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Abstract. This paper proposes an extension to Network Utility Maximization 
(NUM) framework, referred to as L-NUM (Location-aware NUM). This frame-
work is intended to characterize both the amount of the received sensor infor-
mation and the network ability to deliver the information to the intended recipi-
ent(s).  The sensor location is controlled by maximization of the system utility 
production, which accounts for both rate of the network utility increase and the 
negative effects of the energy consumption as a result of sensor motion.  Defi-
nition of sensor utility in L-NUM incorporates the value of sensor information 
which is affected by sensor locations.  Once model-specific network utility and 
system utility production are defined, L-NUM provides intuitively appealing 
and tractable framework for mobile sensor network optimization. 

1   Introduction 

Mobile sensor networks are envisioned for detecting and tracking potential targets 
and events for civilian as well as military purposes.  Locations of sensors in a mobile 
sensor networks affect both the network ability to detect and track the identified tar-
gets and events as well as the ability to communicate the relevant information to the 
intended recipients.  The communication ability can be improved if sensors are capa-
ble of optimally self-organizing into a multihop mobile network where sensors coop-
erate in relaying each other information in addition to transmitting their own informa-
tion.  Since the detecting and tracking needs could potentially compete with the 
communication needs, optimal realization of mobile sensor networks requires node 
ability to balance these competing requirements using local, and typically incomplete, 
information. Energy conservation requirements could also be a major factor in con-
trolling sensor position due to their possible impact on the sensor lifespan and in turn 
on the rest of the network performance.  Developing self-organized mobile sensor 
networks capable of adjusting to target movement and/or other environmental 
changes requires developing sophisticated algorithms capable of balancing numerous 
inherent trade-offs.  This paper proposes a tractable extension to Network Utility 
Maximization (NUM) framework aimed at addressing some of these algorithmic 
challenges. 



NUM framework for fair bandwidth allocation in a wire-line network has been 
proposed in [1]. This framework assumes elastic users, sources or applications whose 
satisfaction can be quantified by a utility function of the corresponding end-to-end 
bandwidth. Framework [1] assumed that elastic users/sources are capable of adjusting 
their bandwidth requirements in response to the network congestion. This framework 
has been extended to include cross-layer optimization of wire-line as well as wireless 
networks [2]-[4].  The extended NUM jointly optimizes flow control, routing, sched-
uling and power control.  The optimization is achieved by a decentralized, adaptive 
closed-loop algorithm with feedback signals which can be interpreted as resource 
congestion prices. 

In [5], a combination of utility-based flow model with potential field based ap-
proach to control the sensor positions has been proposed.  This hybrid framework 
accounts for the effect of sensor locations on their ability to transmit sensor informa-
tion to the intended recipient(s). This is achieved through link capacity constraints in 
the mobile ad-hoc network formed by the sensors.  The corresponding optimal, loca-
tion-dependent network utility, viewed as a potential field, defines potential forces 
guiding the sensors motion.  However, the network utility only quantifies communi-
cation abilities of the sensor network and does not take into account the effect of 
sensors locations on the sensor ability to get valuable information on the target(s). 
Instead, the value of sensor information is incorporated through phenomenologically 
defined forces, e.g., “attractive forces towards goals”.  Also, sensor motion in [5] is 
guided by a mass-damper model driven by the sum of the potential and phenomenol-
ogical forces with damping coefficients that represent the energy expended on the 
sensor motion. 

Here, we propose another utility-based framework for mobile sensor network op-
timization, referred to as Location-aware Network Utility Maximization (L-NUM).   
L-NUM assumes that the aggregate sensor utility quantifies the value of the sensor 
information, which is a function of both sensor information rates and sensor physical 
locations.  Given sensor locations, aggregate sensor utility maximization subject to 
the communication constraints yields the optimal cross-layer network design. The 
corresponding optimal sensor network utility quantifies both value of sensor informa-
tion and ability of the network to deliver this information to the intended recipient(s).  
The maximum of this aggregate network utility yields the optimal sensor locations.  
In practice, reaching these optimal locations by mobile sensors may be infeasible due 
to the un-accessible terrain and/or limitations on the node energy supply.  L-NUM 
proposes to account for these factors through utility production, which is a function 
of both, sensors locations and speeds.  The sensor speeds are selected to maximize the 
utility production, given the sensor locations. 

