
Generating Network Models Using the S-Metric

Isabel Beichl and Brian Cloteaux
Mathematical and Computational Sciences Division

National Institute of Standards and Technology
Gaithersburg, Maryland, U.S.A.

Abstract The ability to create random models of

real networks is useful for understanding the in-

teractions in these systems. Several researchers

have proposed modeling complex networks by us-

ing the node degree distribution, the most popu-

lar being a power-law distribution. Recent work

by Li et al. introduced the S metric as a met-

ric to characterize the structure of networks with

power-law distributions. In this paper, we exam-

ine some of the practical difficulties of producing

random graphs with a given degree sequence and

an approximate S value. We give a solution for

this problem that we have had success using in our

research.

Keywords: network models, S metric, threshold accep-

tance

1 Introduction

A type of data of increasing importance in various
areas of research is one that is based not on floating
point values but rather on relationships between ob-
jects. These associations can be modeled as graphs
or networks. Being able to create realistic network
models is necessary for understanding the interac-
tions involved in these systems. In this paper, we
describe a method we have successfully used for cre-
ating network models constrained by an S metric
value.

Many real world systems cannot be approximated
using simple random graphs (or more precisely, the
Erdős-Rényi random graph model). This is because
the degree distribution of these random graphs fol-
lows a Poisson distribution. For many complex sys-
tems, however, it has been shown [1] that the degree
distribution of the resulting networks more closely
follows a power law distribution. In other words,
the probability that a node has k adjacent edges is
P (k) ∼ k−α for some α > 1. This distribution in
a network produces a few nodes with high degree

(often called hub nodes) and a large number of low
degree nodes.

The importance of networks that have an approx-
imate power law distribution lies in the number of
application areas in which they are found. These
networks have been shown to arise naturally in sys-
tems of both biological [2, 3, 4] and social [5] interac-
tions. They also appear in many engineered systems
such as the power grid [2], the Internet [6], and soft-
ware components [7].

Nevertheless generating random graphs with
power law distributions is still not sufficient to
model real networks. Informally, the reason for
this is that there can be a large number of non-
isomorphic graphs that share a particular degree se-
quence. Thus we can see a large variability in the
characteristics of the graphs that share a common
degree sequence.

Recent research has been looking at the structure
of these networks to distinguish among them. In a
paper by Li et al. [8], the authors introduce the S
metric as a structural metric for characterizing this
connectedness of the high degree nodes in networks
having a power law distribution. The advantages
of this metric is that a non-normalized version is
simple to compute and it has been shown to be able
to distinguish between many graphs with identical
degree sequences. Also, it has been shown that using
this metric to create models of networks tends to
produce graphs with better structural characteristics
than using only a power law distribution [9].

This purpose of this paper is to explore some of
the practical issues involved with generating random
network models with a given S value. We first de-
fine the S metric. Then we will describe a technique
we have used to generate graphs with approximate
S values, and finally we discuss an approximation
scheme for quickly computing the smax value for de-
gree sequence.

2 The S metric

The basic concept of the S metric is to measure
how interconnected the nodes of high degree (or hub
nodes) are to each other in a graph. The definition
of the S metric by Li et al. [8] is actually a nor-
malized version of another metric that they call the
s metric. Before we can give a definition of the s
metric , we first must define some notation that we
will use. A graph G = (N,E) has a node set N
and an edge set E. The degree sequence of G is
ω = {ω1, ω2, ..., ω|N |} where the degree of ni ∈ N
is ωi. To show that an edge set E (or node set N)
belongs to a graph G, we write E(G) (or N(G)). To
show that a degree sequence ω belongs to a graph G,
we write ω(G). The set of all graphs with the degree
sequence ω is represented as G(ω). The definition of
the s metric for a graph G is

s(G) =
∑

(i,j)∈E(G)

ωi · ωj (1)

The S metric introduces a normalization factor
to the s metric. This is defined by

S(G) =
s(G)

smax (ω(G))
(2)

where smax(ω) = max{s(G)|G ∈ G(ω)}. This nor-
malization factor allows us to compare networks of
differing sizes. Otherwise, the s metric can only be
profitably used to compare networks with the same
degree sequence.

An investigation of the S metric has shown that it
is able to distinguish between many graphs having
the same degree sequence [8], and basing random
network construction on it can give better structural
characteristics [9]. One problem with using the S
metric is that while it is trivial to compute the s
metric for a graph, it can be slow and difficult to
find smax for computing S. We will examine a simple
approximation scheme for smax that also produces
error bounds in section 4. First, we examine how
to generate a random graph with an approximate s
value.

