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The periodic solutions of an overdamped Josephson junction driven by a square-wave pulse were
found. Unlike those driven by a sinusoidaJ ac current. the integer step widths of a Josephson
junction driven by a square-wave pulse train are reduced with increasing ac current frequency. The
maximum value of any non-zero step width approaches 21C' where leis the critical current, by
decreasing either the pulse repetition rate or the pulse duration time. The characteristic features of
an~ integerstep are almost identical and we give an explanation of this. @ 1998American Institute
(~(Physics. [S002] -8979(98 )06306-3]

I. INTRODUCTION

If a Josephsonjunction I is biased by an external ac cur-
rent with frequencyJ. its de }- V curve shows voltage pla-
teaus at the multiples of hf/2e. i.e..

'" hIy =n-. (n=O.=:l 7 .,
1'1 2e , (1.1)

which are called the Shapiro steps.2 Here h/2e is the flux
quantum. The existence of these voltage plateaus is strong
evidence of the existence of the phase-dependent supercur-
rent suggested by Josephson.I If we measure the voltage dif-
ference between successive integer steps, we can determine
the value of the fundamental constant h/2e. In reverse, if we
know the value of h/2e. we can determine the output voltage
of a Josephson junction. which is the basic concept of the
Josephson voltage standard.

After several decades of effort, a de Josephson voltage
standard3 (DC-NS) using Josephson junctions with highly
hysteretic I - V characteristics was made successfully and is
now in use. It has been shown that this DC-NS is very
successful in calibrating solid-state voltage standards. Due to
its hysteretic behavior and slow step selection procedure.
however. it is not usefuJ for an ac JVS (AC-JVS) which
requires high speed step selection. To avoid this. an AC-JVS
using Josephson junctions with non-hysteretic }- \l charac-
teristics is proposed.4.5Both DC-JVS and AC-JVS require
large numbers of Josephson junctions connected in series to
reach high enough voltage. So the variation of junction pa-
rameters. like critical current and normal resistance, is inevi-
table. These kinds of disorder always reduce the step width
of an AC-JVS. For an AC-JVS to be applicable. the step
width must be large enough to cover the uncertainry of an
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external de bias CUTTent.Because of this concern on the step
width. several groups have tried to find a way to increase the
step width.

The first important finding was made by Monac06 who
showed that a Josephson junction driven by a biharmonic
voltage bias source gives larger non-zero steps than that
driven by a single harmonic voltage source. The width of any
non-zero step reaches its maximum value, 2/ c' if the voltage
source becomes a periodic delta function which contains alJ
the harmonics of equal amplitude. Maggi? has shown that
enhancement of the width of the non-zero step is uue even
for the resistively shunted-junction model and is significant
if the pulse duration time, T, is smaller than the pulse period,
T. and the pulse current, Ip' is greater than the critical cur-
rent, Ie. Benz and Hamilton8have found that the maximum
width of any non-zero step of a pulse-driven Josephson junc-
tion does not depend on the pulse repetition rate, I, if I is
smaller than the characteristic frequency. Ie. This character-
istic feature of non-integer step width in a pulse-driven sys-
tem is quite different from that of a continuous wave (CW)-
driven system which exhibits maximum step width that
increases with the external ac frequency.9 All these results
suggest that using a pulse instead of a CW as an ac bias
current is more favorable to get large non-zero steps. The
experimental results performed by the same group. however,
did not fit well to the results of the numerical calculation.8
The width of the n =1 step in a pulse-drivensystem de-
creased with the pulse repetition rate, like that in a CW-
driven system.

