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Bounds on Frequency Response Estimates
Derived from Uncertain Step Response Data

John P. Deyst and T. Michael Souders, Fellow, IEEE

Abstract- The frequency response of a system can be esti-
mated from measurements of its step response; however, many
error sources affect the accuracy of such estimates. This pa-
per investigates the effects of uncertainty in the knowledge of
the step response. Methods for establishing uncertainty bo'uods
for the frequency response estimates are developed, based on
the corresponding time-domain uncertainties associated with the
measured step response. Two methods are described. One method
produces bounds that are often very conservative. The other
method produces bounds that are more realistic. End effects that
inftuence the bounds are also considered. A simulation example
and an application of the bounds are presented.

I. INTRODUCTION

PREVIOUS work has shown that the frequency response
of digital oscilloscopes, analog-to-digital converters, and

linear systems in general can be effectively estimated from
discrete-time step response measurements (e.g., [1]-[7]). Ear-
lier studies have analyzed error sources affecting the fre-
quency response estimates, notably, noise, jitter, aliasing,
and derivative estimation errors. However, an obvious and

important source of uncertainty-the systematic uncertainty in
the knowledge of the step-like waveform-has been neglected.
In this paper, we derive uncertainty bounds for frequency
response estimatesbased on the systematic time-domain uncer-
tainty bounds of the measured step waveform. Typically, such
bounds are in the form of an uncertainty envelope around the
measured waveform, enclosing the "true" waveform. How-
ever, an infinite combination of possible error waveforms
can exist within a given uncertainty envelope. We propose
two methods of producing frequency response uncertainty
bounds. The methods utilize the limited information provided
by uncertainty envelopes of measured step responses.

A simple method, based on Parseval' s Theorem, provides
provable upper bounds, but has the disadvantage that it is
often overly conservative; i.e., for many time-domain un-
certainty envelopes, the Parseval bounds greatly exceed the
largest possible frequency-domain errors, The other method,
a so-called "envelope-modulation" approach, produces more
realistic, provable bounds that can be reached (at least in some
pathological cases), but not exceeded.

We also account for errors introduced by "end effects"
that occur in the required computations. Finally, we demon-
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Fig. 1. (a) An ideal step source in series with a linear network, h(t); this can
model a step-like waveform generator. (b) The circuit produces the waveform
Sa(t) = s(t) * h(t), measured to be Sm(t) with uncertainties u+(t) and
u_(t).

strate their perfonnance with an example, and describe an
application.

II. BACKGROUND

Fig. 1(a) shows a source producing an ideal unit step
wavefonn, s(t), that is input to a linear network, producing
the step-like wavefonn Sa(t). The network is characterized by
impulse response h(t) and frequency response H(f); sa(t) is
its step response. An ideal step source in series with a linear
network can be used as a model for a step-like waveform
generator. The network h( t) represents the physical realization
of the generator. Such a network model is a useful construct
only for certain purposes: while the real, causal, step-like
wavefonn output sa(t) can always be represented as the result
of such a combination, it is unlikely that an actual wavefonn
generator would in fact be a linear system.
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The value of Sa(t) is not known exactly, but is estimated by
careful measurement to be the waveform sm(t), with negative
and positive uncertainties u_(t) and u+(t), respectively. It
is assumed here that the uncertainties have been correctly
determined such that Sa(t) is between Sm(t) + u_ (t) and
Sm(t) + u+(t), as shown in Fig. l(b); or equivalently, the
measurement error, e(t), is within the uncertainty envelope
defined by u_(t) and u+(t) for all t values of interest

e(t) = Sm(t) - sa(t) (1)

Sm(t) + u_(t) ~ sa(t) ~ sm(t) + u+(t) (2)

u_(t) ~ -e(t) ~ u+(t), where u_(t) ~ 0
and u+(t) ~ O. (3)

[Note the negative sign in front of e(t) in (3), due to the way
e(t) is defined in (1).] Determining the uncertainties u_(t)
and u+(t) correctly, such that they enclose the error with
acceptable confidence but are not too large, is a significant
problem that we do not venture to solve here; we simply
assume that u_(t) and u+(t) are correctly determined.

