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Abstract

An approach is presented for optimizing the testing
of analog and mixed-signal devices. The entire
process is performed with algebraic operations on an
appropriate model. The paper demonstrates how this
is accomplished using simple calls with publiec-
domain software. Examples of test results achiewved
using this approach are included.

Introduction

Test engineers are faced with the problem of
developing test routines that will cerrectly sort
good and bad devices at minimum cost, where cost is
usually reflected as test time (or throughput)
together with the cost of test equipment. There are
always tradeoffs to be made in terms of the
completeness of the testing and the confidence that
results; wmore exhaustive testing usually means
greater confidence ar the expense of throughput.

Over the last five years, a comprehensive approach
has been developed at NIST for maximizing the
tradeoffs associated with production testing of
analog and mixed-zignal devices [1-53]. The approach
is based on a simple linear coefficient matrix model
that relates the device response (at all candidate
test conditions}, to a rather small set of
underlying variables.

In this paper, we assume that an accurate model is
available, (Several approaches for developing the
model appear in references [1,2,5]; a follow-up
paper is planned that will address the modeling
issue in more detail. )

Once an accurate model has been developed, simple
alpebraic operations on the model can be used to
perform the following tasks:

1. select an optimum set of test points that will
minimize the test effort and maximize che test
confidence,

2. estimate the parameters of the model from
measurements made at the selected test polints
(useful for alignment operations such as laser
trimming),

3. predict the response of the device at all
candidate test points (from measurements made
at the selected test points) as a basis for
accepting or rejecting units,
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4. calculate the accuracy of the parameter
estimates and response predictions, based on
the random measurement error,

5. test the validity of the model, on-line, so
that changes in the manufacturing process are
constantly monitored, and the model can be
updated.

The purpose of this paper is te explain these
procedures and show how each can be perfermed using
simple calls to routines that are available in both
public domain and commercial linear algebra software
packages, e.g., LINPACK, CLAN™™* and MATLAB. The
routines are computationally efficient, and the most
expensive ones are run off-line (and only once) for
any particular device type or production run.

The approach is quite general and has been
experimentally applied to the measurement of the
frequency response of an amplifier-attenuator
netwvork, to fault diagnosis of a band-pass filrer
using time-domain measurements, and te efficient
linearity tests of A/D and D/A converters. In each
case, the models are unique, but they all have the
same algebraic form. Therefore, the procedures of
analysis are the same, and the resulting testing
strategies are similarly optimized.

4 Hypothetical Example

A large number of hypothetical devices, all of the
same type or model, are being tested as they come
off a production line. The tests consist of
measurements of their behavior under a large
sampling of typical and perhaps extreme imput
conditions. The plots of Fig. 1 show the test
results - the deviations from the ideal behavior -
of the first eight devices. From the test results,
the devices can be sorted into performance bins.
However, even though the latest automatic test
equipment is being used, the tests are very time
consuming to run for so many different input
conditions. Is there a simpler test plan that can
still accurately predict the behavior of future
devices coming off the production line? The answer
is usually yes.

* (Certain commercial products, both software and
test systems, are identified in this paper in order-
to adequately specify the experimental procedure.
In no case does such identification imply
recommendation or endorsement by the National
Institute of Standards and Technolegy., nor does it
imply thacr the products identified are necessarily
the best avajilable for the purpose.
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Fig. 1 Response errors vs. 128 test conditions

for eight units of the hypothetical device. The
scales are in arbitrary units.

In most cases, the nenldeal behavior of analeg or
mixed signal devices is largely determined by a
relacively small number of variables; in this
example, the number happens to be seven. These may
be thought of as the variations of a set of critical
components such as resistances, capacitances, or
transistor transconductances, for example, or of a
set of ecritical process parameters such as dopant
level, mask alignment, or exposure time during
metalization.

Since there are only seven wvariables, only seven
independent equations are required in order to solwve
the system. Therefore, the system response is
actually much more constrained than might be
surmised by looking at the response plots of Fig. 1.
1f the coefficients of the equations are known,

then only seven measurements are required te
completely determine the system. This is
illusctrated in Fig. 2. The seven curves represent
the error signatures of seven variables which
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together can fully describe the performance of any
of the devices coming off the production line. Each
variable contributes more or less of its error
signature, depending on its specific wvalue. Fig. 3
demonstrates that the performance of a device from
the production run can be decomposed inte a weighted
sum of these seven signatures; the weight of each is
the value of the corresponding wvariable.