There are several methods by which to find step bound-
aries as a function of [Beand f. One of them is to integrate
the equation of motion numerically using a computer or an
analog simulator to get the [- \l curve for a given [acand f.
Then the same procedure must be done repeatedly for differ

3225 C 1998 American Institute of Physics



3226 J. Appl. Phys.. Vol. 83. No, 6. 15 March 1998

ent values of lacand f to get the step boundaries as a func-
tion of lac and f. Another way of finding step boundaries is
to use the harmonic balance equation.1OThis method is
simple and easy. giving a resuit that is in good agreement
with the numerical simulation if the harmonic content is

small. But in the case of a Josephson junction driven by a
pulse which contains a lot of harmonic tenns of high order.
this is not a good approximation. Finally, if the external ac
current is a square-wave pulse, another method is known.I1.12
Starting from the general solution of the equation of motion
and applying the matching condition at the boundary of two
different bias regions and using the periodic boundary con-
dition (PBC) requirement. one can get a set of equations that
any periodic solution must satisfy. Even though this is a very
powerful method by which to find the step boundaries. its
applications so far were limited to the case of high dc-bias
currentll or to the delta-function pulse limit.12In this article,
we generalize this method to include ail the possible cases
regarding the pulse amplitude and the dc-bias CUITent.We
first built a set of equations that any periodic solutions must
satisfy, then solved this set of equations numerically, finding
the step boundaries of a pulse-driven Josephson junction.

II. ANALYTICSOLUTIONS

In the resistively-shunted junction (RSJ) model, 13.14the
equation of motion for the phase difference between the two
superconductors in a Josephson junction, </J,is given by

h d</J

41TeR dt + Iesin4>=Idc+ IaI;(t) (2.1)

for a junction with a negligible capacitance and a small re-
sistance. Here leis the critical current and R is the nonnal
resistance. We nonnalize the phase variable. $, and the time.
t. by </J- dJl'27r.t-tlte where {c is the characteristic time
defined by tc= 1I/c=hI2elcR. Then Eq. (2.1) takes the fonn

d4> .
( J J. )_' ."

dt + sm _7rw -ldc+ lacUI. (2.2)

where idc=ldcl/c. and iac=/aci("
Consider the case of no ac current. Integrating Eq. (2.2)

for a given i = idc' we get the following tonn of solution:

_ _ l
'

_ I itan( 7r
,

d» - 1 '

)

+ 1
t to- .~ tan ~ _m1T1

7r\I--1 \1--1 I J

for Iii> 1,
(2.3)

1
,

.
= -In ltan( 7rcb)- 1- JI=7/

21T'yI-i2 litan(7rcb)-I+~I-(!1 for liI<L

where to is an integration constant and m is an integer num-
ber. If we define 21T«pe=sin-l(i)(l4>el<1I4),then the above
equation can be written as

Kim. Sosso. and aartc:

1 r '

t _t = I' - I( itan( 7r1J)- 1 \
o -.:--- tan I

7r''Vi-- 1L
' \ -:y- ::m'1TVi - I ' J

for ii I> 1.
(2.4)

1 iitan( 1T1J1- cot( 1TcbeII

= ::--:-~ In!. ( cb)_ (cb) I for iil< 1.21T",1-1- I'tan 1T tan 1T c

For iii< 1. in the limit of t - x. m(t) goes to me regard-
less of the value of to. This means that, as time goes. all the
solutionsapproachthe fixedpoint.$e' regardlessof the ini-
tial starting point. This limiting value. <D~==<Dc. is a polenf
the right-hand side of the lower equation in Eq. (2A) and is
called the stable fixed point. There is another solution of the

equation sin(21T1J)=i for l/4<lcbl< L/2, satisfying $u
= ~ 1/2- «P e' Like the stable solution cb(I) = 4>f' cb(t) = </J u

is a soLution of Eq. (2.2), but it is unstable: even an infini-

tesimal change in the initial value from cbu will eventually
lead the phase to the stable fixed point <Ps.These two fixed
points are branch points dividing the phase space Icbl< 1/2
into two separate regions and no solution can cross these

branch points. If the initial value cbo falls into </Js< <Do< <Du .
the phase decreases in time approaching the limiting value
4>e' Othef'Nise.the phase increases in time approaching the
same limiting value cbe. Since no solution can cross the
branch points. there are upper and lower bounds of the phase
change given by

max[ $( t = x I - 1J( 0 ) ]= 2<D c + !'
('2.5 )

min( 1J( t = x ) - cb(0 ) ] = 2 </Je - I.

