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Abstract. We introduce a new cryptographic primitive called a blind coupon mecha­

nism (BCM). In effect, a BCM is an authenticated bit commitment scheme, which is AND­

homomorphic. We show that a BCM has natural and important applications. In particular, 

we use it to construct a mechanism for transmitting alerts undetectably in a message-passing 

system of n nodes. Our algorithms allow an alert to quickly propagate to all nodes without 

its source or existence being detected by an adversary, who controls all message traffic. Our 

proofs of security are based on a new subgroup escape problem, which seems hard on 

certain groups with bilinear pairings and on elliptic curves over the ring Zn. 

Key words. Blind Coupon Mechanism, AND-Homomorphic Bit Commitment, Subgroup Es­

* An extended abstract of this paper appeared in the proceedings of 11th International Conference on the 

Theory and Application of Cryptology and Information Security (ASIACRYPT 2005). 
** Supported in part by NSF grants CCR-0098078, CNS-0305258, and CNS-0435201. 

* * * Supported in part by the Norwegian Research Council project 158597 NTNU Research Programme in 

Information Security. 
†	 Supported by NSF grants CCR-0098078, ANI-0207399, CNS-0305258, and CNS-0435201 while the author 

was at Yale University. 

mailto:alex@securityscorecard.io
mailto:peralta@nist.gov
mailto:kristian.gjosteen@math.ntnu.no
mailto:zdiamadi@linkedin.com
mailto:aspnes@cs.yale.edu


2 

cape Problem, Elliptic Curves Over Composite Moduli, Anonymous Communication, Intrusion 

Detection. 

1 Introduction 

Motivation. As more computers become interconnected, chances increase greatly that an attacker 

may attempt to compromise system and network resources. It has become common to defend the 

network by running an Intrusion Detection System (IDS) on several of the network nodes, which we 

call sentinels. These sentinel nodes continuously monitor their local network traffic for suspicious 

activity. When a sentinel node detects an attacker’s presence, it may want to alert all other network 

nodes to the threat. However, issuing an alert out in the open may scare the attacker away too soon 

and preclude the system administrator from gathering more information about the attacker’s rogue 

exploits. Instead, we would like to propagate the alert without revealing the ids of the sentinel nodes 

or the fact that the alert is being spread. 

We consider a powerful (yet computationally bounded) attacker who observes all message traf­

fic and is capable of reading, replacing, and delaying circulating messages. Our work provides a 

cryptographic mechanism that allows an alert to spread through a population of network nodes at 

the full speed of an epidemic, while remaining undetectable to the attacker. As the alert percolates 

across the network, all nodes unwittingly come to possess the signal, making it especially difficult to 

identify the originator even if the secret key is compromised and the attacker can inspect the nodes’ 

final states. 

A New Tool: A Blind Coupon Mechanism. The core of our algorithms is a new cryptographic 

primitive called a blind coupon mechanism (BCM). The BCM is related to, yet quite different 

from, the notion of bit commitment. It consists of a set DS K of dummy coupons and a set SSK of 

signal coupons (DSK ∩ SS K = ∅). The owner of the secret key S K can efficiently sample these sets 

and distinguish between their elements. We call the set of dummy and signal coupons, DSK ∪ SSK , 

the set of valid coupons. 

The BCM comes equipped with a verification algorithm VP K (x) that checks whether x is 

indeed a valid coupon. There is also a probabilistic combining algorithm CP K (x, y), that takes 

as input two valid coupons x, y and outputs a new coupon which is, with high probability, a signal 

coupon if and only if at least one of the inputs is a signal coupon. As suggested by the notation, both 

algorithms can be computed by anyone who has access to the public key P K of the blind coupon 

mechanism. 



3 

G 

invalid U 

signal 

Ddummy 

Fig. 1. Abstract group structure used in our BCM construction. 

We regard the BCM secure if an observer who lacks the secret key SK (a) cannot distinguish 

between dummy and signal coupons (indistinguishability); (b) cannot engineer a signal coupon 

unless he is given another signal coupon as input (unforgeability). 

Our Main Construction. Our BCM construction uses an abstract group structure (U, G, D). 

Here, U is a finite set, G ⊆ U is a cyclic group, and D is a proper subgroup of G. The elements of D 

will represent dummy coupons and the elements of G \ D will be signal coupons (see Figure 1). More 

precisely, the group G is defined by the pair (CP K (x, y), VP K (x)). These functions can be thought 

of as given in the form of efficient algorithms or of oracles. The subgroup D is defined by an element 

x ∈ D which generates D. Without loss of generality, we can assume U is the set of binary strings 

of length no more than a specified parameter n. 

In order for the BCM to be secure, the following two problems must be hard on this group 

structure: 

–	 Subgroup Membership Problem: Given generators for G and D and a random element 

y ∈ G, decide whether y ∈ D or y ∈ G \ D. 

–	 Subgroup Escape Problem: Given the set U , the group G and a generator of D, find an 

element of G \ D. 

The subgroup membership problem has appeared in many different forms in the literature [12, 

17, 19, 32, 33, 35, 37]. The subgroup escape problem has not been studied before. To provide more 

confidence in its validity, section 6 analyzes the problem in the generic group model. 

Notice that the task of distinguishing a signal coupon from a dummy coupon (indistinguishability) 

and the task of forging a signal coupon (unforgeability) are essentially the subgroup membership 

and subgroup escape problems, respectively. The challenge thus becomes to find a concrete group 

structure (U, G, D) for which the subgroup membership and the subgroup escape problems are hard. 

We provide two instantiations of the group structure: one using groups with bilinear pairings, and 

one using elliptic curves over composite moduli. 
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Why is a BCM Useful? If signal coupons are used to encode a “0” and dummy coupons a “1”, 

then a BCM can be viewed as an AND-homomorphic bit commitment scheme. It is indeed hiding 

because dummy and signal coupons appear the same to an outside observer. It is also binding 

because the sets of dummy and signal coupons are disjoint. We note that AND-homomorphic bit 

commitments were independently discovered by Boneh et al [7]. 

The BCM has various applications in and of itself. For example, it may prove useful for con­

structing zero-knowledge proofs of circuit satisfiability [9]. Returning to our original motivation, it 

can also be used to propagate alerts quickly and quietly throughout the network. We describe how 

this can be done below. 

Spreading Alerts with the BCM. During the initial network setup, the network administrator 

generates the BCM’s public and secret keys. He then distributes signal coupons to sentinel nodes. All 

other nodes receive dummy coupons. In our mechanism, nodes continuously transmit either dummy 

or signal coupons with all nodes initially transmitting dummy coupons. Sentinel nodes switch to 

sending signal coupons when they detect the attacker’s presence. The BCM’s combining algorithm 

allows dummy and signal coupons to be combined so that a node can propagate signal coupons 

without having to know that it has received any, and so that an attacker (who can observe all 

message traffic) cannot detect where or when signals are being transmitted within the stream of 

dummy messages. 

In addition, the BCM’s verification algorithm defends against Byzantine nodes [27]: While Byzan­

tine nodes can replay old dummy messages instead of relaying signals, they cannot flood the network 

with invalid coupons, thereby preventing an alert from spreading; at worst, they can only act like 

crashed nodes. 