Each candidate test condition or test point defines
a linear equation in this system; the total error at
each point is the welighted sum of the seven
signatures evaluated at the same test point. In
this example, there are 12E separate equations, one
for each candidate test point. But, as was noted
above, only seven independent equations are needed
to solve the system. This means that only seven
test points actually need to be measured in order to
calculate the values of the seven variables; and
once the wariables are known, the entire behavior of
the device can be calculated at every candidate test
point by appropriately weighting and summing the
seven error signatures. Therefore, the test
engineer really only nmeeds te test the devices under
seven conditions in order to fully characterize them
- certainly a substantial time savings when compared
to the full set of 128 measurements that was
originally considered necessary.
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Fig. 2 Error signatures vs. 128 rest conditions
for the seven variables underlying cthe hyporhetical
example.
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Fig. 3 Decomposlition of response errors of
unic 8, Fig. 1, in terms of the errer signatures of
Fig. 2. The top plot is the response of unit 8; the

remaining plots show the errors after the designated
amount of each error signature is successively
subtracced.

est Foin ction

Remember that only seven equations are needed for
the example with seven variables; but also recall
that the equations must be independent.
Mathematically, this means that none of the seven
equations can be completely expressed as a welphted
sum of the remaining six. There are many different
sets of seven test points that will satisfy this
condition, but there are also many more that will
not. In faet, there are degrees of independence as
well, and what is really best is to find the set
that is maximally independent; this set turns out o
make the process most robust to the effects of
measurement noise. For large problems, the optimal
set of test points is computationally expensive to
find; however, nearly optimal solutions can be found
rather cheaply using an algebraic operation known as

QR decomposition [3]. Computationally efficient
implementations of the QRD operatien are available
in a numsber of public domain and commercial seftware
packages [6,7,8]. These routines operate on the
matrix model, i.e., the error signatures, from
simple calls to the software package. The routines
return a vector of the selected test points and also
give information on the degree of independence
represented by them. From the vector of test
points, the system of corresponding simultaneous
equations is known; this small system of test peints
and equations is walid for every device that is
adequately described by the original model. The
system of equations and test points is stored in
memory for subsequent on-line processing as
individual devices are tested,.

Having made the required measurements at the
selected test points, the system of equations is
solved to determine the walues of the seven
variables, i.e., the weights to be applied to the
error signatures as shown in Fig. 2. Again,
standard matrix software routines are used [1]. The
entire behavior of the device at all of the 128
candidate test peints is now easy te predict: simply
weight the seven error signatures by the
corresponding values from the solution, and sum the
signatures together; the result is the behavior for
all test conditions, including the few that were
actually measured, and the many that were not.

Barring problems with the test equipment ftself,
there are two sources of prediction error with this
approach: measurement noise, and inadequate
modeling. Measurement noise is a significant
problem because it corrupts the parameter wvalues
that are estimated in the intermediate step;
consequently, the predictions made from these
estimated parameter values will be in error. A
measure of this error is the prediction wariance,
and it can be computed ahead of time by knowing the
original model and the selected test points [3].
{Prediction variance is the ratic of the variance of
the prediction to the variance of the measurement
noise. It can be evaluated at every candidate test
point given a set of selected test points.) A good
selection of test points is therefore one that
minimizes the prediction variance. If the
prediction variance is deemed too high however, even
with a good selection, then it is always possible te
further reduce the errer by adding more test points.
This will result in an overdetermined system of
equations that can be solved using least squares
techniques., If the additional test points again
constitute a good selection, the prediction variance
will be reduced by approximately the ratioc of the
number of test points to the number of wvariables,

Reducing the noise is net the only advantage of
selecting more than the minisus number of test
points; the redundancy permits model errors to be
detected as well. By selecting additional test
points, a least squares solution is found and the
residuals of the solution at the test points cam be
generated. Examination of these can give a good
indication of the accuracy of the model; a good
model will produce residuals that are randomly
distributed and have a standard deviation comparable
to that of the measurement noise.
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Hodeling

There are three basic types of models that can be
used in this approach: physical, a prieri, and
empirical. These will be discussed briefly to pive
a more complete idea of the overall approach that is
being proposed; however, for the details of model
development, the reader is referred to references
[2-5], and te a comprehensive follow-up paper which
is planned for ITC91.