For Ii I> I. there is no branch point and no restriction in
phase change. The phase increases or decreases in time with
a mean slope given by

! dcb\

(,dtj =:: vi2-1.

This type of solution is called a running solUtion.
We now consider the square-wave pulse with peak cur-

rent, iP' duration time, T, and repetition time. T. Throughout
this article, we nonnalized all the current variables by the
critical current. ic" and all the time variables by the charal:-
teristic time. t c . We define ac current as

(2.6)

iac= ip for 0< mod(t. T)< T.

= 0 othef\\"ise.
1.2.7'

and the total current i tot is given by

itot =ip + ide==iI for 0< mod(t. T) < T. \2.8/

=idc=i2 otherwise.

In order to get a complete picture of the step boundaries.
one must consider four different cases according to the val-
ues of Ii II and Ii 21.

A. Case I: li,I<1 and li21<1

In this case, both lid and Ii21are smaller than 1. Since
no running solution is pennitted, the dc voltage is always
zero.



J. Appl. Phys., Vol. 83, No.6, 15 March 1998

B. Case II: li,l> 1 and 1/21<1

For 0< t< 7, the magnitude of the total current

jilOt!=lidc+iacl=lid is greater than 1. In this high-current
region. the solution cP)(t) is given by

7T
tan[ WI(t - t I)] = - [i Itan( 7T4>I) - 1].

wI
(2.9)

where

WI=1i\~, (2.101

and 11 is an integration constant. If we define dJo a!' the initial
,.alue at time 1= O. then t I is given by

1T
tant wIll) =- [ 1- i I lan( 1T<Po)].

w]
(2.] I)

For 7< t< T. the magnitude of the total current
lito,!=lidel=li21is smaller than 1. In this low-current region.
the solution cP2(t) is given by

itan( 1i4>2) - cot( 1T<P.)

exp[2w.,(t-t")]=1 . (2.12)
- - Ir.an(1T4>2)- tan(7T4>c}

where

'~1
. 2 A. . -1 (

.
)W2 = 7T\ -'2' 7T'Pc=sm '2. (2.13 )

and t2 is another integration constant. The solution dJJ(t) and
4>2(t) must be identical at time 7. i.e., <P,( 7) = cP2( 7)==dJ,..
Substituting dJ= <PTin Eqs. (2.9) and (2.12), we get the fol-
lowing equations.

7T
tan[ wd 7- t 1)]= -[I ,tan( 1T4>,.)- 1],

WI
(2. ) 4)

I

tan( 1T4>,.) - cot( 1T<Pc)

I

.
exp[2w2( 7-1z)]= .

tan( 7T<p,.) - tan( 7T<Pc)

The requirement of the PBC, <Po= <Pz(T) + n where n is
the step number. gives the following equation.

I

tan( 7T<PO) - cot( 7T<Pc)

I

exp[2wz(T-tz)]= .
tan( 7T4>0) - tan( 7T<Pc)

Combining Eqs. (2.14) and (2.15). we finally get the set of
equations any periodic solution must satisfy.

(2.15)

exp[2W2( T - 7)]

~

rtan( 1icPo) - cot( 1T<Pc)][tan( 7TcP,.)- tan( 7T<Pc))

[tan( 1T<PO) - tan( 7T4>c)][tan( 7T4>,.)- cot( 7T<Pc)] ,

(2.16)

with

r -

1

] I WI

tan( 1T<PT)= -:-11 + -tan{ wI ( 7- t I)} .
IlL 7T _

(2.] TI

7T

lan( WI (d = -[] - i Itan( 7T<P0)].
WI
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FIG. 1. The stable (solid circle) and unstable (crossi periodic solutions. of

Eq. (2.15) with varying ide for T=(a) 0.5 and (b) 1.0. The values of iac and
'i are 5 and 0.1. respectively. The solid and dotted lines are the pole lines
given by fPo= ql, and t/;.,.=:::0.5- tPc.