We also assume here that the available data are discrete-time
(sampled) versions of sm(t), u_(t), and u+(t)

Sm[n] = sm(nT)

ern] = e(nT)

u+[n] = u+(nT)
and

u_[n] = u_(nT), for n = 0, 1,2, ..., (M - 1) (7)

where T is the sampling interval, n is the sample index, and M
is the number of samples in the data record. To avoid spectral
leakageerrors, the recordeddata epochmust have sufficient
duration (M . T) to allow virtually complete settling of the
step-like signal [1]. Since the signals may have frequency
components above the Nyquist frequency (1/2T), aliasing
may have occurred in the sampling process. Uncertainties for
aliasing errors have previously been developed [2], [3], and
are discussed further below.

Given sm[n], u+[n], and u_ [n], we want to estimate the
frequency response of the network, H(f), and its magnitude
and phase uncertainties. The frequency response H (f) is the
continuous-time Fourier transform (CTFT) of h(t), which
is the derivative of the step response, sa(t). H(f) can be
estimated from the measured step response data, sm[n], by a
number of methods [1]-[7]; here we apply the method of [2],
[3], [7]. The data record Sm[n] is differentiated to obtain a
sampled estimate of the impulse response, hm[n]; and then
Hm[k], the discrete Fourier transform (DFT) of hm[n], is
computed

M-l

( )-j27rkn

Hm[k]= ~ hm[n] . exp M .

In order to use Hm[k] to estimate values of H(f), it must be
normalized by the sampling interval T, as indicated by [8], [9]

Hm(fk) = T(Hm[k]).
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Note that the DFT produces discrete values, corresponding to
certain frequencies fk

k
fk = MT'

M
for k = 0, ::1:1,::1:2,..., ::1:-.2 (10)

(4)

(5)

(6)

Likewise, the uncertainties of the frequency response estimate
are calculated here also just at the discrete frequencies fk.

If the differentiation of sm[n] is performed by convolving
it with a differentiation filter (e.g., see [10]), then more than
M samples of sm[n] need to be differentiated, to avoid end
effects. For example, if the length of the differentiation filter is
Md samples, then at least (M + Md) samples of Sm[n] should

. be differentiated. After differentiation, at least (Md/2) samples
" should be removed from both the beginning and the end of

the resulting record to reduce end effects, leaving a record
M samples long of the impulse response estimate, hm[n].
However, if the differentiation is performed using the first
difference operator, only M samples of Sm[n] are needed, if
care is taken at the end of the record [2]. Even following this
procedure, some end effects will still occur; they are discussed
later.

We recommend that the uncertainties u+[n]" and u_[n] be
used to bound only the systematic errors associated with the
estimation of Sa(t): e.g., unknown or uncorrected systematic
measurement errors. Separately, variances of Hm[k] due to
random errors of sm[n] can be calculated with closed-form
solutions, if the usual assumptions are made concerning the
statistical properties (e.g., see [2], [3]). Uncertainties due to
aliasing and nonidealities of the differentiation of Sm[n]should
also be determined separately [2], [3]. The random variance
estimates can then be combined with the aliasing and differ-
entiation uncertainties, and with the systematic uncertainties
developed here, to arrive at expanded uncertainties for the
frequency response estimates [11].

III. BOUND ESTIMATES

The main contribution of this work is providing methods
for calculating the uncertainties of the magnitude and phase
response estimates, from the time-domain uncertainties of
the measured step response. The problem is difficult because
there are an infinite number of different possible error signals
that can occur within given time-domain uncertainties, each
having a differe.ntFourier transform. Two methods to calculate
frequency response uncertainties are presented below.

(8)

A. Parseval Method

. The first method applies Parseval' s Theorem to equate the
total possible error energy that can be enclosed by the time-
domain uncertainties to a maximum possible error energy in
the frequency domain. The magnitude response uncertainties
for a given frequency are then determined by assuming that all
the error energy could be concentrated only at that frequency.
For each data sample, find the maximum magnitude, Umax[n],
of the uncertainties u_ [n] and u+[n]

Umax[n]= max (Iu+[n]l, lu_[n]1)
lu+[n]l + lu_[n]l + 1(lu+[n]l-lu_[n]1)1

2(9)
(11)
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The magnitudes of the errors ern] are less than or equal to the
maximum uncertainty magnitudes, umax[n], so their summed
energy will also be less than Qf equal to Um~~, the summed
energy of Umax[n]

