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a b s t r a c t

Monge–Kantorovich mass transfer theory is employed to obtain an existence and
uniqueness result for solutions to Fokker–Planck Equations with time dependent point
control. Existence for an approximate problem is established together with a convergence
analysis in theWasserstein distance through equivalence with weak-? convergence.
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1. Introduction

A new result for linear diffusion equations with point controls is presented. This result is closely related to similar work
on more general nonlinear diffusion equations [1]. The focus of this paper is illustrating how recent variational principles
based onWasserstein metric, used to solve homogeneous diffusion equations, can be extended to solve non-homogeneous
equations. In particular, we study here an initial value problem from control theory.
We consider a Fokker–Planck Equation (FPE) in one dimension with a time dependent point control of this form:

ρt + (A ρ)x −
B
2
ρxx = f + v(t) δ(x− a) inΩ × [0, T ]

A(x) ρ(x, t)−
B
2
ρx(x, t) = 0 on ∂Ω × [0, T ]

ρ(x, 0) = ρ0(x) inΩ

(1.1)

where B is the positive constant coefficient of diffusion, f (x, t), v(t) and A(x) satisfy the following conditions:A ∈ C
1(Ω), A(x) ≥ 0 for all x ∈ Ω

f (·, t) ∈ L1(Ω) for all t ∈ [0, T ] , f (x, t) ≥ 0 inΩ × [0, T ]
v(t) ≥ 0.

(1.2)

We prove existence and uniqueness of a weak solution via a Wasserstein convergence method. Namely we will prove
existence and uniqueness for the following approximate problem, where µε(x) is a smooth approximation of the Dirac
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Delta function:
ρε,t + (A ρε)x −

B
2
ρε,xx = f + v(t) µε(x) inΩ × [0, T ]

A(x) ρε(x, t)−
B
2
ρε,x(x, t) = 0 on ∂Ω × [0, T ]

ρε(x, 0) = ρ0(x) inΩ.

(1.3)

We remark that the introduction of this approximate problem is unfortunately a necessary step in the proof. More details
about this are given in the next section. We then use the transposition method and the adjoint to the FPE to prove the main
convergence result in the Wasserstein metric. This requires a major change of the usual Wasserstein metric variational
formulation. Due to the presence of a forcing term on the right-hand side the masses are no longer conserved and therefore
the usual comparison between measures does not work. In order to analyze this we follow the idea of Kinderlehrer and
Walkington in [2] and modify the variational principle accordingly.

2. Existence of solution for the approximate FPE problem

The results obtained by Jordan, Kinderlehrer and Otto in [3] for a homogeneous FPE and Kinderlehrer and Walkington
in [2] for a non-homogeneous one, can be manipulated to show the existence of a unique minimizer for the scheme:

Determine ρ(k)τ ,ε that minimizes
1
2
d
(
ρ(k−1)τ ,ε + τ (f + vµε), ρ

)2
+ τ F(ρ)

over all ρ ∈ Kk, k = 1, 2, . . .

(2.1)

where d is the 2-Wasserstein distance, F(ρ) =
∫
Ω

(
E(x) ρ + B

2 ρ log ρ
)
dx, E(x) is a function such that E ′(x) = −A(x) and

E(x) ≥ 0 and the Kk’s are the sets of admissible densities, i.e.:

Kk :=
{
ρ ≥ 0 meas., s.t.

∫
Ω

ρ(x)dx =
∫
Ω

ρ(k−1)(x)+ τ (f + v µε)dx
}
.

We denote ρ(0) = ρ0, and let ρ(k)τ ,ε be the minimizer of (2.1) and define ρτ ,ε to be the interpolated function ρτ ,ε(t) =
ρ(k)τ ,ε for t ∈ [kτ , (k+ 1)τ ) and k ∈ N ∪ {0}.
It is clear why the introduction of the approximate problem (1.3) and the related variational principle (2.1) are necessary

[4]. In the case of a Dirac delta function F(ρ) the energy functional or entropy of the system is not defined.
We then have the following proposition:

Proposition 1. Given ρ(k−1)τ ,ε ∈ K(k−1), there exists a unique solution of the scheme (2.1).