However, not all 4>0satisfying this set of equations give
a periodic solution since there is a restriction imposed by the
branch points. Due to the presence of the branch points in the
low-current region, the phase value at time 7, <p,.. and at
time T. <P2(T). must be in the same branch. This requirement
can be met if we take the positive argument of the right-hand
side of Eq. (2.16) which then becomes

exp[ 2 (()2(T - r)]

[tan( 7T4>0)- cot( 1T4>.)][lan( 7T<PT)- tan! 1T<Pc)]

[tan( 7Td>()) - tan( 7T<bc)][ Ianl 7i<bT)- cot( 7Tq\)] .

(2,] 8)

The problem of solving Eq. (2.2) to find a periodic so-
lution reduces a situation of finding a dJo to satisfy the above
equation for a given set of parameters {il ,i2.'T.T}. Note that
the right-hand side of the above equation is independent of T
and has two poles and two zeros. With increasing T. the
left-hand side of the above equation grows exponentially and
in order to satisfy the equation. dJ() must be close to the
poles, given by

4>0= <ps . <P T = <P u . (2. ]9)

Figure] shows the solutions of Eq. (2.] 8) with varying
ide for a given value of ip, T and 7. As was expected, all the
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~ 0.00

i =0.1de

..-
~

.0.

ide=O.8
-0.50 .

0.0 0.2 0.4 0.6 0.8 1.0

tiT

FIG. 2. The evolution of phases starting from different initial values for ide
=\a) -0.7. (bl 0.1. and Ic) 0.8. The venical dashed lines represent the
boundary of high- and low-current regions and the horizontal dotted lines
are branch cuts. The bold lines in lat and (c) are solutions satisfying the

PBC. The values of j". T. and T are 5. 0.5. and O.I. respectively.

solutions appear near the pole lines. mo= dJs and cPT=dJu'
denoted by solid and dotted lines. respectively. The larger T
becomes. the closer ~o comes to the poles. making the non-
step region narrower. We will show later that the non-step
region vanishes exponentially with increasing T.

A closer look at the phase evolution is helpful to under-
stand the dynamical behavior of the pulse-driven Josephson
junction. Figures 2(ah-2(c) show the evolution of phases
starting from different initial values for idc= -0.7. O.l, and
0.8. respectively. The values of iac. T and T are given by 10.
0.5. and 0.05. respectively. For ide=-0.7. the total external
current in the high-current region is irot=i( = 10-0.7=9.3

\\ ::ich is much greater than 1. Sinc~ the magnitude of the
s:...;::,ercurrentis always smaller than 1. most of the external
CUITentin this high-cUlTentregion is carried by the normal
current. The effect of the supercurrent. which can be esti-
mated by the averaged supercurrent (Sin(21T<P).

;:,.

Kim.Sosso.and~~

(sin< 21T<!J ) = I
. _ -:r-

(

1 \

i \1[\-1-0-1 . I'
. II

.j'

(2.20)

is negligible. Neglecting the supercurrent tenn in Eq. (2.2).
we get an approximate solution.

dJ( t) = <Po+ i It.
.-k~~,

(2.2)~

As is shown in Fig. 2. the phase increases almost linearly in
time and the total phase change in this high-current region is
given by

m,- <1>0=i 1T. (2.22)

For il=9.3 and T=O.05. ilT is 0.47. which means that the
phase rotates about a 0.47 turn during T. Then it begins to
decrease or increase depending on what branch the phase at
time T belongs. In the low-current region. the total external
current is itot = ide=i2= - 0.7 and the phase changeis
bounded by -0.75<~<p<0.25 [refer to Eq. (2.5)]. For any
solution to satisfy the PBC. the total phase change must be
an integer number. which can be satisfied only when the
phase change at the low-current region is close to -0.47.
canceling the phase change made in the high-current region.
So, any periodic solution. if it exists. must have n = O. [n Fig.
2(a) are two periodic solutions. denoted by bold lines. with a