M-l N-l

Umss = L (umax[n])2~ L le[n1l2. (12)
n=O n=O

The summed time-domain energy of the sampled error wave-
form can be related to the energy in its OFf, E[k], using
Parseval's Theorem for the Off [12]

M-l M/2

L le[nJl2 = ~ L IE[K1I2.
n=O k=-M/2+1

. .(13)

Expressions (12) and (13) result in a bound on IE[k]!, even in
the worst case, where all the error energy is concentrated in
only one frequency component

IE[k]! $

{

1M "2'4n..
..;M . Umss

~or k -:f:l :f:2 ... :f:(M - 1)- , , , 2 '
M

fork = 0, :f:2.
(14)

Since we want the error bounds on our estimate of the

frequency response, which is the CTFT of the derivative of the
step response, we have to both normalize as in (9) and account
for the differentiation, by multiplying the bound determined in
(14) by T and by Ij2711kl = 127rk/MTI

. VlIP+ (Ik) = - VlIP- (!k)

12;: 1J M "2'4nss,

for k -:f:l :f:2 ... :f:(M - 1)- , , , 2 '

1

27rk

I
M VM. Umss,

M
for k = 0, :f:-.2

=

VlIP+(lk) and VlIP-(!k) are the positive and negative "Parse-
val" magnitude response uncertainty bounds, respectively, (the
subscriptedII symboldenotesmagnitude)beforecorrectionfor
end effects.

B. Envelope-Modulation Method

The envelope-modulation bounding method was originally
developed empirically, by bounding of the assumed worst-case
errors: square waves that are offset and amplitude-modulated
so as tojust fitwithinthegivenunce$inties u_[n] andu+[n],
as shown in Fig. 2. The assertion that such modulated square
waves would produce the largest frequency-domain errors was
based on two considerations. First, it seems apparent that the
greatest frequency-domain errors will occur when the time-
domain error waveform is periodic, concentrating the spectral
energy into a small number of harmonic frequencies. Second,

-- -- -----_.
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~
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Fig. 2. An example of a possible worst-case error waveform. -e( t): a square
wave that is amplitude-modulated and offset (solid) so as to just fit within the
uncertainty bounds u+(t) and u_(t) (dotted).

of all periodic signals having a fixed peak amplitude a, square
waves contain the largest single spectral component (i.e., the
fundamental sine component, having spectral amplitude of
4a/7r).

To determine the envelope-modulation bounds, we first
calculate the average of the uncertainties, uav[n], and their
halved difference, uhd[n]

uav[n]= u+[n];u_[n],

[ ] u+[n] -u_[n]Uhdn = .
2

(16)

(17)

A possible worst-case modulated-square-wave error, ej,o[n],
is .thus

ej,o[n] = -uav[n] - uhd[n]. qf,o[n] (18)

where qj,o[n] is a square wave with levels +1 and -1,
frequency I, and phase e. At ! = 0, qf,o[n] is a dc level
of +1 or -1. The DFf of ef,o[n] is

Ef,O[k]= -Uav[k] - Uhd[k]G:>Qf,o[k] (19)

(15)

where G:>denotes circular convolution [13], and Uhd[k] and
Uav[k] are the DFf's of uhd[n] and uav[n], respectively.
Convolutions such as (19) are complicated, due to aliasing and
the nature of the spectra of square waves. Note that the square-
wave frequencies. !, are not required to be Off bin centeJ
frequencies, !k. Consider an example of uncertainties u_ [n:
and u+[n], and one possible worst-case error ef,o[n] showr
in Fig. 2. For simplicity, the uncertainties are symmetric anc
uav[n] = 0 in this example. The worst-case magnitude errors
found using (19), over many tested values of ! and e, an
shown by the solid curve in Fig. 3.

For all examples of uncertainty sets, u_ [n] and u+[n]
and errors, ef,o[n], tested by us, an upper bound on tht
frequency-domain error magnitudes, IEf,o[k]!, was found t<
be IUhd[O]!+ IUav[k]!

II}:f(IEf,e[k]1)$ IUhd[OJI+ IUav[kJl. (20

This empirically-determined bound equation was then assume,
to apply to all possible errors. For the last example, the boun,
is shown by the dotted curve in Fig. 3.