Physical models are developed using simulation tools
when a reasonably complete description of the device
is avallable. These models take the form of
sensitivicy matrices, where the individual error
signatures represent the sensitivity of the response
to deviations of the device's components from their
nominal values. For example, if the device's
topology (i.e., connection matrix) is knownm,
together with the nominal component values, then a
simulater such as SPICE can be used to compute the
sensitivity matrix. These models correspond to a
first order Taylor’'s expansion, and are useful so
long as the components of the tested devices remain
reasonably close to their nominal values.

A priori models are those that use a set of vectors
that are chosen to represent the device based on
more general considerations. They are usually
comprised of a relatively small subset (of a
complete set) of basis functions that is capable of
approximacing the device performance to the required
aceuracy. For example, subsets of the Walsh
functions have been used for some applicatiens,

Empirical models are learning-based, and are
obtained by numerically analyzing the data from
exhaustive testing of representative units coming
off the production line. They are based on the
premise that a selected lot of devices will manifest
all of the degrees of freedom or variability of the
manufacturing process. For example, it can be shown
that seven of the eight response vectors of Fig. 1
could also comprise a complete model for the device
in the hypothetical example. A model can be formed
from these vectors simply by substituting response
wectors (1) through (7), for example, for error
signatures a, through a, in the example. These
models require no detailed knowledge of the internal
architecture of the device or other design
information, they only require a knowledge of what
the expected, ideal performance should be. It will
be shown in the follow-up paper that empirical
models have much of the power of physical models;
however, they have limited use in fault diagnosis,
alignment, and trimming applications because the
physical significance of the variables is often
ohscure.

When developing & model, it is important to ensure
that the set of vectors or error signatures that
comprise the model are all independent, otherwise a
complete solution cannot be found, The QRD
algorithm can also be used for this purpose. As in
one of the examples to follow, model vectors derived
using any of the above approaches can be combined to
form the completed model.
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Fig. 4 Pictorlal representation of Eq. 1 for
device 8. The dots indicace the test points thac
are subsequently selected. The row-reduced vector
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Mathematically, the above relationships can be
represented by the follewing ({refer to Fig. & for
the relationship to the previous example):

v o= A x" (1)
yl - ¥ F% R y:]r {z the response

vector of the kth device for all m
candidate test polints

wvhere

the columns of matrix A are the n model
vectors, a;

a, = [a;, 842 °

vector

+ a;,1" is the jth model

e - x£]7 is the vector of n
error parameters for the kth device
{corresponding to each of the n model
vectors)

and where superscript T represents the transpose
operation which interchanges row and column vectors
{and therefore alse interchanges their subscripted
indices).

Therefore, the response of the kth device at the ith

test point is given by

n
¥io= 2oy, ) = 2, % + @ gxh + -
i=1

-sih i R

1f there are n error paramebters, LI then nnly n
such equations are required te solve for the x,'s;
i.e., & reduced system of equations is sufficient:

¥ - K= {3)

where = designates the reduced set of n test

peints.

As noted above, the reduced set of test points used
in Eq. 3 is obtained from the full model in Eq. 1
via a call to the QRD operation. Using a standard



matrix routine, Eq. 3 is solved in terms of the
reduced set of measurements:

FE - poigE (4}
where * designates varisbles estimated from
measurement data, and (#)”! designates the
inverse (in general, Eq. 4 is solved
without explicitly calculating the inverse
matrix).

1f more than the minimum number (n) of test points
is selected for redundancy, then X is no longer
square, i.e., there are more rows that columns, and
Eq. 3 is solved uslng a least squares approach:

£~ (KT K)-IAT g (5)

In this case, the residuals of the least sgquares
solution can be computed as

P S & (&)

The rms value of ¢* iz & good measure of the
accuracy of the model; it should not be appreciably
larger than the measurement noise.