Proof. It can be shown, just as in [3], that the functional F is well defined as a functional on Kk and that 12 d(ρ
(k−1)
τ ,ε + τ (f +

v µε) , ρ)
2
+ τ F(ρ) is bounded below. Then, letting ρν be a minimizing sequence and using a Dunford–Pettis criteria we

have (at least for a subsequence) weak convergence in L1(Ω). For details see [3]. �

The main result for the approximation problem, i.e. the convergence of the solution of (2.1) to the solution of (1.3), we
state in the following theorem. Dependence on ε is not specifically stated in our notation:

Theorem 1. Let ρ(0) ∈ K0 satisfy F(ρ(0)) <∞, and for given τ > 0, let {ρ(k)τ }k∈N be the solution of (2.1). Define the interpolation
ρτ : (0,∞)×Ω → [0,∞) by

ρτ (t) = ρ(k)τ for t ∈ [kτ , (k+ 1)τ ) and k ∈ N ∪ {0}.

Then as τ ↓ 0,

ρτ (t) ⇀ ρ(t) weakly in L1(Ω) for all t ∈ (0,∞), (2.2)

where ρ ∈ C∞((0,∞)×Ω) is the unique solution of:

ρt + (A ρ)x −
B
2
ρxx = f + v µ (2.3)

with initial condition:

ρ(t)→ ρ0 strongly in L1(Ω) for t ↓ 0, (2.4)

boundary condition:

A(x) ρ(x, t)−
B
2
ρx(x, t) = 0 on ∂Ω × [0, T ] (2.5)
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and

M(ρ), F(ρ) ∈ L∞((0, T )) for all T <∞. (2.6)

Proof. The proof of this theorem is similar to that found in [3] and is comprised of 4 parts. First we show that the scheme
(2.1) delivers the proper weak equations, then we prove that (2.1) gives the natural boundary conditions onΣ . In the third
part we will prove some inequalities that are needed later. In the last part we reorganize the results. �

2.1. Weak equations

Weak equations will be derived using a method used by Otto in [5] called Variation of Domain. Define y = ψ(x, ε) =
ψε(x) by

dy
dε = ξ(y) and y|ε=0 = ψ0(x) = x and ρε ‘‘push forward’’ of ρ by:∫

Ω

ξ(x) ρε(x)dx =
∫
Ω

ξ(ψε(x)) ρ(x)dx =
∫
Ω

ξ(y)
ρ(ψ−1ε (y))
dψε
dx (ψ

−1
ε (y))

dy

⇒ ρε(y) =
ρ(ψ−1ε (y))
dψε
dx (ψ

−1
ε (y))

.

Recall F(ρ) =
∫
Ω
(E ρ + B

2 ρ log ρ)dx then we need
d
dε F(ρε)|ε=0. Consider the second term of the integral, discarding

constants, then we have:

d
dε

∫
Ω

ρε(x) log(ρε(x))dx =
d
dε

∫
Ω

ρ log(ρε(ψε(x)))dx =
∫
Ω

ρ
d
dε
log(ρε(ψε(x)))dx

assuming we can interchange the derivation and the integration by, for example, approximating the log function:

d
dε
[log(ρε(ψε(x)))] =

d
dε (ρε(ψε(x)))
ρε(ψε(x))

= −
ξ ′(ψε(x)) ρε(ψε(x))

ρε(ψε(x))

and after simplifying and setting ε = 0 we get:

d
dε
[log(ρε(ψε(x)))]

∣∣∣∣
ε=0
= − ξ ′(ψ0(x)) = − ξ ′(x).