In fact, (20) has recently been mathematically proven [14] t.
bound all possible frequency-domain error magnitudes, IE[k]



Such an impulse is impossible to add in practice since ern]
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o . 0 and Its denvatlve are unknown. Thus, the frequency-domam
frequency [GHz] 1 bounds of (15) and (21) have to be expanded by ~max at all

Fig.3. Maximum magnitude response errors (solid), f~r ampli- value~ of k. There~ore, the Parseva! and envelope-modulation
tude-modulatedsquare-wave errors of many tested frequencies and magmtude uncertamty bounds, adjusted for end effects, are
phases,that fit the uncertaintiesshownin.Fig.2. Also shown is IUhd[kJl.' UI1Pf:(Ik) and Ullef:(Ik), respectively
(dashed), and the bound on the magmtudeerrors, IUhd[OJl(dotted).
Frequencyrange is up to Nyquist(lf2T). U (I ) - U (I )IIP+ k - - IIP- k

1

27rk

I JM . Umss t.M 2 + max,

for k = :f:l, :f:2, ..., :f:(M - 1),
. 2 (23)

I

27rk

l
M viM. Umss + ~max,

M
for k = 0, :f:T,

Ulle+(Ik) = -U11e-(!k)

I

27rk

l
= M (IUhd[O]\+ IUav[k]1)+ ~max,

M
for k = 0, :f:l, :f:2, .. ., :f:-.2
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Fig. 4. Phasor diagram showing relationship of phase response uncertainty

bound, U4>+(/k), to magnitude response uncertainty bound, UII+(fk). and
estimated frequency response Hm{fk),

The proof was given to us too close to press time, but it will
be provided in a future paper.

As with the Parseval bounds, we multiply the bound deter-
mined in (20) by !j27rIk I and also by T

Vile+(Ik) = - Vile-(Ik)

I

27rk

l

'

= M (IUhd[O]\+ IUav[k]I),
M

for k = 0, :f:l, :f:2, .. ., :f:-. (21)2

Vile_+(!k) and Vlle-(Ik) are thus the positive and nega-
tive "envelope-modulation" magnitude response uncertainty
bounds, respectively, before correction for end effects.

C. End Effects Corrections

The preceding sections make use of DFf's, and use multi-
plication by !j27rII = (27rkj MT) to correspond to differenti-

ation. Underlying these processes is the implicit assumption
that the error sequence . ern] is. M -periodic, e.g., e[O] =
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elM], ell] = elM + 1], etc. However, ern] and its derivative
are generally aperiodic. In order for the derivative of ern]
to be made M -periodic, an impulse of amplitude equal to
(le[M] -e[O]l)jT would have to be added to it. The maximum
amplitude of such an impulse would be ~maxjT, where

~max = max {1(u+[M] -u_[O])I, I(u-[M] -u+[O])I}. (22)

=

(24)

D. Phase Uncertainties

Corresponding phase uncertainty bounds can be calculated
from the magnitude uncertainty bounds by assuming that error
having magnitude equal to the magnitude uncertainty bound
might be added to Hm(!k) so as to maximally change its
phase. The phase uncertainty bounds are thus

. -1

[

UII~(!k)
]

.
Ucp~(!k) = 8m \Hm(!k)1

(25)

This relationship is illustrated in Fig. 4.

IV. EXAMPLE

A simulation example is useful to illustrate time-domain
uncertainties and how these methods transfer them to the
frequency domain. Fig. 5 shows a hypothetical measured step-
like waveform 8m[n] having amplitude of 1 V and ",500 ps
transition duration. The systematic uncertainties assigned to
the measured waveform allow for a possible 1% overshoot
in the true waveform, plus a decaying settling uncertaInty of
about 3 ns, and a constant uncertainty of 100J.LV (0.01%) out
to the end of the record, to model typical digitizer systematic
uncertainties. The simulation sample interval is 50 ps, and
the record size is 2000 samples. Fig. 6 shows the resulting
magnitude response estimate, IHm(lk)l, and phase response
estimate, LHm(!k), and their corresponding Parseval and
envelope-mQdulation uncertainty bounds, calculated by the
methods of Section III. For clarity, the phase LHm(!k) has
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50

Fig. 5. (a) Simulated measured step-like waveform 8mlnJ. and (b) the
top portion of 8mInJ (solid), with uncertainty envelope (dashed). Note the
different scales for (a) and (b).

been unwrapped, and the linear (delay) part subtracted, as in
[2].