A good strategy for adding addicional test points is
to calculate the predietion variance at all
candidate test points based on the test points
already selected, and then gselect as the next test
point the candidate point with the highest
prediction variance. The process is repeated until
the maximum prediction variance is reduced to the
desired level. The normalized prediction variance
can be computed as

ol/a? = diag [A(K'E)7!AT] (7)

where diag [#] denotes the vector formed from the
diagonal elements of [#], and ag is the m-
dimensional wvector of prediction variances, and o7
is the wvariance of each measurement, assumed to be a
constant.

Having estimated the variables using either Eq. &4 or
5, the entire response is predicted at all candidate
test points, y*, by performing the matrix
multiplication in Eq. 1.

Mathematical Software

All of the mathematical operations described above
can be performed by calls te the routines in
LINPACK. LINPACK is a collection of Fortran
subroutines developed to provide efficient solutions
of linear systems and related problems. This is
public domain software and is available free of
charge or for a nominal distribution charge from a
number of sources, including the original developers
at the Argonne National Laboratory. A very
informative users' guide [6] is alse available that
deseribes the software code and how te use the
routines to efficiently solve linear system

problems.

The LINPACK routines have been integrated into other
mathematical software programs which add graphical

routines, a convenlent human interface, and
automatic generation of matrix and vector variables,
These integrated programs make experimentation with
the modeling problems described in this paper quite
eagy to perform. Two such integrated programs are
MATLAB and CLAM. MATLAE iz available in both a
public domain version and in a commercial wersion,
and CLAM is a commercial product. Both products are
available for a number of computer types. The
computations done for this paper were performed on a
Sun™ 31/80 workstation using CLAM software. Below
is a brief description of the programs written in
CLAM to solve the problems described. The MATLAB
programs would be very similar.

The mode]l matrix A is filled either with data
generated by routines used to compute a priori
vectors or the hypothetical wvectors, or filled with
data read from files for the empirical wectors.
Similarly the measurement error vector ¥y is filled
with random numbers or data read from files of
device data. The first operation in the modeling
effort is to check the model vectors to make sure
they are relatively independent. If they are not,
the solutions can have significant errors. With the
full model matrix in A, which has m rows
corresponding to the candidate test points and n
columns corresponding to the model parameters, use
the QR function as follows:

QR(A, . RL,pl}

The matrix Bl and vecter pl are automatically
generated; pl is an n-dimensional wector giving the
order in which the parameter vectors were selected
and Rl iz a triangular m by n matrix. (The lack of
a matrix name between the commas indicates that the
( matrix will mot be genmerated in order to minimize
memory requirements.) The diagonal elements of Rl
give an estimate of the condition (or degree of
linear independence) of the submatrices of A, formed
by adding the model wvectors in the order given in
pl. The diagonal of the Rl matrix is referenced as
R1i{0} and the condition estimate values are given by
normalizing with respect to the first diagonal
element R1(1,1). Thus,

condl = R1{0}/R1(1,1}

puts the condition estimates into the n-dimensional

vector, condl. The importance and interpretation of
these numbers will be described in a subsequent
paper on modeling. Suffice it te say mow that the
eondition estimate for the last vector included in
the model should not be lower than the ratic of the
average of the measured error values in ¥y to the
mEasurementc um:erl:ainty. &,

The initial test points are selected using the same
QR function. The QR function always operates by
selecting columns from a matrix. Thus, to select
test points which cerrespond to the rows of A, use
the OR functionm on the transpose of A. In CLAM, the
transpose is designated by a prime, ® ' ".

Qr{A*, R2,p2)

selects the test points as the first n values of the
m dimension vector p?, chosen by
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p2r = sort{p2({l:n))

The sort function puts the test points inte
ascending order. As in the model vector selection
described above, the diagonal of the R2 triangular
matrix gives an estimate of the condition of the
submatrices formed by adding the rows of A in the
order given in p2. In general, if a model with a
good condition estimate was selected in the first
operation, the condition estimates for the test
point selection will be good for all the n points
selected. The reduced model matrix, Ar, (called X
in the previous section) is chosen by

Ar = A(p2r,:)

This selects all the columns, designated by the
colon, and the selected test points or rows
designated by pir.