Reassuming:

d
dε

∫
Ω

B
2
ρ log ρdx

∣∣∣∣
ε=0
= −

B
2

∫
Ω

ρ(x) ξ ′(x)dx.

For the first term we have:

d
dε

∣∣∣∣
ε=0

∫
Ω

E(x) ρε(x)dx =
d
dε

∣∣∣∣
ε=0

∫
Ω

E(ψε(x)) ρ(x)dx =
∫
Ω

d
dε

∣∣∣∣
ε=0
E(ψε(x)) ρ(x)dx

=

∫
Ω

(−A(x) ρ(x) ξ(x)) dx.

Let now ρ + τ(f + v µ) = ρ̃ for notational convenience and define pε(x, y) by:∫
Ω

∫
Ω

ξ(x, y)dpε(x, y) =
∫
Ω

∫
Ω

ξ(x, ψε(y))dp(x, y)

then:
1
2ε

[
d(ρε, ρ̃)2 − d(ρ, ρ̃)2

]
≤
1
2ε

∫
Ω

∫
Ω

(
(x− ψε(y))2 − (x− y)2

)
dp(x, y)

and taking the lim sup ε→0 and using the definition of the Wasserstein distance:

0 ≤ −
∫
Ω

∫
Ω

(x− y) ξ(y)dp(x, y).

Combining all of these results:

0 ≤ −
∫
Ω

∫
Ω

(x− y) ξ(y)dp(x, y) − τ

∫
Ω

(
A(x) ρ(x) ξ(x)+

B
2
ρ(x) ξ ′(x)

)
dx
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it is clearly possible to change ξ with−ξ and therefore obtain:

0 =
∫
Ω

∫
Ω

(x− y) ξ(y)dp(x, y) + τ

∫
Ω

(
A(x) ρ(x) ξ(x)+

B
2
ρ(x) ξ ′(x)

)
dx. (2.7)

Let now ξ(y) = ζ ′(y) then by a simple Taylor’s expansion argument ζ (x)− ζ (y) = ζ ′(y)(x− y)+ h.o.t. where

h.o.t. =
1
2
ζ ′′()(x− y)2 = O(‖ζ ′′‖∞)(x− y)2

therefore:∫
Ω

∫
Ω

(x− y) ζ ′(y)dp(x, y) =
∫
Ω

∫
Ω

(ζ (x)− ζ (y))dp(x, y)+ O
(
‖ζ ′′‖∞

) ∫
Ω

∫
Ω

(x− y)2dp(x, y)

=

∫
Ω

∫
Ω

(ζ (x)− ζ (y))dp(x, y)+ O
(
‖ζ ′′‖∞d(ρ, ρ̃)2

)
=

∫
Ω

(ρ(x)− ρ̃(x)) ξ(x)dx+ O
(
‖ζ ′′‖∞d(ρ, ρ̃)2

)
where we use again the definition of theWasserstein distance in the last step. Substituting in (2.7), integrating by parts, and
considering the absolute value we get:∣∣∣∣∫

Ω

(ρ − ρ̃) ξdx+ τ
∫
Ω

(
A ρ ξ +

B
2
ρ ξ ′

)
dx
∣∣∣∣ = ∣∣∣∣∫

Ω

[
ρ − ρ̃ + τ

(
A ρ −

B
2
ρx

)
x

]
ξdx

∣∣∣∣ ≤ O (‖ζ ′′‖∞d(ρ, ρ̃)2) .
Recalling that ρ−ρ̃

τ
= f + vµ and letting τ ↓ 0 gives the desired weak equation, see [2] for details:

ρt + (A ρ)x −
B
2
ρxx = f + v µ.

