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Abstract

While it is straightforward to formulate constraints which ensure a cubic polynomial is
monotonic on an interval, such constraints may not be in a form which is suitable for use
with standard optimization techniques and software. The MATLAB*[2] package is typi-
cal: the required constraints are a series of simultaneous inequalities. In what fol1ows,
two simultaneous algebraic inequalities on the coefficients of a cubic polynomial are
shown to be necessary and sufficient to assure monotonicity on an interval. This
transformation of interval constraints to simultaneous algebraic constraints requires the
application of basic logic and analysis. The constraints are applied to a problem arising in
analyzing the performance of several video quality measurement models [4].

1. Introduction

The monotonicity of a differentiable function on an interval is equivalent to a condition
on its derivative over the interval, namely the derivative must not change sign at any
point. For polynomials, this condition over the interval is equivalent to conditions at the
end points and inflection points in the interval, namely the derivatives at all such points
must have the same sign. In the case of a cubic polynomial the sole inflection point can
be expressed in a closed algebraic form and monotonicity is shown to be equivalent to a
pair of algebraic inequalities on the coefficients of the polynomial. In this form,
monotonicity is readily incorporated as a constraint in classical optimization techniques
and available scientific software.

A number of investigators have considered monotonic regression, particularly for splines.
Andersson and Elfving [1] have studied monotone interpolation and approximation by
cubic splines. Ramsay [3] has considered spline-based monotonic regression. In the case
of cubic polynomials, there does not appear to be a basic package for monotonic
regression. This paper describes a mathematical formulation of the constraints which
enables the use of available software to solve the cubic problem.

This study in low order fitting arises from a quality measurement problem. In recent
years, as digital imaging and video technology has replaced analog systems, much
attention has been focused on measures of video and image quality. The main new
impetus for such attention is the use of lossy compression techniques to reduce data rates.
Lossy means data is not recoverable. Such losses are hopeful1yimperceptible.

In an international comparison of video quality measurement computational models, the
computed results are to be compared with the results of subjective tests [4]. The
measurements for such subjective assessment may saturate at the extremes of the scale.
The design of the test permits non-linear adjustments of the computed results. These
"adjustments" include remapping the computed (or "objective") data with (among other
functions) a monotonic cubic polynomial which best fits the objective and subjective

* This article refers to commercial products by name in order to specify the means by which the computed
results were obtained. Such mention is not meant to imply the product is the best available for the purpose
nor is it an endorsement.
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scores. A cubic polynomial is included because it is the lowest degree polynomial which
can have an inflection point, and can thus compensate for either saturation or steepening
at the extremes of the interval. On the other hand, rank ordering of the subjective scores
.is locally determined and the design of the test expresses confidence in this ranking by
imposing monotonicity on the cubic. Doing so avoids reordering the objective scores.

2. Theory
Without loss of generality, we consider the fitting problem over the unit interval [0,1] for
a cubic polynomial, p, to data (tj,dD.Other intervals can be scaled to the unit interval.

p (t) = Xo + x I . t + x2 . t 2 + X3 . t 3

o:::; t :::; 1

To achieve monotonicity one must avoid a change in sign of the derivative,p'. A
necessary, but insufficient, condition is the derivative of p must have the same sign at 0
and 1. That is, the function a defined below must be nonnegative:

A: p'(O)p'(1) = a = XI. (XI+ 2x2 + 3x3);;:::0

The location of the single inflection point, t" of p(t)

t, = - x2/3x3

is the second piece of information needed to establish monotonicity. When t, is not in the
open unit interval, (0,1), Condition A implies that p is monotonic on [0,1]. This is a
consequence of the following Lemma.

Lemma 2.1. Assume the functionfis twice continuously differentiable on the interval
[a,,B].Iff has the samesignat a and {3 andf' doesnot changesignin (a,fJ>,thenfis
monotonic on [a,,B].

Proof: Assume thatf';;::: 0 on (a,[3).For any tin (a,[3),

f' (a) ~ fl (t) =fl (a) + L fl I (s)ds ~ fl ({3).

As a consequence the derivative,!, never changes sign on [a,,B]andfis monotonic.
If instead,f' ~ 0, -fwould satisfy the above conditions andfwould be monotonic. II

Lemma 2.2 shows that in the case that t, is in (0,1), monotonicity of a cubic is equivalent
to p' having the same sign at the inflection point as at the endpoints of the interval.

3



Lemma 2.2. A cubic polynomial, pet), is monotonic on the interval [0,1] if and only if

"A: 'p.'(O)p'(l)= a = Xl. (Xl+ 2x2+ 3x3);;:::0

and

B: t} E (0,1) implies

c: (p'(O) + p' (1)). p'(t} ) ;;:::0

Proof: A direct calculation shows that monotonicity implies the two conditions.

Monotonicity of p on [0,1] can be established by considering three cases.

I. For tl ~ (0,1), the conditions of Lemma 2.1 are met and p is monotonic.

II. For tl E (0,]) and P'(tl) =0, p' has a zero of order 2 at th p'(t) =3 . X3 . (t- tl)2.

Becauseits derivativedoesnotchangesignon the interval,p is monotonic.