Once the model-specific network utility and system utility production are defined, 
L-NUM provides intuitively appealing, self-contained and tractable framework for 
mobile sensor network optimization.  This paper describes L-NUM framework with a 
very brief discussion of some of the numerous methodological, computational and 
implementation issues.  The main methodological issues include quantifying the loca-
tion-dependent value of sensor information, i.e., sensor utility, as well as utility pro-
duction.  Computational and implementation issues include decentralized optimiza-
tion based on local and typically incomplete information.    



The rest of this paper is organized as follows.  Section II summarizes the conven-
tional NUM framework.  Section III describes L-NUM as a natural extension of the 
conventional NUM by incorporating spatial effects into cross-layer optimization and 
energy conservation considerations into position control.  Section IV briefly illus-
trates L-NUM on an example of single mobile sensor transmitting information to a 
single receiver.  Finally, Conclusion summarizes the proposed approach and outlines 
direction for future research. 

2   Network Utility Maximization 

Consider a network comprised of a set of sources S  and a set of resources (i.e. links) 
Ll∈  with capacities lc .  Each source Ss ∈  identifies a unique source-destination 

pair and a set of feasible routes sR . Each route sRr ∈  is a collection of resources 
rl∈ .  Source s  satisfaction of having end-to-end bandwidth λ  is characterized by 

the utility function Ssus ∈),(λ  which is assumed to be monotonically increasing 

and concave in 0≥λ . For example, widely used weighted ),( wα - fair rate allocation 
[6] is based on utilities  
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where 0, >swα  are parameters. When 1=sw , the cases 0→α , 1→α  and ∞→α  
correspond respectively to an allocation which achieves maximum throughput, and is 
proportionally fair or max-min fair. 

In a link-centric formulation each source Ss ∈  with end-to-end rate sλ  is split 
into rates rλ  over feasible routes sRr ∈ : 
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This results in the aggregate load lμ on link Ll∈  where 
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The link-centric utility maximization framework selects vector of flow rates 
),..,1,,( SsRr sr =∈=Λ λ  which maximizes the aggregate user utility 

                               ∑=Σ s ssuU )()( λλ .                                                             (4) 

where ),..,1,( Sss == λλ . This maximization is subject to the link capacity con-
straints ll c≤μ , (2) and (3). 

One can also account for capacity constraints ll c≤μ  through congestion pen-
alty 



                             ∑=Σ l lls cfcF ),(),( μμ ,                                                        (5) 

where ),( Lll ∈= μμ , ),( Llcc l ∈= . Penalty function ),( lll cf μ  quantifies losses 
in terms of delays or packet loss due to buffer overflows as the link l  utilization lμ  
approaches link capacity lc . Functions ),( lll cf μ  are assumed to be monotonically 
increasing and convex in 0>lμ .  A steep function ),( lll cf μ  increase as lμ  ap-
proaches lc  prevents violation of the capacity constraints. NUM with capacity con-
straints incorporated through the congestion penalty can be expressed as follows 
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0
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where maximization is subject to constraints (2) and (3). Such formulization and its 
distributed price-based solution have been proposed in [1]. 