2.2. Boundary condition

To check that (2.1) gives us the natural boundary conditions (2.5)we use a standard variation argument. Letρε = ρ + ε ξ ,
let ξ = ζ ′ s.t. ζ (0) = ζ (1), i.e. choose ξ with average 0, then:

d
dε
F(ρε)

∣∣∣∣
ε=0
=

∫
Ω

(
E +

B
2
(1+ log ρ)

)
ξ(x)dx

and

d
dε
d(ρε , ρ̃)2

∣∣∣∣
ε=0
= −2

∫
Ω

(∫ 1

x
(s− φ(s))ds

)
ξ(x)dx,

using the representation of the Wasserstein distance in one dimension, given by the distribution functions of ρ̃ and ρ (say
V and U resp.), i.e.

d(ρ , ρ̃)2 =
∫
Ω

(x− φ(x))2ρ(x)dx =
∫
Ω

(
x− V−1 ◦ U(x)

)2
ρ(x)dx.

We also get ρ(x) = φ′(x) ρ̃(φ(x)). Thus when (2.1) holds:

−

∫
Ω

(∫ 1

x
(s− φ(s))ds

)
ξ(x)dx+ τ

∫
Ω

(
E(x)+

B
2
(1+ log ρ(x))

)
ξ(x)dx = 0

whenever ξ has average 0. This implies that:

∂

∂ x

(
−

∫ 1

x
(s− φ(s))ds+ τ

(
E(x)+

B
2
(1+ log ρ(x))

) )
= 0

or

(x− φ(x))+ τ
(
−A(x)+

B
2
ρx(x)
ρ(x)

)
= 0.

In particular for x = 0 and x = 1 when x = φ(x)we have:

A(x) ρ(x)−
B
2
ρx(x) = 0.
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2.3. Inequalities

Following the proof given in [3] we will need to prove the following inequalities in order to establish (2.2) in the limit
when τ ↓ 0. More specifically that for any T<∞, there exists a constant C<∞ such that for all N ∈ N and all τ ∈ [0, 1]
with Nτ < T, there holds

M(ρ(N)τ ) ≤ C (2.8)∫
R

max
{
ρ(N)τ log ρ(N)τ , 0

}
dx ≤ C (2.9)∫

R

E ρ(k)τ dx ≤ C (2.10)

N∑
k=1

d
(
ρ(k−1)τ + τ(f + vµ), ρ(k)τ

)2
≤ Cτ . (2.11)

To prove (2.8) note thatΩ = (0, 1) is bounded and Nτ = T , therefore:

M(ρ(N)τ ) =

∫
Ω

x2 ρ(N)τ (x)dx ≤
∫ 1

0
ρ(N)τ dx ≤ 1+ N

∫
Ω

τ(f + v µε)dx ≤ C .

To show (2.9) and (2.10) we refer to [3], the proofs being similar. In order to show the last inequality (2.11) we need to take
into consideration the non-homogeneity of the FPE we consider. The linear term in the integral in (2.1) clearly presents no
problem, while for the nonlinear one we will use the convexity of L(ρ) =

∫
ρ log ρdx.

Obviously ρ(k−1)τ + τ(f + vµ) is an admissible density in the search for the minimum in (2.1), denoting (f + vµ) = g
we have as follows:

1
2τ
d
(
ρ(k−1)τ + τ g, ρ(k)τ

)2
+

∫
Ω

(
E ρ(k)τ +

B
2
ρ(k)τ log ρ(k)τ

)
dx

≤

∫
Ω

(
E
(
ρ(k−1)τ + τ g

)
+
B
2

(
ρ(k−1)τ + τ g

)
log

(
ρ(k−1)τ + τ g

))
dx.

From the convexity property we get:

L
(
ρ(k−1)τ + τ g

)
≤
1
2
L
(
2ρ(k−1)τ

)
+
1
2
L (2τ g) ≤ L

(
ρ(k−1)τ

)
+ C .

Summing over K and noting that we get telescoping sums :

1
2τ

N∑
k=1

d
(
ρ(k−1)τ + τ g, ρ(k)τ

)2
≤
B
2

(
ρ(0)τ − ρ

(N)
τ + C N

)
+

∫
Ω

E
(
ρ(0)τ − ρ

(N)
τ

)
dx

+N τ
∫
Ω

E gdx ≤ C N + C + T
∫
Ω

E gdx ≤ C N,

where in the last line we used (2.8) and (2.10) and the boundedness of the function g .