Ill. For tl E (0,1) and P'(tI);I;0, the conditions of Lemma 2.2 require that p'(O),
p'(l), and P'(tI)agree in sign. To see this, first observe that Condition A implies
that p '(0) and p'( l) have the same sign and as a consequence p '(0) + p'( l) also
agrees in sign. Condition C implies that P'(tI)also has the same sign.

Lemma 2.1 assures that p is monotonic on each of the subintervals [O,ttJand [th1],
p having a single inflection point. The non-zero derivative, P'(tI),assures that p is
monotonic in the same sense on both subintervals and therefore on the entire unit
interva1.II

So, two constraints which are necessary and sufficient to assure monotonicity are: A and
(B implies C). Now, recast the logical implication,of the second constraint in Lemma 2.2
as a single inequality. Since Condition A is already an inequality, doing so exhibits
simultaneous inequalities which are equivalent to the interval constraint for monotonicity.

Theorem 2.3: The cubic polynomial, pet) =XQ + XI t + X2 t2 + X3t3, is monotonic on the
interval [0,1] if and only if

XI. (XI +2x2 +3x3);;:::O
and

.J;i + 3x2 . X3)2 + (2x1 + 2x2 + 3x3 Y (3x1 . x; - xi . x3 Y

+ xi + 3X2X3 + (2xI + 2x2 + 3x3 )(3xI . x; - xi . x3};;:::o.
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Proof: It is sufficient to replace the implication in Lemma 2.2 with the second inequality.

First, recast Band C as polynomial expressions band c, assuming X3:;z!:o.

f. ) '

-X2 1
1

1 2

B : tI E \0,1 ~. 3x3 - 2" < 2"<=>b = x2 + 3X2X3 < 0
and

2 2 2
" X, x2

C: (p (0) + p'(I))p (tI) =(2xi + 2x2 + 3x3). (x) - ~+-)
3x 3 3x 3

(3x . x 2 - X 2 . X )=(2x + 2x, + 3x) ) 3 2 3;:: 0
1 - 3 3x23

<=>c = (2x 1+ 2x 2 + 3x 3)(3 . x) . x; - x ~ . X 3) ~ 0

Second, observe that (B implies C) is equivalent to (b < 0 implies c ~ 0).
· In the case X3:;z!:0, the equivalence is a consequence of the preceding paragraph.
· In the case X3=0, B is false so (B implies C) holds vacuously and b ~ 0 so (b < 0

implies c ~ 0) holds vacuously. The statements are equivalent.

Third, convert the previous implication to an inequality. By logical calculus, the
statement (/3 implies e) is equivalent to (C or not B) [5 - page?]. ]. As a consequence, in
the plane of vectors (b, c), (b < 0 implies c ~ 0) is satisfied by vectors with (b ;:: 0 or c
~ 0). This is the entire plane except for the third quadrant, (b < 0 and c < 0). The vectors
are at an angle of more than 1t/4to the vector (-1, -1). Noting that the dot product of two
unit vectors is the cosine of the angle between them

(b,c) . (-1,-1) <~
II(b,c)11 .J2 -.J2'
equivalently,

.Jb2+ c2 + b + c ~ o.

Replacing band c with the corresponding polynomials in the coefficients Xj yields the
second inequality. II

Note that the region satisfying the constraints is not convex, but it is the union of convex
regions. These regions are defined by algebraic constraints which can be found by
factoring the constraints described in.Lemma 2.2 and Theorem 2.3.
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3. Application

. In an international comparison of several video quality measurement models [4], it was
required to fit a monotonic cubic polynomial to the output of each model. The Figures are
the results of two least squares fits to a typical data set. Figure I displays the results of
unconstrained fitting. The best fitting cubic is not monotonic on [0,1]. The two critical
points are a local maximum at t ==0.82 and a local minimum at t ==5.28.

Polynomial Fit of Order 3
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Figure 1: Unconstrained regression of cubic polynomial.The fittedcurve is not monotonic
Parameter Values: Xo= -0.075911, X1 =2.824086, X2 = -1.99055, X3 =0.217546. A local maximum
occurs at t:: 0.82 and a local minimum at t:: 5.28.
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Figure 2 displays the best fitting cubic which is monotonic on [0,1]. Again, there are two
critical points: a local maximum, t ::1.00, and a local minimum, t ::1.21. The constrained
solution "sweeps" the interior critical point to the boundary of the intervaL The results
were obtained with the MATLAB OptimizationPackage [2] using the CONSTR function
with the constraints defined here.

Monotonic Cubic Fit
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Figure 2: Monotonic regression of cubic polynomial. The fitted curve is monotonic on [0,1].
Parameter Values: Xo= -0.092407,X1 =3.06557, X2 =-2.7999538, X3 =0.844523. Although it is
monotonic on [0,1], the cubic has a local maximum at t ==1.00 and a local minimum at t ==1.21.
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