While in a wire-line network link capacities lc  are typically assumed fixed, in a 
wireless, interference-limited network link capacities are functions of the transmis-
sion powers on neighboring links and channel conditions affecting transmission on 
link l  as well as interference from transmissions on other links.  A large number of 
cross-layer optimization frameworks accounting for these interactions have been 
proposed, e.g., see [2]-[4]. These frameworks often assume that “elastic” link capaci-
ties are given functions of the vector of average transmission powers on all links 
( )( , Llpp l ∈= ) i.e.: 

                                       )( pcc ll =                                                                       (7) 
For example, [4] assumes  

                          )](1log[)( 21 pSIRkkpc ll += ,                                                  (8) 
where 1k , 2k  are constant coefficients, and the Signal-to-Interference Ratio on link 

),( jil =  is 
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In (9) ijξ  is the path loss on link ),( ji , and jη  is the noise power at the receiver of 

node j .  
Elasticity of the link capacities in a wireless network naturally lead to the follow-

ing NUM formulation: 
                          )},()({max

0

* cFUU μλ ΣΣ≥Λ
−=                                                 (10) 

with maximization to be subject to capacity constraints (2)-(3), wireless channel 
model (7), and possibly power constraints 

                                            Pp ∈                                                                       (11) 
where P  is the feasible power region. Much more sophisticated versions of NUM 
could also include optimization over packet scheduling on different links [2]-[4]. 



3   Location-aware NUM 

Joint Cross-Layer and Node Location Framework Model 
Here, we propose a location-aware extension of NUM for mobile sensor networks by 
assuming that the aggregate value of the information gathered by S  sensors can be 
quantified by the utility function ),( xU λΣ , where vectors ),..,( 1 Sλλλ = , 

),..,( 1 Sxxx =  describe information collection rates sλ  and physical locations (co-
ordinates) sx  of all sensors Ss ,..,1= .  

We assume that the aggregate utility ),( xU λΣ  is additive: 
                                   ∑=Σ

s
ss xUxU ),(),( λλ                                                  (12) 

where utility (i.e. information value) of each sensor Ss ,..,1=  information is the 
following product 

                                   )()(),( xvuxU sssss λλ = .                                               (13) 
The first multiplier )( ssu λ  is an increasing and concave function of the information 
collection rate sλ , e.g., of form (1).  The second multiplier )(xvs  quantifies the 
effects of the physical locations of all S  sensors ),..,( 1 Sxxx =  on the value of in-
formation captured by the sensor s . The dependence of )(xvs  on the physical loca-
tions of all S  sensors ),..,( 1 Sxxx =  can be explained as follows.  While the value 
of the information collected by a single sensor s  from the intended target(s) depends 
on the sensor physical location sx  relative to the target(s), this value can be reduced 
if other sensors are located close to sensor s  due to redundancy of the obtained in-
formation.  In a situation when all S  sensors Ss ,..,1=  gather information from a 
single target, it is natural to assume that utilities )(xvs  depend on the target loca-

tion Tx : )()( Tss xxvxv =     

Physical location of mobile sensors ),..,( 1 Sxxx =  also affects the quality of wire-
less channels between different sensors and between sensors and the intended recipi-
ent(s) of the sensor information.  This is modeled by considering that capacity ijc  of 

the wireless link ),( jil=  depends on the locations of sensors ji,  (i.e. ji xx , ): 

                                      ),,( jiijijij xxpcc =                                                       (14) 
 

In particular, the path loss component in (9) is a function of the locations of the two 
communicating sensors i.e. 

  
                                         ),( jiijij xxξξ =                                                           (15) 
 

For example, in case of free-space propagation [7]: 



                                           γρχξ −= ijijij                                                              (16) 

where ijχ  and γ  are positive constants, and ),( jiij xxρρ =  is the physical distance 

between sensors i  and j  with physical coordinates ix  and jx  respectively. 

As a result of these spatial effects, the optimal network utility (10) is a function 
of the vector of sensor locations ),..,( 1 Sxxx =  

                        )]},(,[),({max)(
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where the maximization is subject to capacity constraints (2)-(3) and power con-
straints (11).  For the case of a single target and destination, optimal utility (17) de-
pends on the target and destination locations Tx  and Dx  respectively, i.e. 

),()( **
DT xxxUxU = . 