net phase change of zero. ,

With increasing ide. the two periodic solutions come
closer to each other. fusing into one as shown in Fig l(a).
For ide= 0.1. there is no stable periodic solution as shown in
Fig. 2(b). With a further increased ide' two periodic solutions
begin to appear; their time evolutions are shown in Fig. 2(c),
where ide=0.8. This is different from the case of ide=-0.7.
especially in the low-current region. For ide=0.8. the phase
change in the high-current region is about 0.54 and the phase
change in the low-current region is bound by - 0.20
<~m<0.80. Therefore. any periodic solution for ide=0.8
must be an increasing function of time in the low-current
region. giving a phase change of about 0.46. which is re-
quired to make the total phase change to 1.

Since the phase change in the low-current region is al-
ways smaller than I. the step number or the rotation number
is mostly determined in the high-current region where phase
change is unlimited. The magnitude of the total current in the
high-current region. IiIi. is dominated by the peak pulse cur-
rent which can be much greater than the dc current. So. with
increasing peak pulse current. we can expect steps with non-
zero step numbers to occur. regardless of the value of the dc
current. This is the reason why non-zero steps occur along
the zero dc-bias line. i.e.. Ide=O."7.8We can detennine at
what value of ip the step width becomes maximum. For sim-
plicity. we consider the limit T-+0 while maintaining Tip
constant. In this delta-function pulse limit. Eq. (2.22) be-
come exact and for a Tipgiven by

Tip= Tip.n=n. (2.23)

the phase change in the high-current region becomes identi-
cal to n, which means that the phase rotates n complete turns
in the high-current region. Any solution starting from the
initial value, <Po,identical to the pole or zeros of ~. (2.18)
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FIG. 3. The step boundaries in the region lidcl< 1 for T=(a) 0.5. (b) 1. and

(c) 2. The value of pulse duration time. 'T.is 0.1. Notice that with increasing

T. the quasiperiodic region shrinks rapidly and the nth step width shows its
maximum for ip-ip.nfllE.nl'T'.

then automatically satisfies the PBC. So, the two periodic
solutions in this delta-function pulse limit are given by

d>o=d>.\. d>o=d)u. (2.24)

Since these solUtions always exist for iidel< 1. the step width
defined by the maximum extent to which a stable periodic
solutions exists becomes identicaJ to 2. This result looks

similar to that obtained by Monac06 f~r a voltage-driven sys-
.".'"w~.is a,good approximation of the RSJ model in the

~~urreot limit

7~.: '~ One can notice that 1'.ip.n is independent of T. implying
. that the pulse current requiredto exhibitthe maximumstep
.Width i~ independent of the pulse repetition rate. In' contrast.
for a CW -dnven Josephson junction. the higher the fre-
quency, the larger iac must be in orderto get the maximum
'Don-zero step width.9 Figure 3 shows the step boundaries for
different values of T. The nth step width becomes maximum
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FIG. 4, The log-log plot of:2 - Aidc(n = 1) vs T for severaJ values of T, The

peak pulse current is detennined by 'T'i,.= J. Note thai for T < 1.
:2- Aidc(n = 11 fits well to a line with a slope of I, The inset shows the same

graph with a different x axis. TIT, The slope of the line is 1.

for rip=rip.n=n. proving that Eq. (2.23) is a good approxi-
mation even for a pulse with a relatively long duration time.
With increasing T, the step regions expand and the non-step
(quasiperiodic) region shrinks. We have calculated the n = 1

step width as a function of T for several values of r. We
have chosen the pulse power ip= 11'T to get the step width
close to its maximum value. As shown in Fig. 4, the step
width increases with T approaching 2. The smaller the dura-
tion time, T.the faster the step width approaches 2. We found
that the maximum first step width fits well to the formula

max[~idc(n= 1)]~2(] -~). (2.25)

