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Abstract. This paper proposes an extension to Network Utility Maximization
(NUM) framework, referred to as L-NUM (Location-aware NUM). This frame-
work is intended to characterize both the amount of the received sensor infor-
mation and the network ability to deliver the information to the intended recipi-
ent(s). The sensor location is controlled by maximization of the system utility
production, which accounts for both rate of the network utility increase and the
negative effects of the energy consumption as a result of sensor motion. Defi-
nition of sensor utility in L-NUM incorporates the value of sensor information
which is affected by sensor locations. Once model-specific network utility and
system utility production are defined, L-NUM provides intuitively appealing
and tractable framework for mobile sensor network optimization.

1 Introduction

Mobile sensor networks are envisioned for detecting and tracking potential targets
and events for civilian as well as military purposes. Locations of sensorsin a mobile
sensor networks affect both the network ability to detect and track the identified tar-
gets and events as well as the ability to communicate the relevant information to the
intended recipients. The communication ability can be improved if sensors are capa-
ble of optimally self-organizing into a multihop mobile network where sensors coop-
erate in relaying each other information in addition to transmitting their own informa
tion. Since the detecting and tracking needs could potentially compete with the
communication needs, optimal realization of mobile sensor networks requires node
ability to balance these competing requirements using local, and typically incomplete,
information. Energy conservation requirements could aso be a major factor in con-
trolling sensor position due to their possible impact on the sensor lifespan and in turn
on the rest of the network performance. Developing self-organized mobile sensor
networks capable of adjusting to target movement and/or other environmental
changes requires developing sophisticated agorithms capable of balancing numerous
inherent trade-offs. This paper proposes a tractable extension to Network Utility
Maximization (NUM) framework aimed at addressing some of these algorithmic
challenges.



NUM framework for fair bandwidth alocation in a wire-line network has been
proposed in [1]. This framework assumes elastic users, sources or applications whose
satisfaction can be quantified by a utility function of the corresponding end-to-end
bandwidth. Framework [1] assumed that elastic users/sources are capable of adjusting
their bandwidth requirements in response to the network congestion. This framework
has been extended to include cross-layer optimization of wire-line as well as wireless
networks [2]-[4]. The extended NUM jointly optimizes flow control, routing, sched-
uling and power control. The optimization is achieved by a decentralized, adaptive
closed-loop agorithm with feedback signals which can be interpreted as resource
congestion prices.

In [5], a combination of utility-based flow model with potential field based ap-
proach to control the sensor positions has been proposed. This hybrid framework
accounts for the effect of sensor locations on their ability to transmit sensor informa-
tion to the intended recipient(s). This is achieved through link capacity constraints in
the mobile ad-hoc network formed by the sensors. The corresponding optimal, loca
tion-dependent network utility, viewed as a potentia field, defines potential forces
guiding the sensors motion. However, the network utility only quantifies communi-
cation abilities of the sensor network and does not take into account the effect of
sensors locations on the sensor ability to get valuable information on the target(s).
Instead, the value of sensor information is incorporated through phenomenologically
defined forces, e.g., “attractive forces towards goals’. Also, sensor motion in [5] is
guided by a mass-damper model driven by the sum of the potential and phenomenol-
ogical forces with damping coefficients that represent the energy expended on the
sensor motion.

Here, we propose ancther utility-based framework for mobile sensor network op-
timization, referred to as Location-aware Network Utility Maximization (L-NUM).
L-NUM assumes that the aggregate sensor utility quantifies the value of the sensor
information, which is a function of both sensor information rates and sensor physical
locations. Given sensor locations, aggregate sensor utility maximization subject to
the communication constraints yields the optimal cross-layer network design. The
corresponding optimal sensor network utility quantifies both value of sensor informa-
tion and ability of the network to deliver this information to the intended recipient(s).
The maximum of this aggregate network utility yields the optimal sensor locations.
In practice, reaching these optimal locations by mobile sensors may be infeasible due
to the un-accessible terrain and/or limitations on the node energy supply. L-NUM
proposes to account for these factors through utility production, which is a function
of both, sensors locations and speeds. The sensor speeds are selected to maximize the
utility production, given the sensor locations.

Once the model-specific network utility and system utility production are defined,
L-NUM provides intuitively appealing, self-contained and tractable framework for
mobile sensor network optimization. This paper describes L-NUM framework with a
very brief discussion of some of the numerous methodological, computational and
implementation issues. The main methodological issues include quantifying the loca-
tion-dependent value of sensor information, i.e., sensor utility, as well as utility pro-
duction. Computational and implementation issues include decentralized optimiza-
tion based on local and typically incomplete information.