We prove that if the underlying BCM is secure, then the attacker cannot distinguish between 

executions where an alert was sent and executions where no alert was sent. The time to spread the 

alert to all nodes will be determined by the communications model and alert propagation strategy. 

At any point in time, the network administrator can sample the state of some network node and 

check if it possesses a signal coupon. 

Paper Organization. The rest of the paper is organized as follows. We begin by covering some 

technical preliminaries in Section 2. Then in Section 3, we formally define the notion of a blind 

coupon mechanism and sketch an abstract group structure, which will allow us to implement it. 

In Section 4, we provide two concrete instantiations of this group structure using certain bilinear 

groups and elliptic curves over the ring Zn. In Section 5, we show how the BCM can be used to 

spread alerts quietly throughout a network. In Section 6, we analyze the hardness of the subgroup 
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escape problem in the generic group model. Some related work is discussed in Section 7. Conclusions 

and open problems appear in Section 8. 

2 Preliminaries 

This section reviews our notation and some basic facts about elliptic curves, which form the corner­

stone of our constructions. 

2.1 Notation 

In this paper, we use standard notation from [6]. 

Let A(·) be an algorithm. Then y ← A(x) denotes that y was obtained by running A on input x. 

In case A is deterministic, this y is unique. If A is probabilistic, then A(x) describes a probability 
$

and y ← A(x) denotes sampling y from the probability space. If U is a probability space, then y ← U 
$

denotes that y was sampled from U . If S is a finite set, then y ← S denotes that y was chosen from 

S uniformly at random. 

Let b be a Boolean predicate. The notation [b(y) | y ← A(x)] denotes the event that b(y) is true 

after y is output by A on input x. Similarly, the statement   
$

Pr b(x0, . . . , xn) | x0 ← S, x1 ← A1(x0), . . . , xn ← An(x0, . . . , xn−1)

denotes the probability that the predicate b(x0, . . . , xn) will be true after the sequential execution 

of algorithms Ai. Here, x0 is drawn uniformly from set S and each subsequent xi is drawn from a 

distribution on algorithm Ai’s output, possibly depending on previous inputs. 
def 

The statistical distance between a pair of random variables A, B is defined to be Dist(A, B) =  
1 | Pr[A = x] − Pr[B = x]| is2 x 

Finally, we will say that negl (k) : N  → (0, 1) is a negligible function if for every c > 0, for all 

sufficiently large k, negl (k) < 1/kc 

2.2 Elliptic Curves 

¯Let p ≥ 5 be a prime. Consider the set Up = Zp × Zp × Zp \ {(0, 0, 0)}. Let ∼ be the equivalence 

¯ ' 'relation on Up such that (x, y, z) ∼ (x , y , z') if and only if there exists λ ∈ Z∗ such that (x, y, z) = p 

¯(λx', λy', λz'). Let Up be the set of equivalence classes in Up. We denote the equivalence class of 

(x, y, z) as (x : y : z). 

An elliptic curve over Zp is defined by the equation 

E : Y 2Z = X3 + aX Z 2 + bZ3 , 
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where a, b ∈ Zp are such that 4a3 + 27b2 = 0. The set of points on E /Zp is the set of equivalence 

2 3 2classes (x : y : z) ∈ U satisfying y z = x + axz + bz3, and is denoted by E(Zp). We get an abelian 

group structure on E(Zp) by taking the point (0 : 1 : 0) as the identity element and postulating that 

any three colinear points sum to zero [43]. 

Usually in cryptography, elliptic curves with (close to) a prime number of points are required. 

Such curves can be found by counting points on random elliptic curves until a suitable curve is found, 

since there are many suitable curves and point counting is fast [41]. When curves with a prescribed 

number of points are required, the so-called complex multiplication techniques can be used [28] to 

find a prime and a suitable curve. 

There are several non-degenerate bilinear pairings on elliptic curves. For some families of elliptic 

curves, these can be computed efficiently [31]. The first application of these pairings to cryptography 

was the so-called MOV attack [30] where the pairing was used to reduce the elliptic curve discrete 

logarithm problem to the finite field discrete logarithm problem, which is much easier. Constructive 

applications of pairings first appeared in [24]. 

Let n be an integer greater than 1 and not divisible by 2 or 3. We first introduce projective 

coordinates over Zn. Consider the set Ūn of triples (x, y, z) ∈ Z3 such that the ideal generated by x,n 

¯ ' ' y and z is Zn. Let ∼ be the equivalence relation on Un defined by (x, y, z) ∼ (x , y , z ' ) if and only 

if there exists λ ∈ Z∗ such that (x, y, z) = (λx ' , λy ' , λz ' ). Let Un be the set of equivalence classes in n 

Ūn. We denote the equivalence class of (x, y, z) as (x : y : z). 

An elliptic curve over Zn is defined by the equation 

E : Y 2Z ≡ X3 + aX Z 2 + bZ3 (mod n), 

where a, b are integers satisfying gcd(4a3 + 27b2, n) = 1. The set of points on E/Zn is the set of 

2 3 2equivalence classes (x : y : z) ∈ Un satisfying y z ≡ x + axz + bz3 (mod n), and is denoted by 

E(Zn). Note that if n is prime, these definitions correspond to the usual definitions for pro jective 

coordinates over prime fields. 

Let p and q be primes, and let n = pq. Let Ep : Y 2Z = X3 + apX Z 2 + bpZ3 and Eq : Y 2Z = 

X3 + aqX Z 2 + bqZ3 be elliptic curves defined over Fp and Fq, respectively. We can use the Chinese 

remainder theorem to find a and b yielding an elliptic curve E : Y 2Z = X3 + aX Z 2 + bZ3 over Zn 

such that the reduction of E modulo p gives Ep and likewise for q. 

The Chinese remainder theorem gives a bijection 

∼
E(Zn) −→ Ep(Fp) × Eq(Fq ) 

which in turn induces a group operation on E(Zn). For almost all points in E(Zn), the usual group 

operation formulae for the finite field case will compute the induced group operation. When they fail, 

the attempted operation gives a factorization of the composite modulus n. Unless Ep(Fp) or Eq(Fq ) 
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has smooth or easily guessable order, this will happen only with negligible probability (see [15] for 

more details). 

3 Blind Coupon Mechanism 

The critical component of our algorithms that allows information to propagate undetectably among 

the network nodes is a cryptographic primitive called a blind coupon mechanism (BCM). In 

Section 3.1, we give a formal definition of the BCM and its security properties. In Section 3.2, we 

describe an abstract group structure that will allow us to construct a BCM. 

3.1 Definitions 

Definition 1. A blind coupon mechanism is a tuple of PPT algorithms (G, V, C, D) in which: 

–	 G(1k) is a probabilistic key generation algorithm that outputs (P K, S K, d, s) such that 

•	 the public key P K defines a universe set UP K and a set of valid coupons GP K ⊆ UP K ; 

•	 the secret key S K defines sets DS K , SSK ⊆ UP K of dummy coupons and signal coupons, 

respectively; 

•	 membership in UP K is efficiently decidable given P K ; 

•	 d ∈ DS K and s ∈ SSK ; 

•	 DSK ∩ SSK = ∅, and DSK ∪ SS K = GP K . 