 

Location Optimization 
For given sensor locations ),..,( 1 Sxxx = , the cross-layer optimized utility can be 

obtained by solving equation 17. The optimal sensor locations ),..,( 1
opt
S

optopt xxx =  
maximize this cross-layer optimal utility by: 
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where sA  is the allowable (or feasible) area for sensor s . Terrain information includ-
ing unreachable or undesirable locations can be incorporated here.   

Sensor motion (i.e. trajectory) should also take into account the corresponding en-
ergy consumption. To account for the “cost” of sensor s motion, we introduce a dis-
sipative function ),( sss xx &ϕ  which quantifies negative effect of energy supply deple-
tion as a result of sensor s  motion with speed sx&  at location sx . Functions 

),( sss xx &ϕ  are assumed to be monotonically increasing and convex in sx& . Also, 

0),( >ss xx &ϕ  if 0≠sx&  and 0),( =sss xx &ϕ  if 0=sx& .   
We assume that the total “cost” of sensor motion is additive: 
 
                                      ∑=Φ

s
sss xxxx ),(),( && ϕ                                                 (19) 

where ),..,( 1 Sxxx &&& =  is the vector of sensors velocities. Now consider the effect of 
sensor s  motion on the system performance.  The rate of network utility change due 
to the sensor motion is 

                      ⎟
⎠
⎞

⎜
⎝
⎛ ∑∇−∑∇=∇=

l
lx

s
sxx fxUxxUxU *** )()( &&&                              (20) 



where T
nx xx )/,..,/( 1 ∂∂∂∂=∇ .  Functions ]),([)( ** xxUxU ss λ=  and 

]),([)( ** xxfxf sl μ=  in (2) are calculated at the optimum (17).  Expression (20) 
implies that cross-layer optimization (17) is performed at much faster time scale than 
sensors change their locations. 

Now, define system utility production ),( xxW & as 

                                        ),()(),( xxxUxxW &&& Φ−=                                           (21) 

where network utility production U&  is given by (20) and dissipative function 
),( xx &Φ  is given by (19).  We propose to control sensor position by selecting sensor 

velocity vector x& , which maximizes the utility production (21): 
 

                                            ),(maxarg xxWx
x

&&
&

=                                               (22) 

Interpreting (22) as a dynamic system, one can realize that since 0),( 0 ≡Φ =xxx && , the 

optimal sensor location optx  is an equilibrium point of this dynamic system.  It is 
clear from (21)-(22) that the optimal sensor motion depends on both, potential )(xU   
and the nature of the friction affecting the dissipative function ),( xx &Φ .  For brevity, 
we only consider two particular cases of static and viscous friction. We assume that 

)( sms xx =  are Cartesian coordinates of sensor s with components smx . 
In the case of static friction, sensor s  dissipative function is 
 
                                       ∑=

m
smsmss xxaxx && )(),(ϕ                                            (23) 

 
and in the case of viscous friction, sensor s  dissipative function is 
 

                                2))(()21(),( smssmsmsm xxaxx && =ϕ                                     (24) 
 

where positive functions 0)( >xasm  characterizes the “difficulty” of moving sensor 
s  at the direction of the dimension m  at the point )( sms xx = .  It is easy to see that 

for static friction (23), sensor s  either holds its position sx  if the static friction is 
sufficiently strong or moves at the highest allowable speed otherwise. 

In the case of viscous friction (24), the dynamic system (22) takes the following 
form:  
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Sensor motion (25) balances change in the value of sensor information, repre-

sented by the term ∑∇ s sx xU
sm

)(* , with the change in the sensor ability to deliver this 



information to the intended recipient, represented by ∑∇ l lx xf
sm

)(* . Increase in the 

friction force represented by friction coefficient )(xasm  causes sensor to slow down.  
In practical situations one may expect a combination of static and viscous friction 
effects. 