3 Generating graphs with an
approximate s value

When we talk about generating a graph with a
given degree sequence ω and s value sp, we are
implicitly saying that the graph has a s value of
s(G) ∈ [sp − ε, sp + ε] where ε > 0. For the given s
value sp and degree sequence ω, there is no guarantee

that a graph G exists that meets those constraints.
Thus, the parameters we expect for constructing a
graph are ω, sp, and ε.

In order to generate a model with an approximate
s value, we use a random walk over the space of con-
nected graphs with identical degree sequences. Two
graph G1, G2 are adjacent in this space if there exist
the edges (u, v), (x, y) ∈ E(G1) and (u, x), (v, y) ∈
E(G2). In other words, we can transform the cur-
rent graph to a new graph with the same degree
sequence using the degree-preserving switch defined
by

[(u, v), (x, y)]→ [(u, x), (v, y)] (3)

This degree switch is shown in figure 1.

Figure 1: The degree preserving switch
[(u, v), (x, y)]→ [(u, x), (v, y)]

We minimize the difference between the s value of
the current graph and the desired value by picking
switches using a form of simulated annealing called
threshold acceptance [10]. Threshold acceptance is
an optimization technique that accepts any transi-
tion in the state space that does not increase the
overall difference between the s value of the cur-
rent graph and sp by more than a defined threshold.
Thus for any randomly chosen switch of two edges
in a graph, we would accept the switch to produce a
new graph G′ if |s(G′)− sp| < |s(G)− sp|+ t. This
threshold is non-negative and decreases to zero in
time. We return the graph G′ if |s(G′)− sp| ≤ ε.

A threshold function depends on the maximum al-
lowable change in s value that one switch can cause.
An examination shows that this maximum change
would occur if we had two edges that connected
nodes with degree values ωmax and one where ωmax

is the maximum value in the degree sequence ω.
Thus the maximum change is ω2

max −O(ωmax). Us-
ing this, we define the value of our threshold function
at time n to be t(n) = p(n) ·ω2

max where p(n) ∈ [0, 1]
specifies a percentage of the maximum switch for the
threshold. In practice, we typically start p from 0.1
and linearly decrease it to 0 (see [10] for a discussion
on rate schedules).

The major difficulty in this random walk ap-
proach is that we need to maintain the additional
constraint that the graphs must also be connected.

Any given switch can potentially disconnect the
graph. In general, checking for connectivity is by far
the most computationally expensive part of walking
the graph space. Researchers have faced the same
problem for sampling graphs with a given degree se-
quence using a Markov chain. We use the established
idea of batching up a set of switches and testing if the
graph is connected at the end of all the switches. If
the resulting graph is connected, then the algorithm
continues. Otherwise, the algorithm backtracks to
the point of the last check and reduces the size of
the number of switches in the batch before the next
connectivity check. There has been recent research
into finding optimal schemes to perform this type of
connectivity checking [11, 12].

One advantage we have in generating graphs in-
stead of performing sampling is that we do not have
to consider all possible walks. In particular, for any
two edges, if the degree of any two of the edge nodes
is one, then we reject this switch automatically. The
reason why we can reject this switch is that there are
only two possible outcomes: if both nodes of degree
one are matched to each other, then the resulting
graph becomes disconnected and if the one degree
nodes are not matched to each other, then the re-
sulting graph is isomorphic to the original graph and
so the s value does not change. Since power law dis-
tributions produce a large number of nodes with de-
gree one, the most common type of switch to cause
a disconnect in a graph is by matching two nodes
of degree one. By ensuring that this case can never
happen, we greatly reduce the chances of a switch
disconnecting the graph.

Although all possible networks have a nonzero
probability of being generated using this technique,
we do not know the sampling distribution of these
graphs. By extending the basic ideas in this method,
it might be possible to to create a uniform sampling
algorithm by using the Markov chain created by the
space of connected graphs with s values between
[sp − ε, sp + ε]. Starting from the graph we gener-
ated using threshold acceptance, we can then walk
the Markov chain until we reach its stationary dis-
tribution. The difficulty with this technique is to
show that the chain for a given ε is irreducible. In
other words, every possible graph with an s value in
[sp − ε, sp + ε] is reachable with a sequence of s value
preserving switches from any other graph with an s
value in the correct range. If the Markov chain for
a given ε does prove to be irreducible, it is simple to
extend that chain to be ergodic. There is empirical
evidence that for random walks over the set of con-
nected graphs with degree ω, if the graphs have m

edges, then it requires O(m) edge swaps to reach the
stationary distribution of the chain [12]. This result
could suggest that a fast uniform sampling algorithm
exists for the set of graphs with a degree sequence ω
and an approximate s value. As excellent overview
of issues involved in sampling using Markov chains
is given by Randall [13].