–	 VP K (y), the deterministic verification algorithm, takes as input a coupon y and returns 1 if 

y is valid and 0 if it is invalid. 

–	 CP K (x, y), the probabilistic combining algorithm, takes as input two valid coupons x, y and 

produces a new coupon. Let UD be the uniform distribution on DS K and US be the uniform 

distribution on SS K . Then for any pair of keys (P K, S K ) output by G(1k) and valid coupons 

x, y, C satisfies ⎧ ⎪⎨ ⎪⎩ 

Dist(CP K (x, y), UD) = negl(k) if x, y ∈ DSK , 

Dist(CP K (x, y), US ) = negl(k) otherwise. 

This gives C the properties listed in Fig. 2. 

–	 DSK (y), the deterministic decoding algorithm, takes as input a valid coupon y. It returns 0 if 

y is a dummy coupon and 1 if y is a signal coupon. (Note that DS K (y) is undefined if y is an 

invalid coupon. Hence VP K should be used to validate the coupon before it is decoded.) 

The BCM may be established either by an external trusted party or jointly by the application 

participants, running a distributed key generation protocol (e.g., one could use a variant of [2]). In 

this paper, we assume a trusted dealer (the network administrator) who runs the key generation 
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x y CP K (x, y) 

DS K DSK DSK 

DS K SS K SSK 

SS K DSK SSK 

SS K SS K SSK 

Fig. 2. Properties of the combining algorithm. 

algorithm and distributes signal coupons to sentinel nodes at the start of the system execution. In 

a typical algorithm, the nodes will continuously exchange coupons with each other. The combining 

algorithm CP K enables nodes to locally and efficiently combine their coupons with coupons of other 

nodes. The verification function VP K is used to prevent the propagation of invalid coupons. Thus, 

an adversary cannot slow down or halt the propagation of an alert signal by flooding the system 

with invalid coupons. 

For this application, we require the BCM to have certain specific security properties. 

Definition 2. We say that a blind coupon mechanism (G, V, C, D) is secure if it satisfies the fol­

lowing requirements: 

1.	 Indistinguishability: Given a valid coupon y, the adversary cannot tell whether it is a signal 

or a dummy coupon with probability better than 1/2. Formally, for any PPT algorithm A,         

⎤⎡ 

− 
1 
2

         ≤ negl(k) 

(P K, S K, d, s) ← G (1k);⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
$ $b = b ' ← DSK ; y1 ← SSK ;Pr y0 

$
b ← {0, 1}; b ' ← A(1k, P K, d, yb) 

2. Unforgeability: The adversary is unlikely to fabricate a signal coupon without the use of another 

signal coupon as input6. Formally, for any PPT algorithm A, ⎤⎡ 
(P K, S K, d, s) ← G(1k);   Pr ⎣ y ∈ SSK ⎦ ≤ negl(k) 

y ← A 1k, P K, d

To build the reader’s intuition, we describe a straw-man construction of a BCM. Suppose we are 

given a semantically secure encryption scheme E(·) and a set-homomorphic signature scheme SIG(·) 

(see, for example Johnson et al. [23]). This signature scheme allows anyone possessing sets x, y ⊆ Zp 

and their signatures SIG(x), SIG(y) to compute SIG(x ∪ y) and SIG(w) for any w ⊆ x. We represent 

dummy coupons by a variable-length vector of encrypted zeroes; e.g., x = (E(0), . . . , E(0)). The 

6	 The adversary, however, can easily generate polynomially many dummy coupons by using CP K (·, ·) with 

the initial dummy coupon d that he receives. 
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signal coupons are represented by a vector of encryptions that contains at least one encryption of 

a non-zero element; e.g., y = (E(0), . . . , E(0), E(1)). To prevent the adversary from forging coupons, 

the coupons are signed with the set-homomorphic signature. The combining operation is simply the 

set union: CP K (x, SIG(x)), (y, SIG(y)) = x ∪ y, SIG(x ∪ y) . The drawback of this construction 

is immediate: as coupons are combined and passed around the network, they quickly grow very 

large. Constructing a BCM with no expansion of coupons is more challenging. We describe such a 

construction next. 

3.2 Abstract Group Structure 

We sketch the abstract group structure that will allow us to implement a secure and efficient BCM. 

Concrete instantiations of this group structure are provided in Section 4. 

Let Γ = {Γk} be a family of sets of tuples (U, G, D, d, s), and let G ' be a PPT algorithm that on 

input 1k samples from Γk according to some distribution. For the tuple (U, G, D, d, s), U is a finite 

set with an efficient membership test, and G is a subset of U . G has a group structure: it is a cyclic 

group generated by s. D is a subgroup of G generated by d, such that the factor group G/D has 

prime order |G|/|D|. The orders of D and G/D are bounded by 2k (hence, |G| is bounded by 22k). 

Moreover, |G|/|U | ≤ negl (k) and |D|/|G| ≤ negl (k). Henceforth, we assume that these groups and 

their elements have some concise description, which can be passed as an argument to our algorithms. 

We note that given a generator of a finite cyclic group and a reasonable upper bound on the size of 

the group, one can always sample arbitrarily close to uniformly from the group. 

Suppose there exist an efficient, deterministic algorithm for distinguishing elements of G from 

elements of U \G and an efficient algorithm for computing the group operation in G. Then our BCM 

(G, V, C, D) is as follows. 

–	 The key generation algorithm G(1k) runs G ' to sample (U, G, D, d, s) from Γk, and outputs 

the public key P K = (U, G, d, k), the secret key SK = |D|, as well as d and s. 

The elements of D will represent dummy coupons, the elements of G \ D will represent signal 

coupons, and the elements of U \ G will be invalid coupons (see Figure 1). 

–	 The verification algorithm VP K (y) checks that the coupon y is in G. 

–	 The combining algorithm CP K (x, y) is simply the group operation combined with random­

ization. For input x, y ∈ G, sample r0, r1 and r2 uniformly at random from {0, 1, . . . , 22k − 1}, 

and output r0d + r1x + r2y. 

–	 Because |D| · y = 0 if and only if y ∈ D, the decoding algorithm DSK outputs 0 if |D| · y = 0, 

otherwise 1. 

Theorem 1. The above construction (G, V, C, D) is a BCM. 
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Proof. All that is left to prove is that the combining algorithm has the required properties. Fix k 

and (U, G, D, d, s) sampled from Γk. We need to show that on input two coupons x, y ∈ G, the 

distribution of the output r0d + r1x + r2y is close to uniform in D if x, y ∈ D, and close to uniform 

in G \ D otherwise. 

We start by assuming that the group orders |G| and |D| are known, and sample r0 from the uni­

form distribution on {0, 1, . . . , |D| − 1} and r1, r2 from the uniform distribution on {0, 1, . . . , |G/D| − 

1}. Since d is a generator for D, r0d will be uniformly distributed in D. Therefore, if x, y ∈ D, the 

sum r0d + r1x + r2y will also be uniformly distributed in D. 

If x  ∈ D, then the residue class x + D is non-zero, hence the class is a generator for the prime-

order factor group G/D. This means that r1(x + D) is uniformly distributed in G/D. If r1(x + D) is 

uniformly distributed in G/D, and r0d is uniformly distributed in D, the sum r0d + r1x is uniformly 

distributed in G, and therefore r0d + r1x + r2y will also be uniformly distributed in G. The same 

argument applies if y  ∈ D. 

