

Cost = ~ L [.i(l1) - x(ll)]2.
N /1=0

(When sampled rather than continuous signals are
considered, we will use 11and k as the respective discrete
time and frequency indices). As explained eailier, it would
sometimes be desirable to use a weighted error criterion,
where a time-domain weighting function is applied to the
difference. This gives the modified cost function

N-(

L [W(l1) ·(x(ll) - x(n»)]2
n=O

Cost IV N-I

L W(ll)
11=0

where Wen) is the time-domain weighting function.
Unfortunately, since x(n) is unknown, neither (8) or (9) can
be evaluated directly, and indirect methods and other cost
functions must be used, many of which are described in [1].
The various tradeoffs associated with these are also
discussed in [I]. Their effectiveness often depends on
subjectivejudgement or heuristic techniques. Others cannot

make use of time-domain weighting because phase,information is not included in the cost function [11]. We
proposea new cost functionhavingthe sameformas (9), ,

where an indicated error i(n) given by (10) substitutes for
Ix(n) - x(n):

i(n) = ifft
[

~(k) F(kHI-F(k»
]

,
V(k)

(10)

where ifft [-] indicates the inverse Fourier transform of [-]. ,

This gives the following cost function:
I

N-I

L [w(n). i(n) ]2
n=O

Cost WI

I
(11) I

I
I

i(n)I

N-I

L w(n)
n=O

Based on observations of simulated data, the function
tendsto havea shapesimilarto thatof x(n) - x(n) ,
particularly when the optimum filter parameters arej
approached. An example is shown in fig. 2. Here, thel
plotted errors are the results of a deconvolution in whichth~
input signal was a unit step-like waveform with th~
transition centered at t = 0.097 s (see fig. 4). As fig. ~
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illustrates, the noise components of the two wavefonns are
similarly shaped, while the signal components (centered
around t =0.097 s) are approximately 1800 out of phase
with each other (an explanation is given later in the
Additional Remarks and Observations section).
Furthermore, the cost given by (II) reaches a minimum at
nearly the same filter parameters that minimize the true
mean-squared error given by the cost function in (9), as
illustrated in fig. 3. In this example, the rms indicated error
reaches a minimum at a filter cutoff frequency of '50 Hz,
while the true rms error is minimized at a cutoff frequency
of 52 Hz. The difference in true error for the two
frequencies in this case is only 4.4% of the true minimum
error. Plots of indicated and true error versus exponent m
(in (7» show similar results.

Results and examples
Simulations were run using analytical functions for the
impulse response, and either analytical or real measured
signals for the input waveform. Both step-like and
impulsive waveforms were used for the input. The relative
bandwidths (-3 dB) of the input and impulse response
waveforms were varied, and different amounts of noise were
added to the convolution results. Deconvolutions were
performed using the proposed (indicated error) method as
well as the Dab6czi regularization method [11] (based on a
minimum error energy criterion) that is currently used in an
oscilloscope calibration system [12]. The deconvolution
errors for the two methods were compared, and the errors
were also compared to the errors that were achieved at the
true minimum (i.e., when the filter parameters for either
method were adjusted to minimize the true error). Selected
results are presented in the following subsections.

When step-like input signals were used with the proposed
method, the convolution results were first differentiated
using a first difference operator, and the deconvolution was
performed in the frequency domain on theFourier transform
of the differentiated signal. The time-domain result of the

0.1

~
C
::I
~
~
:e
.!..
~
w

0.01

0.001

0.0001
o 20 40

Frequency (Hz)

60

Figure 3. Rms error versus frequency for the true and
indicated error functions. (m =8)

deconvolution was calculated by integrating the inverse
Fourier transform of the frequency domain result with a
complementary operator. The filter errors of the two
complementary operators compensate each other so no net
errors accrue.
Analytical Signals

1.2

OUT PUT

0.05 0.1

Time(s)

0.15 0.2

Figure 4. Waveforms, with estimate optimized using
transition region weighting. Input and estimate are
coincident within plot resolution.

Unit Gaussian step-like input signals (thecumulative density
function of a Gaussian distribution) and unit-area Gaussian
impulse responses were used with three different bandwidth
ratios (bandwidth of the system response to the equivalent
bandwidth of the input signal): 2/3, 1,and 3/2. For each of
these, Gaussian noise (a =2 x 10.4) was added to the
convolution result, yielding zen). For several different
values of m, at was optimized to minimize the cost function
given in (11). The results are presented in Table I. The
"Error-in-Error" column reports how far off the found
minimum error is from the true minimum error, i.e.,

Error-in-Error =

100 * (found rms error) - (true rms error) (12)
(true rms error)

For all of the results in Table I, uniform weighting, wen),
was used. Note that in all cases, the indicated error
optimizationfound a solution quite close to the true optimal
solution, indicating that the optimization method itself adds
very little to the overall estimation error.