2.4. Proof of main theorem

Conclusion of proof of Theorem 1. We resume the dependence on ε. Using a Dunford–Pettis like criteria we have, owing
to estimates (2.8) and (2.9) that there exists a measurable ρε(x, t) such that, after extraction of a subsequence we have:

ρτ ,ε ⇀ ρε weakly in L1((0, T )× (Ω)) for all T <∞. (2.12)

The estimates (2.8)–(2.10) guarantee that ρε(t) ∈ K for a.e. t ∈ (0,∞) and that we also have (2.6). We can furthermore
extend the convergence to (2.2) and the regularity of the solution ρε(x, t), just as in [3]. Finally, uniqueness follows from the
linearity of the equation. �

3. Convergence result

The main result of the paper is the existence and uniqueness of a solution of (1.1). We have the following:

Theorem 2. Let ρ(0) ∈ K0, then there exists ρε solution to (1.3) such that ρε ⇀ ρ weakly ∗ (or equivalently d(ρε, ρ) → 0)
where ρ is the unique solution of (1.1).
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Proof. From Theorem 1 we have existence of such a ρε solution of (1.3). Let us now define an adjoint to the FPE Eq. (1.1) as:
−φt − Aφx −

B
2
φxx = ψ in Ω × [0, T ]

φx = 0 on ∂Ω × [0, T ]
φ(x, T ) = 0 in Ω

(3.1)

with ψ a test function. Now define ρ and φ, the solutions of (1.1) and (3.1) respectively, which exist, (see for example [6]).
Then by using integration by parts in the following manner we can rewrite:∫ T

0

∫
Ω

ψ ρdxdt =
∫ T

0

∫
Ω

(
−φt − Aφx −

B
2
φxx

)
ρdxdt

=

∫ T

0

∫
Ω

φ

(
ρt + (A ρ)x −

B
2
ρxx

)
dxdt −

∫ T

0
φ

(
A ρ −

B
2
ρx

)∣∣∣∣
∂Ω

dt

−

∫
Ω

ρ φ

∣∣∣∣T
0
dx −

B
2

∫ T

0
(ρ φx)

∣∣∣∣
∂Ω

dt

=

∫ T

0

∫
Ω

(f + v δ(x− a)) φdxdt +
∫
Ω

ρ0(x) φ(x, 0)dx.

We can similarly rewrite for ρε:∫ T

0

∫
Ω

ψ ρεdxdt =
∫ T

0

∫
Ω

(f + v µε) φdxdt +
∫
Ω

ρ0(x) φ(x, 0)dx.

Then we have:∫ T

0

∫
Ω

ψ(ρ − ρε)dxdt =
∫ T

0

∫
Ω

φ v (δ − µε)dxdt −→ 0,

as φ is continuous in x and µε ⇀ δ. We have thus proved weak-? convergence, which implies Wasserstein distance
convergence, of the solution of (1.3) to (1.1). Uniqueness, once again, follows easily from the linearity of the equations
involved. �

4. Application

The problem of calibrating measurement instruments is often solved using mathematical formulations based on control
theory. The instrument controls and instrument outputs are modeled as control and state variables respectively. Recent
efforts to calibrate one specific instrument, a Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Time of Flight (MALDI/TOF) instrument, have led to the need to minimize functions that are noise-ridden [7,8]. The
calculation of noise-adjusted gradients of these functions can be accomplished [9] but only if there is an understanding
of the noise and how it affects the calibration function. Attempts to model this noise, [10,9] have led to models that could
yield this information about the way noise infects data produced by MALDI/TOF instruments. However making use of this
informationwould require the solution and control of Fokker–Plank equations using non-traditional discretizationmethods.
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