The rest of this paper is organized as follows. Section |l summarizes the conven-
tional NUM framework. Section |1l describes L-NUM as a natural extension of the
conventional NUM by incorporating spatial effects into cross-layer optimization and
energy conservation considerations into position control. Section IV briefly illus-
trates L-NUM on an example of single mobile sensor transmitting information to a
single receiver. Finally, Conclusion summarizes the proposed approach and outlines
direction for future research.

2 Network Utility Maximization

Consider a network comprised of a set of sources S and a set of resources (i.e. links)
leL with capacitiesc,. Each source S€ S identifies a unique source-destination
pair and a set of feasible routesR,. Each route r € R, is a collection of resources
ler . Source S satisfaction of having end-to-end bandwidth A is characterized by
the utility function u,(4), se S which is assumed to be monotonically increasing
and concave in 4>0. For example, widely used weighted (o, W) - fair rate allocation
[6] is based on utilities
Y
ug(4) =4 s T if a#l 0
wgind if a=1

where oW, >0 are parameters. When w, =1, the cases ¢—0, a—1 and a—e

correspond respectively to an alocation which achieves maximum throughput, and is
proportionally fair or max-min fair.

In alink-centric formulation each source se S with end-to-end rate A, is split
into rates A, over feasibleroutesr € R :

A=A @)
reRg
Thisresultsin the aggregate load 4, onlink leL where
=2 XA 3
s rlercRy

The link-centric utility maximization framework selects vector of flow rates
A =(4,.,re R,,s=1..,S) which maximizesthe aggregate user utility
Us(4)=2..Us(4s) - @
where 4 =(4,,5=1..,S). This maximization is subject to the link capacity con-
straints &, < ¢, (2) and (3).
One can aso account for capacity constraints 4, < ¢, through congestion pen-
aty



Fz(ﬂ,c)zz| f(u,), )
wherey = (u,,1€ L), c=(c,l € L). Penalty function f, (4, ,c;) quantifies losses
in terms of delays or packet loss due to buffer overflows as the link | utilization g,
approaches link capacity ¢, . Functions f, (#,,c,) are assumed to be monotonically
increasing and convex iny, >0. A steep function f,(,,C) increase as y, ap-
proaches ¢, prevents violation of the capacity constraints. NUM with capacity con-
straints incorporated through the congestion penalty can be expressed as follows

U = ng({u s (A)—F:(u,0)} (6)
where maximization is subject to constraints (2) and (3). Such formulization and its
distributed price-based solution have been proposed in [1].

While in a wire-line network link capacities ¢, are typically assumed fixed, in a
wireless, interference-limited network link capacities are functions of the transmis-
sion powers on neighboring links and channel conditions affecting transmission on
link | as well as interference from transmissions on other links. A large number of
cross-layer optimization frameworks accounting for these interactions have been
proposed, e.g., see [2]-[4]. These frameworks often assume that “elastic” link capaci-
ties are given functions of the vector of average transmission powers on al links

(p=(p,lelL))ie:
¢ =¢(p) @

For example, [4] assumes
¢ (p) =k log[1+k, IR (p)], ®
wherek, , Kk, are constant coefficients, and the Signal-to-Interference Ratio on link

I=(,j)is

P; ‘fij
SR; = ©)
l 77] +Z(n,k)¢(i,j),n¢i,j pnké:nj

In (9) &; isthe path loss on link (i, ) , and 77; is the noise power at the receiver of
node j .
Elasticity of the link capacities in a wireless network naturally lead to the follow-
ing NUM formulation:
u'= T?S({U s (4)—Fs (u,0)} (10)
with maximization to be subject to capacity constraints (2)-(3), wireless channel
model (7), and possibly power constraints
pe P (12)
where P is the feasible power region. Much more sophisticated versions of NUM
could also include optimization over packet scheduling on different links [2]-[4].



3 Location-aware NUM

Joint Cross-Layer and Node L ocation Framework Model

Here, we propose a location-aware extension of NUM for mobile sensor networks by
assuming that the aggregate value of the information gathered by S sensors can be

quantified by the utility functionUs(4,X), where vectorsAd=(4,,..,4s),
X=(X,..,Xg) describe information collection rates A, and physical locations (co-
ordinates) X, of all sensors s=1...,S.
We assume that the aggregate utility U (4,X) isadditive:
Us(4,%) =D U (4, %) (12)
S

where utility (i.e. information value) of each sensor s=1,..,S information is the
following product