Now we do away with the assumption that |G| and |D| are known. Note that for any generator 

z of a group of order at most 2k, if a is sampled from the uniform distribution on {0, 1, . . . , 22k − 1}, 

the distribution of az is 2−k-close to uniform over the group. Hence, when r0, r1, r2 are sampled 

uniformly from {0, 1, . . . , 22k − 1}, the distribution of the output r0d + r1x + r2y will be 3 · 2−k-close 

to uniform on D when x, y ∈ D or on G when one of x or y is not in D. In the latter case, we note 

that the uniform distribution on G is |D|/|G|-close to the uniform distribution on G \ D, which is 

negligible in k. D 

The indistinguishability and unforgeability properties of the BCM will depend on the hardness 

assumptions described below. 

Definition 3. The subgroup membership problem for (Γ, G ' ) asks: given a tuple (U, G, D, d, s) 

sampled from Γ using G ' and y ∈ G, decide whether y ∈ D or y ∈ G \ D. 

The subgroup membership problem is hard if for any PPT algorithm A, ⎤⎡ 
(U, G, D, d, s) ← G ' (1k); 

Pr 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
1$ $b ' = b ← D; y1 ← G \ D; − ≤ negl (k).y0 2 

$
b ← {0, 1}; b ' ← A(U, G, D, d, s, yb) 

Various subgroup membership problems have been extensively studied in the literature, and 

examples include the Decision Diffie-Hellman problem [12], the quadratic residue problem [19], among 

others [32, 35, 37]. Our constructions, however, are more closely related to the problems described 

in [17, 33]. 

Definition 4. The subgroup escape problem for (Γ, G) asks: given U , G, D and the generator d 

for D from the tuple (U, G, D, d, s) sampled from Γ using G ' , find an element y ∈ G \ D. 
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The subgroup escape problem is hard if for any PPT algorithm A, ⎡ ⎤ 
(U, G, D, d, s) ← G ' (1k);

Pr ⎣y ∈ G \ D ⎦ ≤ negl (k). 
y ← A(U, G, D, d) 

The subgroup escape problem has, to our knowledge, not appeared in the literature before. It is 

clear that unless |G|/|U | is negligible, finding elements of G\D cannot be hard. We show in Section 6 

that if |G|/|U | is negligible, the subgroup escape problem is provably hard in the generic model. We 

also note that the problem of generating a signal coupon from polynomially many dummy coupons 

is essentially the subgroup escape problem. 

We now prove that our BCM construction on (U, G, D) is secure. 

Theorem 2. Let Γ be as above. If the subgroup membership problem and the subgroup escape prob­

lem for Γ are hard, then the corresponding BCM is secure. 

Proof. Fix k and (U, G, D, d, s) sampled from Γk. 

We first prove the indistinguishability property. Let A be an adversary against indistinguishabil­

ity, taking a public key P K = (U, G, d, k) and a coupon y ∈ G as input, and outputting a bit b ' . We 

construct an adversary B against the subgroup membership problem taking the problem instance 

(U, G, D, d, s) and y ∈ G as input and outputting a bit. B runs A with input P K = (U, G, d, k) and 

y, and simply outputs A’s output bit. 

Since the BCM key generation algorithm essentially samples an instance of the subgroup mem­

bership problem, the input to A will be correctly distributed. Also, if A correctly identifies a signal 

or dummy coupon, B will correctly decide if the element is in the subgroup or not. Therefore, if the 

subgroup membership problem is hard, B must have negligible advantage, hence A must also have 

negligible advantage and indistinguishability will be satisfied. 

Next, we deal with forging. Let A be an adversary against unforgeability, taking a public key 

P K = (U, G, d, k) as input and outputting a coupon y. We construct an adversary B against the sub­

group escape problem taking the problem instance (U, G, D, d) as input and outputting an element 

y ∈ G. B runs A with input P K = (U, G, d, k) and simply outputs A’s coupon. 

Again, since the BCM key generation algorithm essentially samples an instance of the subgroup 

escape problem, the input to A will be correctly distributed. If A succeeds in finding a valid signal 

coupon, this will be an element in G \ D, hence B will succeed in escaping from the subgroup. We 

conclude that if the subgroup escape problem is hard, A must have negligible advantage in forging 

valid signal coupons. 

This concludes the proof. D 
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4 Constructing the BCM 

We now give two instantiations of the abstract group structure (U, G, D) described in the previous 

section. In Section 4.1, we describe one such construction on elliptic curves over a composite modulus. 

In Section 4.2, we describe an alternate BCM construction on groups equipped with bilinear pairings. 

These constructions can be used to undetectably transmit a one-shot signal throughout the network. 

Finally, in Section 4.3, we describe how the BCM’s bandwidth can be further expanded. 

4.1 BCM on Elliptic Curves Modulo Composites 

Let p, q, £1, £2, £3 be primes, and suppose we have elliptic curves Ep/Fp and Eq/Fq such that #Ep(Fp) = 

£1£2 and #Eq (Fq) = £3. Curves of this form can be found using complex multiplication tech­

niques [5, 28] by first finding £1, £2, £3, then finding appropriate primes and curves. Alternatively, 

£3 and q could be found by counting points [41] on random curves, avoiding one instance of complex 

multiplication curves. 

With n = pq, we can find E /Zn such that #E(Zn) = £1£2£3. Let U be the projective plane modulo 

n, let G be E(Zn), and let D be the subgroup of order £1£3. The public key is P K = (G, D, n), while 

the secret key is S K = (p, q, £1, £2, £3). To describe the groups G and D, we publish the elliptic curve 

equation and the generator for D. This gives away enough information to perform group operations 

in G, check membership in G, and generate new elements in D (but not in G). 

Verification Function For any equivalence class (x : y : z) in U , it is easy to decide if (x : y : z) 

2 3 2is in E(Zn) or not, simply by checking if y z ≡ x + axz + bz3 (mod n). 

Subgroup Membership Problem For the curve Ep(Fp), distinguishing the elements of prime 

order from the elements of composite order seems to be hard, unless it is possible to factor the group 

order [17]. 

Counting the number of points on an elliptic curve defined over a composite number is equivalent 

to factoring the number [26, 29]. Therefore, the group order Ep(Fp) is hidden. 

When the group order is hidden, it cannot be factored. It therefore seems likely that the subgroup 

of E(Zn) of order £1£3 is hard to distinguish from the rest of the points on the curve, as long as the 

integer n is hard to factor. 

Subgroup Escape Problem Anyone capable of finding a random point on the curve will, with 

overwhelming probability, be able to find a point outside the subgroup D. 

Finding a random point on an elliptic curve over a field is easy: Choose a random x-coordinate 

and solve the resulting quadratic equation. It has rational solutions with probability close to 1/2. 
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This does not work for elliptic curves over the ring Zn, since solving square roots modulo n 

is equivalent to factoring n. One could instead try to choose a y-coordinate and solve for the x-

coordinate, but solving cubic equations in Zn seems no easier than finding square roots. 