The prediction variance for the reduced model gives
the expected variance for all candidate test points
relative to the measurement variance, o<, at the
selected test points. The prediction variance as
described in the previous section is the diagonal of
a large matrix. The diagonal elements alone can be
calculated with the following code:

Temp = A/(Ar" * Ar)
Temp = Teap .* A
pv = sum{Temp, ®column)

where the matrix, Temp, is used for temporary
storage, the " * " desgipnates matrix

multiplication, the " / " represents right matrix
division, the " _* " represents element-by-element
matrix multiplication, and the sum({-,#columm)
designates the sum over the columns of a vector or
matrix. pv is an m-dimensional wvector of the
prediction variance for the reduced model Ar, i.e.,
for the selected test points corresponding to the
rows of Ar, and for the model, A.

Additional test points can be selected that will
minimize the prediction variance by first selecting
the test point corresponding to the largest
prediction variance in pv. The row corresponding to
this test point is added te Ar to get a new model
Ar. As above, the prediction variance for the new
reduced model is calculated and the new largest
prediction variance used to designate the next
additional test point. This process is repeated to
add as many test points as desired te the n original
test points selected by the QR function. Note that
the same test point may be selected more than once
with this procedure. Thisz means that the test point
iz to be measured independently more than once, so
that the measurement uncertainty at that point is
reduced. If this is not desired, the routine can be
modified so that test points are only selected once.

With the complete number of selected test points, ¢,
and the corresponding reduced model matrix
determined (still referred to here as pr and Ar
respectively), this concludes the preproduction
operations. These operations are performed only
once for each production device or type. For each
device k measurements are made at the selected test
points and subtracted from the nominal er ideal
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performance to give the reduced measurement error
vector, yrk, for device k. The modal parameters for
that device, xk, are estimated with the following
code

xk = Ar\yrk

wvhere " % * represents left matrix division. The
estimated model parameters are used te generate the
predicted errors, ypk, for all m candidate test
points with

¥Ypk = A * xk

1f the rumber of test points, t, is greater than the
minimum number, n, then the predicted errors at the
measured test points are not the same as the
measured values. The difference or residue is
useful for estimating the capability of the model to

prediet the performance of device k. The residue
for the k'th device, res_k, is caleculated with

res_k = ypki(pr) - yrk

The root-mean-square of this vector, rms_k, is given
by

ms_k = sqrt{sum(res_k .* res_k. #column)/t)

where sqrt(-) gives the square root of a variable,
sum{ -, #column) gives the sum of a column vecter,
and t iz the total number of test measurements, To
indicate a satisfactory fit of device k to the
model, the value of rms k should be of the order of
the measurement uncertainty, o.

Test Examples

These methods have been applied experimentally to
several different analog and mixed signal testing
problems. Two examples will be presented here:
integral nonlinearity (INL) testing of an A/D
converter, and time domain testing and fault
diagnosiz of a bandpass filter. The first example
illustrates the savings in test time that can be
achieved in a practical mixed-signal application,
and the second example shows how the approach can be
used to optimize circuit testabilicy.

A/D Converter

As part of a cooperative effort with Teradyne, Inc.,
the approach was applied to 128 units from twe
production runs of a 13-bit, self-calibrating A/D
converter. The INL tests of the devices were
performed by Teradyne staff using a Teradyne model
4520 test system. An 18-parameter model of the
device-type was developed using a combination of a
priori and empirical modeling techniques. The
empirical modeling was performed using exhaustive
test data (all B192 codes) from the first 50 units.
From the model, 18 test points (codewords) were
selected using QRD, supplemented with an additional
46 selected to minimize the maximum prediction
variance, for a total of 64 test codewords. The 78
devices that were not used in the development of the
mode]l were then alsc tested at all codez. From the
all-codes data for each device, the data
corresponding to the selected codes was used to



estimate the parameters of the model (Eq. 5) and the
parameter estimates were used in turn to predict the
response at all codes (Eq. 1). The predicted errors

were then compared to the measured errors at all
codes. Typical test results are plotted in Fig. 5.
The top plot shows the measurement data at the 64
selected codes, the middle plot shows the predicted
results for all codes, and the bottom plot shows the
errors im the prediction, i.e., the difference
between the measured and predicted results at all
codes. The rms and peak prediction errors are 0,024
and 0.083 least significant bit (lsb), respectively.