4 Computing smax

An algorithm for finding a graph with a given smax

value was given by Li et al. [8]. That algorithm is a
greedy heuristic that passes through all the poten-
tial edges for graphs with the degree sequence and
chooses the one that adds the most value to the s
value of graph at each step. The algorithm is called a
heuristic since there is no proof that the algorithm is
able to complete in all cases. It was shown however
that if the algorithm completes, then the resulting
graph G must have an s value of smax(ω(G)).

There are three major drawbacks of the Li et
al. algorithm. The first is that for larger degree
sequences it is extremely slow. In our experience,
using this method for computing smax in networks
over 10,000 nodes starts to become impractical. A
second problem, that is related to the first, is that
the algorithm is also memory intensive since it must
hold a number of potential edges. Finally, the algo-
rithm is complicated to implement and to optimize.
Fortunately, for our purposes in generating graphs,
we do not need the exact value of smax. A good
approximation is sufficient.

In order to approximate smax, we modify an al-
gorithm of Blitzstein and Diaconis [14]. The origi-
nal algorithm was designed to create random graphs
with a given degree sequence. Instead of random
connections between the nodes in the graph, we in-
stead choose the edge that connects the two highest
degree nodes and still allows the remaining sequence
to be realizable in a graph (or graphical). Before
stating the algorithm, we need to first define some
notation that we borrow from the Blitzstein and Di-
aconis paper [14].

If we have a degree sequence ω = {ω1, ω2, ..., ωn}
and have the distinct indices i1, ..., ik ∈ {1, ..., n},
then the 	i1,...,ik

ω operator produces a new degree
sequence where the values at the indices {i1, ..., ik}
are decreased by one and the other values remain
the same. More formally,

(i1,...,ik
ω)i =

{
ωi − 1 for i ∈ {i1, ..., ik}
ωi otherwise (4)

An example of this operator is for the degree se-

quence ω = (5, 3, 2, 2), then 	2,4ω = (5, 2, 2, 1). Us-
ing this notation, then we state our approximation
scheme in algorithm 1.

Algorithm 1 Creates a graph whose s value ap-
proximates smax

Require: a graphical degree sequence ω =
{ω1, ω2, ..., ωn} where ∀i, j if i < j then ωi > ωj

E ← φ
n1 ← 1
n2 ← n1 + 1
while ∃i such that ωi > 0 do

while ωn1 > 0 do
if ωn2 > 0 and 	n1,n2ω is graphical then

E ← E ∪ (n1, n2)
ω ← 	n1,n2ω

end if
n2 ← n2 + 1

end while
n1 ← n1 + 1
n2 ← n1 + 1

end while
return E

The algorithm sequentially loops over the index
with the highest degree that has not been matched
with other nodes. This looping requires O(|ω|2) it-
erations. The only other part of the algorithm that
needs to be accounted for is to check if a degree se-
quence ω is graphical. Using the Erdős-Gallai theo-
rem, a sequence can be checked in time linear to the
number of nonzero degrees it contains. There are
also established ways to reduce the number of in-
dices needed to check for graphical testing in many
cases [15].

A major difference in the graphs we produce ver-
sus the graphs of the Li et al. algorithm is that
we do not bother to ensure that the graphs are con-
nected. Thus, we are actually giving an upper bound
on smax. We can compute a lower bound on smax by
by constructing a connected graph from the graph
produced by our approximation algorithm by using
a common component merging algorithm [12]. By it-
eratively performing switches with an edge in a cycle
in one component with an arbitrary edge in another
component, we can consolidate all the components
into one connected graph. This connected graph will
have an s value that is a lower bound on smax.

In order to test the quality of our approximation
scheme, we generated a set of 158 degree sequences
ranging from 50 nodes to 4000 nodes. Each sequence
is a graphical sequence generated from a power law
distribution with α = 2.1. Using these sequences,

we generated smax values using the Li et al. algo-
rithm and then a set of approximations using our
algorithm. The results of this comparison are shown
in figures 2 and 3. In figure 2, we see both the calcu-
lated smax values for the degree sequences and the
difference between the approximation and the true
value. In figure 3, we see the relative error of our ap-
proximation. This test shows that, at least on rel-
atively small degree sequences, this approximation
gives good and fast results.