One could try to find x and y simultaneously, but there does not seem to be any obvious strategy. 

This is in contrast to quadratic curves, where Pollard [40] gave an algorithm to find solutions of a 

quadratic equation modulo a composite (which broke the Ong-Schnorr-Shamir signature system [36]). 

These techniques do not seem to apply to the elliptic curve case. 

Finding a lift of the curve over the integers does not seem promising. While torsion points are 

fairly easy to find, they will not exist if the curve E /Zn does not have points of order less than or 

equal to 12. If we allow E /Zn to have points of small order that are easily found, we can simply 

include them in the subgroup D. 

Finding rational non-torsion points on curves defined over Q is certainly non-trivial, and seems 

impossibly hard unless the point on the lifted curve has small height [44]. There does not seem to 

be any obvious way to find a lift with rational points of small height (even though they certainly 

exist). 

What if we already know a set of points on the curve? If we are given P1, P2, P3 ∈ E(Zn), we 

can find, unless the points are collinear, a quadratic curve 

C : Y Z = αX 2 + βX Z + γZ 2 

defined over Zn that passes through P1, P2, P3 and a fourth point P4 which is easy to compute. 

Considering divisors, it is easy to show that the fourth intersection point P4 is the inverse sum of 

the three known points. 

If points of the curve only yield new points via the group operation, and it seems hard to otherwise 

find points on E(Zn), it is reasonable to assume that E(Zn) and its subgroup, as described above, 

yield a hard subgroup escape problem. 

Parameter Sizes It seems difficult to distinguish the special curve E, and the special points on 

E disclosed in the system, from a curve chosen at random together with a point on the curve. This 

suggests that the elliptic curve E does not contribute any knowledge that would aid in factoring n. 

The most efficient attack on the Subgroup Membership Problem and the Subgroup Escape Problem 

therefore seems to be to factor the modulus n directly. The fact that one of the prime factors of 

n was selected at the same time as an elliptic curve does not seem to make n any easier to factor. 

Hence we can use the commonly accepted parameter sizes, where the two prime factors of n should 

be about the same size, and n should be between 1000 and 3000 bits in length depending on the 

required security level (see table 4 of [3]). 
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4.2 BCM on Groups With Bilinear Pairings 

Let p, £1, £2, and £3 be primes such that p + 1 = 6£1£2£3. Here, £1, £2, £3 must be distinct and larger 

than 3. The elliptic curve E : Y 2 = X3 + 1 defined over Fp is supersingular and has order p + 1. 

Because F∗ has order p2 −1 = (p+1)(p−1), there is a modified Weil pairing ê : E(Fp)×E(Fp) → F∗ 
2 2 . 

This pairing is known to be bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ E(Fp) and a, b ∈ Zp. It 

can be computed as described in [31]. There are also other constructions for such curves that are 

not supersingular, such as [8]. 

Let U = E(Fp), and let G and D be the subgroups of E(Fp) of orders £1£2 and £1, respectively. 

We also let P be a point in E(Fp) of order 6£1£2£3, and let R be a point of order 6£3 in E(Fp), say 

R = £1£2P . The public key is P K = (G, D, p, R) and the secret key is S K = (£1, £2, £3). The pairing 

ê allow us to describe G in the public key without giving away secret information. 

p p

Verification Function We claim that for any point Q ∈ E(Fp), Q ∈ G if and only if ê(Q, R) is 

equal to 1. If Q ∈ G, then Q has order £1£2 and for some integer s, Q = 6s£3P . Then 

ê(Q, R) = ê(6s£3P, £1£2P ) = ê(P, P )6s�1�2 �3 = 1. 

So the point R and the pairing ê allows us to determine if points are in G or in U \ G. 

Subgroup Membership Problem Distinguishing the subgroup D (the points of order £1) from 

G (the points of order £1£2) can easily be done if the integer £1£2£3 can be factored. In general, 

factoring seems to be the best way to distinguish the various subgroups of E(Fp). 

Because we do not reveal any points of order £2 or £2£3, it seems impossible to use the pairing to 

distinguish the subgroup D in this way. (Theorem 1 of [17] assumes free sampling of any subgroup, 

which is why it and the pairing cannot be used to distinguish the subgroups of E(Fp).) It therefore 

seems reasonable to assume that the subgroup membership problem for G and D is hard, which will 

provide indistinguishability. 

Subgroup Escape Problem For a general cyclic group of order £1£2£3, it is easy to find elements 

of order £1£2 if £3 is known. Unless £3 is known, it is hard to find elements of order £1£2, and knowing 

elements of order £1 does not help. 

For our concrete situation, factoring the integer £1£2£3 into primes seems to be the best method 

for solving the problem. If the primes £1, £2 and £3 are chosen carefully to make the product £1£2£3 

hard to factor, it seems reasonable to assume that the subgroup escape problem for U , G and D is 

hard. 

Parameter Sizes It seems reasonable to assume that factoring £1£2£3 to be the best method 

for attacking the Subgroup Membership Problem and the Subgroup Escape Problem. Computing 
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discrete logarithms on the elliptic curve or in the associated finite field will be significantly more 

difficult than factoring with current methods. 

Since this number has three prime factors, we also need to consider Lenstra’s integer factoring 

algorithm [29] in addition to the usual number field sieve. We know that a lower bound for Lenstra’s  
method is approximately exp( 2 log(£) log log £) point additions, where £ is about the size of the 

prime divisors. This suggest that for an 80-bit security level, the prime divisors must be about 400 

bits each, leading to a 1200 bit n, somewhat larger than the 1000 bit n dictated by the number field 

sieve. For a 128 bit security level, we get prime divisors of about 900 bits, less than the 3000 bit n 

dictated by the number field sieve. 

4.3 Extending the BCM’s Bandwidth 

The blind coupon mechanism allows to undetectably transmit a single bit. Although this is sufficient 

for our network alert application, sometimes we may want to transmit longer messages. 

Trivial Construction. By using multiple blind coupon schemes over different moduli in parallel, 

we can transmit longer messages. Each m-bit message x = x1 . . . xm is represented by a vector 

of coupons (c1, . . . , c2m), where each ci is drawn from a different scheme. Each node applies its 

algorithm in parallel to each of the entries in the vector, verifying each coupon independently and 

applying the appropriate combining operation to each ci. 

A complication is that an adversary given a vector of coupons might choose to propagate only 

some of the ci, while replacing others with dummy coupons. In our model, this is impossible to 

prevent. But we allow the receiver to detect missing message bits by encoding each bit xi in two 

coupons: for xi = 0, we put a signal coupon in c2i−1 and a dummy coupon in c2i, and reverse for 

xi = 1. A signal coupon in either position tells the receiver both the value of the bit and that the 

receiver has successfully received it. Dummy coupons in both positions indicate a missing bit. 

Alas, we must construct and run Ω(m) blind coupon schemes in parallel to transmit m bits. 

Better Construction. Some additional improvements in efficiency are possible. As before, our 

group structure is (U, G, D). Suppose our cyclic group G has order n0p1 · · · pm, where pi are distinct 

primes. Let D be the subgroup of G of order n0. 