Us(4s, %) = Us(A)Vs(X) - (13)
The first multiplier ug(As) isan increasing and concave function of the information
collection rate A, eg., of form (1). The second multiplier V¢ (X) quantifies the
effects of the physical locations of al S sensors X=(X,,..,Xg) on the value of in-
formation captured by the sensor S . The dependence of v (X) on the physical loca-
tions of al S sensors X=(X,..,Xg) can be explained as follows. While the value
of the information collected by asingle sensor S from the intended target(s) depends
on the sensor physical location X, relative to the target(s), this value can be reduced

if other sensors are located close to sensor S due to redundancy of the obtained in-
formation. In a situation when all S sensors s=1,..,S gather information from a

single target, it is natural to assume that utilities v (X) depend on the target loca
tion X : Vg(X) = Vg (XX )
Physical location of mobile sensors X = (X;,..,Xs) also affects the quality of wire-

less channels between different sensors and between sensors and the intended recipi-
ent(s) of the sensor information. This is modeled by considering that capacity C; of

thewirelesslink I=(i, j) depends on thelocationsof sensors i, j (i.e. X, X; ):

G =G (Py»%,%;) (14)

In particular, the path loss component in (9) is a function of the locations of the two
communicating sensorsi.e.

i =6 (%, %) (15

For example, in case of free-space propagation [7]:



Sij = Xi P’ (16)
where ;; and y are positive constants, and p;; = p(X,X;) isthe physical distance
between sensors i and j with physical coordinates X and X; respectively.

As aresult of these spatial effects, the optimal network utility (10) is a function
of the vector of sensor locations X = (Xy.., Xg)
U (%) =max{U (4,X) — Fy[u,c(p, )]} 1)

where the maximization is subject to capacity constraints (2)-(3) and power con-
straints (11). For the case of a single target and destination, optimal utility (17) de-

pends on the target and destination locations X; and X, respectively, i.e.
U™ () =U" (X%, %p) -

L ocation Optimization
For given sensor locationsX = (X,,..,Xg) , the cross-layer optimized utility can be

obtained by solving equation 17. The optimal sensor locations X® = (x™,..,x?)
maximize this cross-layer optimal utility by:

X =arg rxrsla&(U (%) (18)

where A, isthe alowable (or feasible) areafor sensor S. Terrain information includ-

ing unreachable or undesirable locations can be incorporated here.
Sensor motion (i.e. trajectory) should also take into account the corresponding en-
ergy consumption. To account for the “cost” of sensor S motion, we introduce a dis-

sipative function ¢ (X, Xs) which quantifies negative effect of energy supply deple-
tion as a result of sensor S motion with speed X, at locationX,. Functions
®s(Xs, %) are assumed to be monotonically increasing and convex inX,. Also,
O (X, %) >0 if %, #0 and @ (X, %) =0 if %, =0.

We assume that the total “cost” of sensor motion is additive:

q)(X, X):z¢s(xs'xs) (19)

where X=(%,..,Xs) is the vector of sensors velocities. Now consider the effect of

sensor S motion on the system performance. The rate of network utility change due
to the sensor motionis

U =xvxu*(x)zx(zvxug(x)—zvxf.*j (20)
s |



where  V, =(9/9x,,.,/9x,)" . Functions U, (X)=UJA (x),x] and

f, (x) = f e (x),X] in (2) are calculated at the optimum (17). Expression (20)
implies that cross-layer optimization (17) is performed at much faster time scale than
sensors change their locations.

Now, define system utility production W(X,X) as
W(x,X) =U (X) —D(x, X) (21)
where network utility production U is given by (20) and dissipative function

d(X,X) isgiven by (19). We propose to control sensor position by selecting sensor
velocity vector X , which maximizes the utility production (21):

X =argmaxW(x, X) (22)

Interpreting (22) as a dynamic system, one can realize that since® (X, )'()| «0=0, the

optimal sensor location X*® is an equilibrium point of this dynamic system. It is

clear from (21)-(22) that the optimal sensor motion depends on both, potential U (X)
and the nature of the friction affecting the dissipative function®(X,X) . For brevity,
we only consider two particular cases of static and viscous friction. We assume that
Xs = (X4,) are Cartesian coordinates of sensor S with components X, .

In the case of static friction, sensor S dissipative function is

P (X, %3) = 2 8gn (X)X (23)
m
and in the case of viscous friction, sensor S dissipative function is

Pan (X%, Xen) = (/2) 80 (X, ) (Xsn)? (24)

where positive functions ag,(X) >0 characterizes the “ difficulty” of moving sensor
< at the direction of the dimension m at the point Xy = (Xg,,) . It iseasy to see that
for static friction (23), sensor S either holds its position X if the static friction is

sufficiently strong or moves at the highest allowable speed otherwise.
In the case of viscous friction (24), the dynamic system (22) takes the following
form:

K=V, (SUL0 -3 () (25)
2 (%)

Sensor motion (25) balances change in the value of sensor information, repre-
sented by the term szm >U s (X) , with the change in the sensor ability to deliver this



information to the intended recipient, represented bnyS“ > fl*(x). Increase in the

friction force represented by friction coefficient ag,(X) causes sensor to slow down.