Even for the moderate amount of time-domain uncertainty in
this example, the magnitude and phase response uncertainties
are significant at higher frequencies.' Significant amounts of
the magnitude and phase response uncertainties are contributed
by the low-level (100 JLV)constant time-domain uncertainty,
which allows for the possibility of significant narrowband
error energy. Note also that as the magnitude response rolls
off, the phase uncertainties become large, as expected from
consideration of (25) and Fig. 4.

The Parseval bounds are very conservative (wide) for this
example, in part because they do not account for the short-
duration nature of most of the time-domain uncertainty.

V. ApPLICATION

A practical application for the bounds on Hm(!k) developed
above is in determining the uncertainties of estimating the
frequency response, HD(!), of a separate device under test
(DUT), using sa(t) as the test input to the DUT. Consider

-=.thecase where sa(t) is the output of a step-like waveform
generator, as suggested in Fig. l(a). Let SDa(t) be the output
of the DUT when sa(t) is the input to the DUT. Assume for
simplicity that SDa(t) is somehow measured and sampled with
perfect accuracy, with sampling interval T

SDa[n) = sDa(nT).

(If this assumption is not valid, the additional measurement
uncertainties can be incorporated.) Let HDa(!k) be the DFf

-- --- ___ -0 __ ___ _ +___ _ _ ___

-
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2

.
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Fig, 6, Simulation results showing (a) the magnitude response estimate
(solid), with envelope-modulation (dashed) and Parse val (dot-dashed) uncer-
tainty bounds added; and (b) the unwrapped phase response estimate (solid)
with its corresponding uncertainty bounds added (dashed, dot-dashed).

of the derivative of SDa[n),nonnalized by T as in (9). Decon-
volution of Hm(!k) from HDa(!k) results in HDd(!k), the
estimate of HD(!k) (e.g., [15]). Sophisticated deconvolution
algorithms may be required (e.g., [5]); if so, the uncertainties
found earlier for Hm (!k) can be propagated through such
algorithms (by magnitude division and phase subtraction) to
find the corresponding uncertainties of HDd(!k). However,
if Sm(t) has a much shorter transition duration and settling
time than SDa(t), then throughout the known flat region of
IHm(!k)1 where IHm(!k)1 + UII:f:(!k) ~ IHm(O)I, it may
be valid to use very simple deconvolution to find HDd(!k),
e.g., magnitude division and phase subtraction of HDa(!k) by
Hm(!k). In that case, to first order, the uncertainty bounds on
HDd(!k) are.equal to the uncertainty bounds on Hm(!k).

(26)

VI. CONCLUSIONS

The Parseval bounds are typically very conservative. Only
in the unlikely case of uniform time-domain uncertainties (Le.,
constant uncertainty for all n), is it even possible for the
error energy to be concentrated into just one frequency. The
envelope-modulation bounds are tighter, since they account
for the shape of the time-domain uncertainties, but generally
are still conservative, because the actual errors probably do
not resemble modulated square waves. But it is important
to note that certain error sources do have square-wave type
characteristics. For example, gain and offset mismatch of in-
terleaved samplers in certain digital oscilloscopes or waveform
recorders can cause square-wave error patterns. If such an
instrument is used to measure sm[n], then much of the error
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energy could be concentrated at a single frequency. Pickup of
clock signals or harmonics of power line frequencies can also
produce significant errors at single frequencies. If persistent
error tones occur, the relative size of the resulting frequency-
domain error increases directly with the time duration of the
recorded step-like waveform. Thus, time-domain uncertainty
bounds that do not decay over time will produce increasingly
large frequency-domain uncertainties as the recorded duration
increases, because such uncertainties allow for the possibility
of persistent error tones.

Obviously, great care should be taken in making the time-
domain measurements, and setting the time-domain bounds
as tightly as the measurements justify. The subject of setting. .
time-domain bounds correctly is a significant problem for
future research. It is worth repeating that the uncertainties
developed here are best used for systematic errors only,
and should be combined with those due to any separated
random uncertainties, as well as those due to aliasing and
differentiation errors, to produce total uncertainties.

An application of the uncertainties developed here is in find-
ing the uncertaintiesof DUT frequency responses estimated by
using the step-like signal Sa(t) as the test input to the DUT's.
A final note is that the n:tethodsapplied here to uncertainties of
step responses can be modified for application to uncertainties
of impulse responses.
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