An m-bit message x = x1 . . . xm is encoded by a coupon y ∈ G, whose order is divisible by r1x1 rmxm 
i : xi=1 pi. For all i, we can find an element gi ∈ G of order n0pi. We can thus let y = g · · · g1 m 

for random r1, . . . , rm ∈ {0, 1, . . . , 22k − 1}. 

When we combine two coupons y1 and y2, it is possible that the order of their combination 

CP K (y1, y2) is less than the l.c.m. of their respective orders. However, if the primes pi are sufficiently 

large, this is unlikely to happen. 
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In Section 4.1, n0 is a product of two moderately large primes, while the other primes can be 

around 280. For the construction from Section 4.2, n0 is prime, but every prime must be fairly large 

to counter elliptic curve factorization. We note that strictly speaking, this changes the underlying 

problems, but we do not believe the changes are significant. 

This technique allows us to transmit messages of quite restricted bandwidth. It remains an open 

problem whether some other tools can be used to achieve higher capacity without a linear blow-up 

in message size. 

5 Spreading Alerts with the BCM 

In this section, we show how the BCM can be used to spread an alert quietly and quickly throughout 

a network. 

We consider a very general message-passing model in which each node Pi has a “split brain,” 

consisting of an update algorithm Ui that is responsible for transmitting and combining coupons, 

and a supervisor algorithm Si that may insert a signal coupon into the system at some point. The 

supervisor algorithm Si of sentinel nodes initially hands out dummy coupons. When an attacker’s 

presence is detected, the algorithm switches to sending signal coupons. On a non-sentinel node, Si 

always doles out dummy coupons. Note that the supervisor algorithm always uses the combining 

algorithm when handing out coupons. The update algorithm Ui in each node may behave arbitrarily; 

the intent is that it represents an underlying strategy for spreading alerts whose actions do not 

depend on whether the node is transmitting dummy or signal coupons. 

The nodes carry out these operations under the control of a PPT attacker A (who wants to 

remain undetectable) that can observe all the external operations of the nodes and may deliver any 

message to any node at any time, including messages of its own invention. 

An execution trace in this system consists of a sequence of send events (1, i, j, c) and receive 

events (0, i, j, c), where the coupon c was sent by node i with recipient node j, or received by node 

j, supposedly sent by node i. Note that we must have separate send and receive events, to model 

adversarial control of message delivery. 

t tLet {ĉ } be a set of indicators, ĉ indicating the event that the supervisor algorithm of node Pii i 

supplies signal coupons at time t. This is the only information we need about the behavior of Si. 

tWe write Ξ(P K, S K, A, {Ui}, {ĉ }) for the probability distribution on execution traces given the i 

specified public key, secret key, attacker, update algorithms, and supervisor behaviors. 

We show first that, assuming the BCM is secure, the attacker can neither detect nor forge alerts 

(with non-negligible probability) despite its total control over message traffic. This result holds no 

matter what update algorithm is used by each node; indeed, it holds even if the update algorithm 

of each node colludes actively with the adversary. 
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Clearly, so powerful adversaries can prevent any signal from propagating in the network. We give 

examples of some simple strategies for spreading an alert quickly through the network given some 

mild constraints on the attacker’s behavior. 

5.1 Security 

Let us begin with the security properties we want our alert-spreading mechanism to have. 

Definition 5. A set of update algorithms {Ui} is secure if we have: 

1. Undetectability: Informally, it is hard to distinguish executions where signal coupons are in-
0,t 1,tjected from executions where they are not injected. Let ĉ = 0 for all i, t and let ĉ be arbitrary. i i 

Then for any PPT algorithms A and D, ⎤⎡ 

Pr 

⎢⎢⎢⎢⎢⎢⎣ 

b = b ' 
ξ 

(P K, S K, d, s) ← G(1k); 
$

b  
}
 
; 

⎥⎥⎥⎥⎥⎥⎦ 

1← {0, 1}; 
$ b,t← Ξ P K, SK, A, {Ui}, {ˆ

− ≤ negl(k). 
c 2 
i 

b ' 1,t← D(1k, P K, d, {ĉ }, ξ)i 

2. Unforgeability: The adversary cannot cause any node to transmit a signal coupon unless one 

tis supplied by a supervisor. Let ĉi = 0 for all i, t. Then for any PPT algorithm A, ⎤⎡ 
(P K, SK, d, s) ← G (1k);

Pr ⎣ ∃(·, ·, ·, c) ∈ ξ ∧ (c ∈ SSK ) ⎦ ≤ negl(k). 
$ tξ ← Ξ (P K, SK, A, {Ui}, {ĉi}) ; 

Security of the alert-spreading mechanism follows immediately from the security of the under­

lying blind coupon mechanism. The essential idea behind undetectability is that because neither 

the adversary nor the update algorithms can distinguish between dummy and signal coupons dis­

tributed by the supervisor algorithms, there is no test that can detect their presence or absence. 

For unforgeability, the inability of the adversary and update algorithms to generate a signal coupon 

follows immediately from the unforgeability property of the BCM. 

Theorem 3. An alert-spreading mechanism is secure if the underlying blind coupon mechanism is 

secure. 

Proof. We show first undetectability and then unforgeability. 

1,tUndetectability. Let {Ui} be a set of update algorithms, {ĉ } be an arbitrary indicator set, and i 

A and D be adversaries against undetectability. We construct a PPT adversary B against indistin­

guishability. 

Using its input, B simulates the execution of the protocol in the presence of A. The update 

algorithms are run as usual. The supervisor processes are simulated as follows: Whenever ĉ1,t isi 
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zero, the process uses C(d, d) (taking d from B’s input) to produce a dummy coupon. When ĉ 1,t isi 

non-zero, the process uses C(y, y) to produce a coupon. 

When the execution stops, the execution trace is given to D which outputs a bit b ' . B then 

outputs b ' and stops. 

It is now clear that if y ∈ SSK , then the above process leads to execution traces distributed 
1,texactly as if the real system was run with the indicator set {ĉ }. On the other hand, if y ∈ DSK ,i 

then the above process leads to execution traces distributed exactly as if the real system was run 
0,twith the indicator set {ĉ }.i 

This means that if D correctly recognizes which indicator set was used, B will correctly decide if 

it was given a signal or dummy coupon. 

tUnforgeability. Let {Ui} be a set of update algorithms, {ĉi} be the all-zero indicator set, and A be 

an adversary against unforgeability. We construct a PPT adversary B against unforgeability for the 

blind coupon mechanism. 

Using its input, B simulates the execution of the protocol in the presence of A. The update and 

tsupervise algorithms are run as usual. Note that since ĉ is zero for all i and t, we do not need a i 

signal coupon to simulate the supervise algorithms. 

When the execution stops, all the coupons from the execution trace are accumulated into one 

coupon using the combining algorithm. This final coupon is then output. 