80

Real Signals
In other simulations, the input signal was obtained from
actual measurements of a step-like signal. The measurement
data was first low-pass filtered to minimize residual high
frequency noise components added by the measurement
system. This filtered input signal, x(t), 0 ~ t ~ 1, with an
equivalent bandwidth of 23 was convolved with a "rounded
second-order" impulse response vet) with an equivalent
bandwidth of 22. By adding noise nit) to the result, the

Table I
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output z(t) was produced. Four different levels (rms value)
of noise, n:(1), ranging from lOll V to 10m V per volt of step
amplitude were added to the convolution results. The portion
of these signals lying between t= 0 and t = 0.2 is plotted in
fig. 4 (from t =0.2 to t = I, the signal is settling and plots of
that region are less revealing). Input signal estimates, i(n),
were produced using the proposed indicated error method
as well as Dab6czi's errOr energy regularization method.
Filters of the form given in (7) were used with the indicated
error method, while the regularization filter in (5) was used
with Dab6czi's method. With the former, optimization was
performed using uniform weighting (wu(t) = I for al1 t),
transition region weighting (W,.(t) =I in the transition region
and w(t) =0 elsewhere), and settling region weighting (ws(t)
= 1- wT(t). The comparative results are plotted in fig. 5 as
the ratio of the proposed (labeled neU') deconvolution errors
to the Dab6czi en"or-energy deconvolution errors. The errors
were computed using the three different weightings to show
how well each method performed in the different regions of
the waveform. The weighted error computation is given by

E
II.

N

L [w(n) ·(x(n) - x(n»]2
11=0

1/2

(13)N

L w(ll)
1/=0

In the cases where the errors are evaluated in the same
region of the waveform that was optimized (those shown in
fig. 5), the new method produced errors on the order of
(ratio;::: 1.0)those produced by the error-energy method for
noise levels of I mVand 10 mY, and significantly smaller
errors (ratio < 1.0)for lower noise levels. Optimizations of
the transition and settling regions wereparticularly effective.
Fig. 6 plots the same errors for the proposed method, under
optimized conditions, on an absolute rather than relative

r

I

,

,

scale. Note that the errors in many cases are substantially

larger than the level of added noise. This degree of noise ,

amplification is largely due to the relative bandwidths

involved, and points out the importance of minimizing the ,error under such conditions.

Additional remarks and observations ,

An analytical justification for the efficacy of the indicated
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Figure 5. Deconvolution error ratios: (new method) 7 (error-I
energy method).
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Figure 6. RMS errors from proposed method, at the noise
,levels given in fig. 5.

error cost function has not been found, although intuitive I

arguments can be made. First note that the function Y(w) =
IF(w)( l-F(w)) has a band-pass form. In fig. 7, a typical raw

deconvolution result, Z(w)N(w), is plotted along with Y(w),
Iwhere F(w) is nearly optimal. For Z(w)N(w), the region

before the minimumis dominated by signalcomponents, and
I

the region after the minimum is dominated by amplified
noise components. With no time-domain weighting, the

l
optimal filter parameters are found (equivalently) by
minimizing the energy in the product of these two

frequency-domain functions, and that minimum will occurl
when the filter - 3 dB frequencyequalsthe

frequency at whichZ(w)N(w) is minimum, and the spectrall
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BW Exponent True Minimum Error-in-Error
Ratio (m) Error (x 10--1) (%)

2/3 10 16.7 4.2

I 10 5.08 :U

3/2 10 2.98 3.7

2/3 7 16.7 3.4

I 7 6.05 0.7

3/2 7 3.45 1.0

2/3 4 28.3 5.9

I 4 9.14 0.0

3/2 4 4.45 0.9



"width" of yew) is minimum, i.e., where m is maximum. In
practice, at very large m the found minimum is based on a
very small number of spectral lines, causing large variance
due to noise. Therefore, m is restricted to values ~ 14 to
provide more spectral averaging. The spectral components
of Z(w)N(w) that are "sampled" by yew) are good
representations of the deconvolution error. They contain the
(significant) noise components that are passed by F(w) and
therefore included in X(w), as well as the (significant)
components of X(w) that are filtered by F(w) and thus
excluded from X(w). (Note that these two components are
added in the indicated error, while their difference is found
in the true error; however, since they are uncorrelated, the
energy in both cases is the same.) Of course, as in all
deconvolution processes, any component of X(w) that is
significantly below the amplified noise level will go
undetected, which is why it is important to specify the band-
limiting filter that is used.

When time-domain weighting is used, the picture is more
complicated:The weighting changes the effective frequency
content since [Z(w)N(w)][Y(ev)] is convolved with the
spectrum of the weighting function. As a result of this
smearing and the phase relationships between the indicated
error function and the weighting, the minimum error in
some cases occurs at low values of 111(e.g., 2 to 4),
particularly when the settling region is selected by the
weighting.

There is a false minimum atf =0 in the curve of cost (II)
versus af of the noise filter. In practice, this minimum is
excluded and the remaining minimum is used in the
optimization.

Conclusions
A newdeconvolution approach has been developed that uses
analytic filters of higher order Gaussian form to control
noise amplification while minimizing time-domain ringing.
The filter parameters are optimized using a non-iterative
method based on an indicated error cost function. The
indicated error, computed from the raw deconvolution and
a bandpass filter that is derived from the noise filter, is
similar in shape to the true error, and reaches a minimum at
nearly the same filter parameters that minimize the true
error. Since the indicated error can be represented in the
timedomain, time-domainweighting can be used to optimize
the deconvolution in selected regions of the waveform. For
typical step-like waveforms encountered at NIST, the
approach performs as well or better than the error energy
regularization method that has also been under
consideration, and offers the additional advantage that the
analytic noise filter can be specified easily and used to
clarify the uncertainties associated with the measurement
and deconvolution process.
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