4   Example: A Single Mobile Sensor 

Consider a single mobile sensor collecting information from a single target and trans-
mitting this information to a single destination.  In this case the network utility takes 
the following form: 

                          )],(,[)()(),,( xpcfxvuxpU λλλ −=                                     (26) 
We assume that power constraints (18) impose upper bound on the average transmis-
sion power p . It is easy to see that under natural assumptions utility is maximized for 
the maximum allowable power p .  Therefore, power p  can be assumed to be fixed 
in (26).  Formal differentiation of the joint utility function (26) with respect to λ  
yields the following first-order cross-layer optimality conditions: 

                                     ),()()( cfuxv λλ λλ ′=′                                                    (27) 
We consider weighted ),( wα  fair rate allocation utility (1) for which 

                                              αλλ −=′ wu )( ;                                                       (28) 
We also consider the following penalty function associated with the communication 
capacity constraints: 

                                              
λ

θ
λ

−
=

−

c
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Parameter θ  represents the maximum tolerable communication delay. Equation (29) 
naturally arises from expression )(1 λ−c  for the average delay in 1// MM  queuing 
system [8]. Combining equations (27)-(29), we obtain the following first-order cross-
layer optimality conditions: 

 

                                   )(]),([ 2 xvwpxc θλλα =−                                            (30) 
 
Equation (30) has a single solution 
                                              ),(* pxλλ =                                                          (31) 

which is a function of both, sensor location x  and transmission power p .  Since 
sensor utility ),( xU λ  is an increasing function of λ , the optimal sensor location  
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which maximizes sensor information rate also maximizes the utility. In (32), A  is the 
feasible region for the mobile sensors. The optimal sensor motion is characterized by 
the equation (22). 

In some cases, function (32) can be explicitly identified. For example, in the case 
of 0=α : 

 
                            21)]([),( −−= xvwpxc θλ                                                      (33) 

and, in the case of 2=α : 
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Now, consider the situation of low power transmissions: 0→p , when 
                  0)()(),( 0 →+= paspopxcpxc                                                (35) 

where 0)(0 >xc .  For example, with the channel capacity expressions in (8)-(9): 
                               ηξ ),()(0 Dxxkxc = ,                                                         (36) 

where k  is a constant coefficient, ),( Dxxξ  is the path loss from the sensor location 
x  to the destination location Dx , and η  is the noise power at the destination loca-
tion Dx . We also assume that the sensor tracks a single target with location Tx , and 
the spatial component of sensor information value depends on both, sensor and target 
locations: ),()( Txxvxv = .  Under these assumptions equations (33) and (34) take 
the following forms respectively: 
 

                    21)],([),()( −−= TD xxwvxxpk θξηλ                                         (37) 
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It is reasonable to assume that the spatial component of the sensor utility ),( Txxv  

is qualitatively similar to the path loss from the target to the sensor ),( xxTξ .  Also, 
for simplicity, we assume 

                                ),(),( xxxxv TT βξ=                                                           (39) 
where 0>β  is some coefficient, then equations (37) and (38) take the following 
forms respectively: 
 

                    21)],([),()( −−= xxwxxpk TD ξβθξηλ                                      (40) 
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Considering equations (40) and (41), the following qualitative conclusions can be 
driven. The optimal sensor location optxx = , which maximizes (40) or (41), is deter-
mined by the trade-off between path loss from the target to the sensor ),( xxTξ  and 

from the sensor to the destination ),( Dxxξ . The optimal sensor location optxx =  
depends on the terrain through the path loss.   Increase in the transmission power p  

moves the optimal sensor location optxx =  “closer” to the target and “farther” from 
the destination since power increase enhances communication and allows sensor to 
concentrate on obtaining information from the target. 

5   Conclusion and Future Research 

This paper has proposed a framework for self-organization of mobile sensor net-
works, which includes cross-layer network optimization as well as controlling sensors 
position.  Given sensor locations, cross-layer network optimization allocates re-
sources and configures protocols to ensure delivering the highest utility of the sensor 
information to the intended recipient(s). Controlling sensor location further enhances 
this utility. 

Future efforts should address numerous research and implementation challenges, 
including quantification of sensor utility and utility production.  Also, a simulation 
platform is currently under construction to further evaluate the performance of such 
networks in case of large number of nodes. 
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