The time cost for the accumulation is linear in the length of the execution trace, hence polynomial 

time in the input length. From the properties of the combining algorithm we know that if a signal 

coupon is present in the trace, the output coupon will be a signal coupon except with negligible 

probability. This means that if A is successfully forges a signal, B will successfully forge a signal 

coupon. D 

5.2 Performance 

It is not enough that the attacker cannot detect or forge alerts: a mechanism that used no messages 

at all could ensure that. In addition, we want to make some guarantee that if an alert is injected 

into the system, it eventually spreads to all non-faulty nodes. In the basic model, the adversary 

can easily block all communications and prevent a signal from spreading, so we must both specify a 

particular strategy for the nodes’ update algorithms and place restrictions on the attacker’s ability 

to inject and discard messages. We give two simple examples of how the blind coupon mechanism 

might be used in practice. More sophisticated models can also be used; the important thing is that 

security is guaranteed as long as the spread of coupons is uncorrelated with their contents. 
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A Synchronous Flooding Model. Consider a communication graph with an edge from each 

node to each other node that it can communicate to. Suppose that at step t, node Pi’s update 

algorithm (a) discards all invalid incoming coupons; (b) combines any remaining coupons with its 

tprevious sent coupons and ci; and (c) sends the result to all of its neighbors in the communication 

graph. Suppose further that nodes are divided into faulty and non-faulty nodes (by arbitrary choice 

of the attacker), and that every message sent by a non-faulty node to another non-faulty node is 

delivered intact by the attacker within at most one time unit. If the communication graph after 

deletion of faulty nodes is strongly connected, every node receives a signal coupon in at most Δ 

steps after a signal coupon is injected, where Δ is the diameter of the subgraph of non-faulty nodes. 

A Simple Epidemic Model. In this model, the communication graph is complete, and at each step 

a randomly-chosen node chooses a random node to receive its coupon (which does so immediately). 

The behavior of a node receiving a message is the same as in the synchronous case. Then the number 

of interactions from the injection of the first signal coupon until all nodes possess a signal coupon is 

easily seen to be O(n log n). Formally: 

Theorem 4. Consider an execution ζ with n nodes of which b < n are Byzantine, and suppose 

that some sentinel node begins sending a signal at the first step. Let the schedule be determined by 

choosing pairs of nodes for each step uniformly at random. Then all non-faulty nodes update their 
log nstate to a signal coupon within expected O( n 2 

) steps.n−b 

Proof. First observe that we can assume b < n − 1, or else the unique non-faulty node possesses the 

alert at time 1. 

Define a node as “alerted” if its state is a signal coupon, and let k be the number of alerted 

nodes. If the next step pairs an alerted, non-faulty node with a non-alerted, non-faulty node, which 
k(n−b−k)occurs with probability , the number of alerted nodes rises to k + 1. The expected time n(n−1) 

n(n−1) n 2 
until this event occurs is at most < . The expected time until all non-faulty nodes k(n−b) k(n−b−k) 

are alerted is thus at most ⎛ ⎞ 
n−b−1 

n−-b−1 2 � - l n−-b−1 
n 2 ⎜ 

2
1 1 ⎟≤ n ⎝ + ⎠ n−b−1 n−b−1k(n − b − k) k (n − b − k)2 n−b−1 2k=1 k=1 k=l J2 

n−b−1� l-2 
2 

12≤ 2n 
n − b − 1 k 

k=1 
24n n − b − 1 

= H 
n − b − 1 2 

n2 log n 
= O . 

n − b 

D 
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If b is any constant fraction of n, the bound becomes simply O(n log n). 

6 Generic Security of the Subgroup Escape Problem 

We now prove that the subgroup escape problem is hard in the generic group model [42]. We first 

deal with the case from Sect. 4.1 where the representation set is much larger than the group. 

Let G be a finite cyclic group and let U be a set such that |U | ≥ |G|. In the generic group model, 

elements of G are encoded as unique random elements of U . We define a random injective function 

σ : G → U , which maps group elements to their representations. Algorithms have access to an oracle 

that on input x ± y returns σ(σ−1(x) ± σ−1(y)) when both x, y ∈ σ(G) ⊆ U , and otherwise the 

special symbol ⊥. An algorithm can use the oracle to decide whether x ∈ U is in σ(G) or not by 

sending the query x + x to the oracle. If x  ∈ σ(G), the reply will be ⊥. 

Theorem 5. Let D be a subgroup of G ⊆ U . Let g be a generator of D. Let A be a generic algorithm 

that solves the subgroup escape problem. If A makes at most q queries to the group oracle, then 

q(|G| − |D|)
Pr y ∈ G \ D y ← σ−1(A(1k, σ(g))) ≤ . 

(|U | − 2q − 1) 

Proof. The algorithm can only get information about σ through the group oracle. If the input to 

the oracle is two elements known to be in σ(D), then the adversary learns a new element in σ(D). 

To have any chance of finding an element of σ(G \ D), the adversary must use the group oracle to 

test elements that are not known to be in σ(D). 

Suppose that after i queries, the adversary knows a elements in σ(D) and b elements of U \ σ(G). 

Since at most two elements are submitted for each query, we know that a + b ≤ 2i + 1. For any z 

outside the set of tested elements, the probability that z ∈ σ(G \ D) is exactly (|G| − |D|)/(|U | − b) 

(note that it is independent of a). Therefore, the probability that the adversary discovers an element 

in σ(G \ D) with i + 1 query is at most (|G| − |D|)/(|U | − 2i − 1). For up to q queries, the probability 

that at least one of the tested elements are in σ(G \ D) is at most 

q- |G| − |D| |G| − |D|≤ q · . 
|U | − 2i − 1 |U | − 2q − 1 

i=1 

D 

For a sufficiently large universe U , the escape probability given by Theorem 5 is negligible. The 

theorem models the construction discussed in Sect. 4.1, but in Sect. 4.2, U is a cyclic group with 

known group order, and G is a subgroup of U of unknown order. Obviously, we cannot prove an 

unconditional theorem in the generic model, since it is always possible to factor the group order. 

When the factorization is known, finding elements of G \ D is easy. However, this is essentially the 

only generic method to solve the subgroup escape problem. 
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Theorem 6. Let U be a cyclic group of known composite order n = £1£2£3, let D be the subgroup 

of order £1, and let G be the subgroup of order £1£2. Let A be a generic algorithm that solves the 

subgroup escape problem with probability E using time t and q queries to the group oracle. Then there 

exists an algorithm B that splits n with probability at least E − |G \ D|/(|U | − 3q − 2) using time 

t + O(q2). 

Proof. In order to use A as a subroutine, we need to simulate both its group oracle and its input. To 

do that, we need to do arithmetic in the additive group Zn, but we also need to give the adversary 

an element of a proper, non-trivial subgroup of Zn. Since we do not know the factors of n, this is not 

immediately possible. We shall instead work with the additive group Zn × Zn. Let γ be an element 

of Zn of order £1. Define the map φ : Zn × Zn → Zn by φ(ξ, α) = ξ + αγ. It is clear that φ is a 

surjective group homomorphism, so (Zn × Zn)/ ker φ is isomorphic to Zn. 

We want to show that if we have two distinct representatives of the same residue class in (Zn × 

Zn)/ ker φ, this will reveal a non-trivial factor of n. Suppose φ(ξ, α) = φ(ξ ' , α ' ). If α ≡ α ' (mod £1), 

we have two cases: either α = α ' , in which case ξ = ξ ' , or α = α ' , in which case £1 divides 

gcd(n, α−α ' ) which in turn does not equal n. On the other hand, if α  ≡ α ' (mod £1), then (α−α ' )γ = 

ξ ' − ξ, hence ξ ' − ξ has order £1 and gcd(n, ξ ' − ξ) = £2£3. 