In practical situations one may expect a combination of static and viscous friction
effects.

4 Example: A Single M obile Sensor

Consider a single mobile sensor collecting information from a single target and trans-
mitting this information to a single destination. In this case the network utility takes
the following form:

U (4, p.x) =u(A)Vv(x) - f[4,c(p,X)] (26)
We assume that power constraints (18) impose upper bound on the average transmis-
sion power p . It is easy to see that under natural assumptions utility is maximized for
the maximum allowable power p. Therefore, power p can be assumed to be fixed
in (26). Formal differentiation of the joint utility function (26) with respect to A
yields the following first-order cross-layer optimality conditions:

V(XU () = F/(4,0) (27)
We consider weighted («,w) fair rate alocation utility (1) for which
u'(d) =waA™; (28)

We also consider the following penalty function associated with the communication
capacity constraints:
6—1
f(l)=—r 29
D= (29)
Parameter 6 represents the maximum tolerable communication delay. Equation (29)
naturally arises from expression 1/(c—A) for the average delay in M /M /1 queuing

system [8]. Combining equations (27)-(29), we obtain the following first-order cross-
layer optimality conditions:

2 [[e(x, p) = A1% = wév(x) (30)

Equation (30) has asingle solution
A=7(xp) (31)
which is a function of both, sensor location X and transmission power p. Since
sensor utility U (A, X) isanincreasing function of A , the optimal sensor location

x®(p) =arg max 1 (x p) (32)
Xe



which maximizes sensor information rate also maximizes the utility. In (32), A isthe
feasible region for the mobile sensors. The optimal sensor motion is characterized by
the equation (22).

In some cases, function (32) can be explicitly identified. For example, in the case
of ¢=0:

A=c(x p)-[wev(x)] (33)
and, inthe case of a=2:
A WOV(X)
= ——~ c(x, 34
Now, consider the situation of low power transmissions. p—0, when
c(x, p)=Cy(X)p+0(p) as p—0 (35)
where C,(X) > 0. For example, with the channel capacity expressionsin (8)-(9):
Co(¥) =KE(X %) /7, (30)
where K isa constant coefficient, £(X, Xy ) isthe path loss from the sensor location
X to the destination location Xy, and 77 is the noise power at the destination loca-
tion X, . We also assume that the sensor tracks a single target with location X; , and
the spatial component of sensor information value depends on both, sensor and target
locations: V(X) =V(X,%;). Under these assumptions equations (33) and (34) take
the following forms respectively:

A= (K/1m) PE(X, Xp) — [ (X, % )] V2 (37
_ VOW(X, X7 )
A=(Kk/m) p&(x, Xo)m (38)

It is reasonable to assume that the spatial component of the sensor utility V(X, X;)

is qualitatively similar to the path loss from the target to the sensor &(%;,X). Also,
for simplicity, we assume

V(% %) = B (%, %) (39)
where £ >0 is some coefficient, then equations (37) and (38) take the following
forms respectively:

A= (K/m) PE(%,%p) [ BOWE (7, )] 2 (40)

BOWE (X7, X)
= (k T2 20
A=( /77)p§(X,XD)1+ BONE (X ,X)

(41)



Considering equations (40) and (41), the following qualitative conclusions can be
driven. The optimal sensor location X = X®" , which maximizes (40) or (41), is deter-
mined by the trade-off between path loss from the target to the sensor &(%;,X) and

from the sensor to the destination£(X, X, ) . The optimal sensor location X = x™
depends on the terrain through the path loss. Increase in the transmission power p

moves the optimal sensor location X = X® “closer” to the target and “farther” from

the destination since power increase enhances communication and allows sensor to
concentrate on obtaining information from the target.

5 Conclusion and Future Research

This paper has proposed a framework for self-organization of mobile sensor net-
works, which includes cross-layer network optimization as well as controlling sensors
position. Given sensor locations, cross-layer network optimization alocates re-
sources and configures protocols to ensure delivering the highest utility of the sensor
information to the intended recipient(s). Controlling sensor location further enhances
this utility.

Future efforts should address numerous research and implementation challenges,
including quantification of sensor utility and utility production. Also, a simulation
platform is currently under construction to further evaluate the performance of such
networks in case of large number of nodes.
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