The inset of Fig. 4 shows that most of data fits the above
equation regardless of the value of T. The smaller the T, the
wider the range of T over which the data fit well to the above
equation. Here we draw an important conclusion of our
work: in order to get the maximum step width close to 2 one
can either increase the repetition time. T, or decrease the
duration time, T. Note that the functional form of the maxi-
mum step width for a CW-driven Josephson junction can be
approximated by

C

maxr.~idc( n = ] j)= T (2.26)

for T~ 1, where C is a constant with a positive value. The
maximum step width decreases with T for a CW-driven sys-
tem, while it increases with T for a pulse-driven system. We
also have found that the quasiperiodic region shrinks expo-
nentiaHy with increasing T. Let us define the width of qua-
siperiodic region ~i qp{n.i p) by

~iqr(n.ip)=i~c(n-t-1.ip)-i~(n.il')' (2.27)

where i~c[n,ip)(idc(n.ip)] is the upper (lower) boundary of
the nth step for a given iP' In Fig. 5 we have shown the
width of the quasiperiodic region for n = 0 and rip = 1/2 as a



RG.5. The width of the quasiperiodic region, ~iqin=O) as a function of
T for 1"=0.1. 0.05, and 0.01. The peak pulse current has been changed with

T to satisfy rip = 112.The three lines are almost indistinguishable. implying
that T has little effect on the width of the quasiperiodic region. For T> I .

1n(~iqp(n=O)] fits well to a line. showing the exponential dependency of

~iqp(n=;OLon T. The inset shows the same graph in the log-log plot.
showing the power-law dependence of ~iqp(n =0) on r. The slope is close
(0 - 1.

function of T. Although it is not apparent, there are three
curves with different values of T. implying that the width of
the quasiperiodic region is nearly independent of T for

Tip=1/2.The logarithm of dqp fits well to a line with a slope
3.14 for T>0.2 which corresponds to f<5/c. In other
words, the quasiperiodic region vanishes exponentially with
decreasingf for / < 5f c' Due to this exponential dependence
on T, the width of the quasiperiodic region shrinks fast with
increasing T. becoming less than 5% of the width of the step
region for T> 1.2 (f<0.8fc)' For a small T. as shown in the
inset of the Fig. 5(b), the width of quasiperiodic region fits
well to .1iqp- liT. The transition from the power-law depen-
dency to the exponential dependency to T happens close to
27T'T=1. So, we get the following functional form of the
width of quasiperiodic region:

.liqp=Aexp(- BT) for 27T'T>1, (2.28)
=D I T for 27T'T< 1.

where A. B. and D are parameters weald y <kpendent on i d<:.
n~ and T.

C. Case III:1;11<1and 1;21>1

In this case, we define the pulse differently from case II.

iae= 0 for 0< mod(t, T)< T - T,
(2.29)

= ip otherwise.

Then the total current i tot is given by

itot=ide=il for O<mod(t,T)<T-T,
(2.30)

= ide+ ip= i2 otherwise.
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The value of the pulse duration time. i. is 0.1.

Following the same procedure as in case II. we get the
following set of equations:

exp( 2 W"2T)

[tan( 7T'<Po) - cot( rr<pc)][ tan( rr<PT- ;-)- tan( 7T'<pJ]

[tan( 7T'<Po)-tan( 1TcPc)][tantrrcPT_;-)-cot( 1T<Pc))'

If (j). 1'l Itan( 1T<PT-;-)= -! 1+ -ran{ Wj( T- T- t1)} ,
ill 1T J

12.31)

1T

tan( wit 1) = - [ 1 - i Itant 1Trpo I].
WI

where <PT_;- is the phase value at time T - T. In the previous
case, the phase is subjected to a low bias current for time
T - T which is considered to be much greater thanT. The
larger the T - T. the more the phase can change in the low-
current region. The more the phase can change in the low-
current region. the greater the possibility of existing periodic
solutions for a given value of ide. As a result, the larger the
T - T, the wider the step region. In the present case, the
phase is subjected to a low bias current for a very short time,
resulting in narrow steps in the (ip ,ide)plane. ..
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D. Case IV: 1/11>1and 1/21>1

InthiscasebothIi11and Ii11are greater than I, implying
that there is no pole or branch point. There still can exist
steps of finite width. even though their width is much smaller
than in case II. Following the same procedure as in case II.
we get the following set of equations:

I r w~ 1

tant ..<bot= -:-1 I T ~tan{w;(T-T21}
J

"

12L 7i

1 w~
- I - -=-tan{w; ( 7 - T: I}
i'"l ;;

1 ~ Wj ~

j
= -:-!