Converters such as these are typically sorted
according to their maximum INL. In Fig. 6, the
error in predicting the maximum INL is plotted for
77 of the 78 devices; for comparison, the dashed
lines represents the effective noise level in the
measurement process, obtained by taking the standard
deviation of repeated measurements of the same
device., A positive error indicates the predicted
maximum is smaller than the measured maximum, It
can be seen that the serting error rate based on the
limited, 64-point test would be of the same order as
that achieved using conventional all-codes testing
involving B192 codes. (The 0.016 lsb positive bias
in this plot is likely the result of measurement
noise in the all-codes data which would tend to
increase the measured peaks.)

The device mot included in Fig. 6 was defective.
This condition was flagged during the test frem the
compucation of model error using Eq. 6; the rms of
the residuals of the least squares fic was 0.522 wvs.
a preset bound of 0.04. Even so, the predicted
maximum for this device of 6.04 lsh’s was reasonably
close to the measured maximum of 5.36 lsb's.

Fig. § Test results on one unit of the I3-bit A/D
Converter. The top plot shows the INL errors
measured at the 64 selected codes. The middle plot
gives the predicred errors at all 8192 codes based
on the 64 measurements, and the bottom plot gives
the error in the prediction, i.e., the difference
between the measured errors and the predicted errors
at all codes. Vertical scales are in lsh's.
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Fig. & Differences between the predicted and
measured maximum INL for the 77 devices tested. For
comparisen, the dashed lines give the standard
deviarion of the measurement process, i.e., the
repeatability of a measurement. Vertical scale is
in Isb'=.

Bandpass Filter

In this example, the bandpass filter shown in Fig. 7
was tested in the time domain using a step waveform
as the input signal, and a waveform recorder to
measure the response at selected test nodes. The
objective was to accurately estimate the values of
the seven components from the measured response at
the test nodes; the estimates could be used to
identify the components that were out of tolerance
so that the circuit could be trimmed to brimg it
within specifications. The model consisted of a
time domain sensitivicy mactrix computed from the
system equations and conmection matrix [53].

With measurements made only at the ocutput (node 3),
only three of the model vectors were found to be
linearly independent, indicating that all of the
components’ error signatures (or sensitiwvity
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Fig. 7 Mode! for bandpass filter with center
frequency of 24.5 kHe.
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Fig. &8 Measured (solid) and predicted (dashed)
step response of filter. The predicted response was
based on measurements at three time points.

wvectors) are not unique at this mede. This however,
also means that only three parameters and
measurements at three time peints are needed in
order to predict the entire time demain output
response of the eircuit to an input step function.
This is illustrated in Fig. 8 where the measured
response is compared to the response predicted from
measurements at only three time points.

Further analysis of the model showed that only five
of the seven components have unique error signatures
when all five nodes are measured, components R, and
Ry have the same signatures at all of the nodes, as
do components C,; and Cy. However, it was found that
by inserting two additional resisters of known

value between nodes & and 5, and nodes 2 and common,
and remeasuring the response, the signatures of all
seven components become unique with measurements
made only at the output. Therefore, it is possible
to estimate the values of all seven components from
measurements made at seven time points at node 5.

sion

Linear error models are powerful tools that can be
used to understand and optimize the testing of
analog and mixed-signal devices. With the aid of a
matrix software package, the models are easily
manipulated to provide testability information, te
select test points, and to sclve the test equations
and accurately predict global performance. Cost
savings can be realized through reduced test time,
as vell as enhanced parameter estimation which can
facilitate production trimming and alignment
operations.
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0Of course, not all testing problems warrant the use
of these methods. Additional overhead costs are
incurred in the pretest stage (when the model is
developed and test points are selected), and in some
cases, the computing capability must be upgraded to
efficiently handle the additional computing load.
These costs must be recouped in saved test time.
Finally, linear error models may met be particularly
well suited for some types ¢f highly nonlinear
devices.
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