We now describe the factoring algorithm: B runs A on input n and a random non-zero number 

g from {0, 1, . . . , n − 1}, representing a generator for the subgroup D. 

Our algorithm B must simulate A’s group oracle. It does this with a partial injective mapping 

σ : Zn × Zn → {0, 1, . . . , n − 1}. Initially, σ is defined only at (0, 0) and (0, 1), with σ(0, 0) = 0 and 

σ(0, 1) = g. The mapping is extended as A queries its group oracle. 

If A queries its oracle with a value x that is not in the image of σ, we choose a random value ξ 

such that σ(ξ, 0) is undefined and extend σ with σ(ξ, 0) = x. 

If A queries its oracle with x0 ± x1, where both values are in the image of σ, but σ is not defined 

at σ−1(x0) ± σ−1(x1), we choose a random value x2 that is not in the image of σ and extend σ with 

σ(σ−1(x0) ± σ−1(x1)) = x2. 

Before we extend σ by σ(ξ, α) = x, we go through every pair (ξ ' , α ' ) where σ is defined and 

compute gcd(n, ξ − ξ ' ) and gcd(n, α − α ' ). If either computation produces a non-trivial factor of n, 

B stops and outputs a splitting of n. 

Eventually, A stops and outputs x. If x is not in the image of σ, then B stops and outputs 1. 

Otherwise, suppose σ−1(x) = (ξ, α). Then B outputs gcd(n, ξ). 

We first need to show that if A stops, then B has properly simulated the group oracle. By the 

initial discussion on the representation of Zn, it is clear that if B is about to extend σ non-injectively, 

it will stop and output a factor. Furthermore, it is clear that when elements are selected at random, 

they are sampled from the appropriate uniform distributions. 
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Whenever A outputs an element that is in the image of σ, and is in G \ D, say σ(ξ, α) = x, B will 

split n. This is because the order of φ(ξ, α) must be £2 or £1£2. Note that φ(ξ, α) = φ(ξ, 0) + φ(0, α). 

Since the φ(0, α) has order £1, φ(ξ, 0) must have order £2 or £1£2. Therefore ξ must be divisible by 

£3, but not £2. Hence, gcd(n, ξ) will be a non-trivial factor of n. 

The only case where A succeeds and B fails is if A outputs an element that is not in the image 

of σ, and this element then happens to be in G \ D. We need to compute the probability of this 

event. We note that after q queries to the group oracle, A has seen at most 3q + 2 elements in the 

image of σ. Therefore, the probability that an element not in the image of σ is in G \ D is at most 

|G \ D|/(|U | − 3q − 2). This concludes the proof. D 

7 Related Work 

Our motivating example of spreading alerts is related to the problem of anonymous communication. 

Below, we describe known mechanisms for anonymous communication, and contrast their properties 

with what can be obtained from the blind coupon mechanism. We then discuss literature on elliptic 

curves over a ring, which are used in our constructions. 

7.1 Anonymous Communication 

Two basic tools for anonymous message transmission are DC-nets (“dining-cryptographers” nets) [11, 

20] and mix-nets [10]. These tools try to conceal who the message sender and recipient are from an 

adversary that can monitor all network traffic. While our algorithms likewise aim to hide who the 

signal’s originators are, they are much less vulnerable to disruption by an active adversary that can 

delay or alter messages, and they can also hide the fact that a signal is being spread through the 

network. 

DC-nets enable one participant to anonymously broadcast a message to others by applying 

a dining cryptographers protocol. A disadvantage of DC-nets for unstructured systems like peer­

to-peer networks is that they require substantial setup and key management, and are vulnerable 

to jamming. In contrast, the initialization of our alert-spreading application involves distributing 

only a public key used for verification to non-sentinel nodes and requires only a single secret key 

shared between the sentinels and the receiver, jamming is prevented by the verification algorithm, 

and outsiders can participate in the alert-spreading (although they cannot initiate an alert), which 

further helps disguise the true source. As the signal percolates across the network, all nodes change 

to an alert state, further confounding the identification of an alert’s primary source even if a secret 

key becomes compromised. 

The problem of hiding the communication pattern in the network was first addressed by Chaum [10], 

who introduced the concept of a mix, which shuffles messages and routes them, thereby confusing 
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traffic analysis. This basic scheme was later extended in [45, 46]. A further refinement is a mix-

net [1, 21, 22], in which a message is routed through multiple trusted mix nodes, which try to hide 

correlation between incoming and outgoing messages. Our mechanism is more efficient and produces 

much stronger security while avoiding the need for trusted nodes; however, we can only send very 

short messages. 

Beimel and Dolev [4] proposed the concept of buses, which hide the message’s route amidst 

dummy traffic. They assume a synchronous system and a passive adversary. In contrast, we assume 

both an asynchronous system and a very powerful adversary, who in addition to monitoring the 

network traffic, controls the timing and content of delivered messages. 

7.2 Elliptic Curves over a Ring 

One of our BCM construction is based on elliptic curves over the ring Zn, where n = pq is a product 

of primes. Elliptic curves over Zn have been studied for nearly twenty years and are used, inter alia, in 

Lenstra’s integer factoring algorithm [29] and the Goldwasser-Kilian primality testing algorithm [18]. 

Other works [14, 25, 35] exported some factoring-based cryptosystems (RSA [39], Rabin [38]) to the 

elliptic curve setting in hopes of avoiding some of the standard attacks. The security of our BCM 

relies on a special feature of the group of points on elliptic curves modulo a composite: It is difficult 

to find new elements of the group except by using the group operation on previously known elements. 

This problem has been noted many times in the literature, but was previously considered a nuisance 

rather than a cryptographic property. In particular, Lenstra [29] chose the curve and the point at 

the same time, while Demytko [14] used twists and x-coordinate only computations to compute 

on the curve without y-coordinates. To the best of our knowledge, this problem’s potential use in 

cryptographic constructions was first noted in [16]. 

Our other BCM construction uses bilinear groups of composite order. Similar groups have been 

used by Boneh-Goh-Nissim [7] to construct a cryptosystem with interesting homomorphic properties. 

Their proof of security also relies on the difficulty of the subgroup membership problem, which instills 

further confidence in our hardness assumptions. 

7.3 Epidemic Algorithms 

Our alert mechanism belongs to the class of epidemic algorithms (also called gossip protocols) intro­

duced in [13]. In these algorithms, each node randomly chooses neighbors with which to communicate. 

A drawback of gossip protocols is the number of messages they send, which is in principle unbounded 

if there is no way for the participants to detect when all information has been fully distributed. 
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8 Conclusion 

We have defined and constructed a blind coupon mechanism, implementing a specialized form of 

a signed, AND-homomorphic encryption. Our proofs of security are based on the novel subgroup 

escape problem, which seems hard on certain groups given the current state of knowledge. Our scheme 

can be instantiated with elliptic curves over Zn of reasonable size which makes our constructions 

practical. We have demonstrated that the BCM has many natural applications. In particular, it can 

be used to spread an alert undetectably in a variety of epidemic-like settings despite the existence 

of Byzantine nodes and a powerful, active adversary. 
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