.

] - -tan{ WI ( 7- T])} .
1 J ~ 1i

(2.321

1i

tant W!TII= -[)- i)tan( 1i<Po)),
WI

\\'here

IJ.I~= 1i \ii-: - 1. (2.33)

III.RESULTS

Vt.Tehave solved Eqs. (2.] 8). (2.31), and (2.32) numeri-

~ally to get the step boundaries in the (ip-ide) plane. Figures
(,\a I and 6(b) show, resIJP..A:tively.the overall shape of the step
:'Ioundaries for T=] and 0.5. Compared to those of a C\\;'-
driven Josephson junction, the step boundaries of a pulse-
driven Josephson junction show quite different characteristic
kamres. First of all. the step boundaries are not symmetric

with respect to the zero dc-bias line, idc=O. All the non-zero
steps cross the zero dc-bias line which. in the CW -drive sys-
tem. can be crossed only by the 11= 0 'step. This characteris-
ric feature is due to the asymmetry of the ac current: the

..quare-wave pulse we have considered is not a true ac cur-
rem in that it has a non vanishing dc component given by

T

(iac>= Tip. (3.1)

In case of a CW bias. one needs to apply a large enough de
current to see high-order steps. For a pulse bias. however.
,here ISno need of applying a large dc current to see a high-
Irder step since the step number is primarily determined by

Iht pulse which contains a non-vanishing de component in
Itself. If the step number is determined only by the pulse
current. what is the difference between n =0 step and n*0
step~? In fact. the shape of nth step boundary is almost iden-
tical to that of the zero step, except that it is displaced in the

ip axis by ip.n=nl T. This point becomes clear if we define
; ~cby

7'

i~c=idt~ Tip.
, (3.2;

and redraw Fig. 6 using this newly defined dc current axi~. as
shown in Fig 7. This newly defined dc current includes all

the dc component in the total external current. in the (i p .i~)
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plane. the shapes of the step boundaries look more like those
of a CW-driven system and no non-zero step can cross the
newly defined zero dc-bias line, i.e., i~=O.

IV. DISCUSSION

In sum, using a pulsed ac current instead of a CW has a
great advantage regarding application of the Shapiro steps to
a voltage standard. Its enhanced step width will increase the
step stability and wilJ reduce the voltage uncertainty origi-
nating from the uncenainty in the bias current. In order to get
a large integer ste,p. a pulse train with short duration time,
low repetition rate and high power is favorable. Low repeti-
tion rate. however. implies a small voltage difference be-
tween successive integer steps and more junctions are re-
quired to get a certain omput voltage. The disorder in
junction parameter, which reduces step stability. increases
with the number of junctions. Also. a transmitting high-
power pulse train of several tens of GHz without disJorting
the pulse fOnTIis, in general. more difficult than transmitting
sinusoidal at current. So. for a practical application. there
must be optimization of pulse repetition rate, duration time.
and pulse power.

There are still man) questions as yet unanswered. For
instance. if the pulse becomes symmetric, how does the dy-
namical behavior of the system change? Is this system robust
to a small disorder in pulse shape or pulse period? Another
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unresolved issue is the discrepancies between the results of
numerical calculations. mostly based on the RSJ model. and
the experimenral results of Benz and Hamilton.s especially
the frequency dependency of the step width for a putse-
driven system. If we use Olher models. like the RSJN
(resistively-shunted junction with nonlinear resistance)
model.15what will the result be? More extensive studies are
required to resolve these issues.
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