Figure 2: Plot of the smax values for each of the de-
gree sequences and the difference between approxi-
mation and true value

5 Conclusions

This paper provides a practical scheme for generat-
ing graphs with a given S value. The basic ideas
presented here for generating networks constrained
by the S metric can be extended to almost any net-
work metric. The authors have had success in im-
plementing the schemes mentioned in this paper and
using them in order to study the properties of differ-
ent networks. We are currently considering applica-
tions of these modeling techniques in simulations of
the Border Gateway Protocol (BGP) routing system
[16].

Future work in the generation of random net-
works involves two theoretical open problems result-
ing from the work in this paper. The first is to in-
vestigate when a Markov chain for a given ε, us-
ing the construction in section 3, is irreducible and

Figure 3: Relative error for each of the data points
between the true smax value and the approximation

thus is ergodic. A result in this area could produce
an algorithm to uniformly select a random graph
G with a given degree sequence ω and an s value
of [sp − ε, sp + ε]. This would be valuable for com-
paring structural properties of real networks versus
uniformly selected ones having various constraints.

The second open problem is to establish whether
or not the approximation scheme for smax converges
and if it does converge, then establishing the rate of
convergence. This will give us a confidence in using
this approximation scheme for much larger networks
where calculating exact smax values is intractable.

Acknowledgment

The authors would like to thank Francis Sullivan
and Ron Boisvert for their helpful comments about
this paper. This work is a contribution of NIST, an
agency of the US government, and is not subject to
US copyright.

References

[1] A.-L. Barabási and R. Albert, “Emergence of
scaling in random networks,” Science, vol. 286,
pp. 509–512, 1999.

[2] D. J. Watts and S. H. Strogatz, “Collective dy-
namics of ‘small-world’ networks,” Nature, vol.
393, pp. 440–442, 1998.

[3] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, and
A. L. Barabási, “The large-scale organization
of metabolic networks,” Nature, vol. 407, no.
6804, pp. 651–654, October 2000.

[4] R. J. Williams and N. D. Martinez, “Simple
rules yield complex food webs,” Nature, vol.
404, no. 6774, pp. 180–183, March 2000.

[5] L. A. Amaral, A. Scala, M. Barthelemy, and
H. E. Stanley, “Classes of small-world net-
works,” Proc Natl Acad Sci USA, vol. 97, no. 21,
pp. 11 149–11 152, October 2000.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos,
“On power-law relationships of the internet
topology,” in Proceedings of the conference on
Applications, technologies, architectures, and
protocols for computer communication (SIG-
COMM). New York, NY, USA: ACM, 1999,
pp. 251–262.

[7] A. Potanin, J. Noble, M. Frean, and R. Biddle,
“Scale-free geometry in OO programs,” Com-
munications of the ACM, vol. 48, no. 5, pp. 99–
103, 2005.

[8] L. Li, D. Alderson, J. C. Doyle, and W. Will-
inger, “Towards a theory of scale-free graphs:
Definition, properties, and implications,” In-
ternet Mathematics, vol. 2, no. 4, pp. 431–523,
2005.

[9] I. Beichl and B. Cloteaux, “Measuring the effec-
tiveness of the s-metric to produce better net-
work models,” 2008, submitted.

[10] G. Dueck and T. Scheuer, “Threshold ac-
cepting: a general purpose optimization algo-
rithm appearing superior to simulated anneal-
ing,” Journal of Computational Physics, vol. 90,
no. 1, pp. 161–175, 1990.

[11] F. Viger and M. Latapy, “Efficient and sim-
ple generation of random simple connected
graphs with prescribed degree sequence,” in
Proceedings of the Eleventh International Com-
puting and Combinatorics Conference (CO-
COON), ser. Lecture Notes in Computer Sci-
ence, L. Wang, Ed., vol. 3595. Springer, 2005,
pp. 440–449.

[12] C. Gkantsidis, M. Mihail, and E. Ze-
gura, “The Markov chain simulation method
for generating connected power law random
graphs,” in Proceedings of the Fifth Work-
shop on Algorithm Engineering and Experi-
ments (ALENEX), R. E. Ladner, Ed. SIAM,
2003, pp. 16–25.

[13] D. Randall, “Rapidly mixing Markov chains
with applications in computer science and
physics,” Computing in Science and Engg.,
vol. 8, no. 2, p. 30, 2006.

[14] J. Blitzstein and P. Diaconis, “A sequential
importance sampling algorithm for generating
random graphs with prescribed degrees,” 2005,
submitted to Annals of Applied Probability.

[15] A. Tripathi and S. Vijay, “A note on a theorem
of Erdős & Gallai,” Discrete Mathematics, vol.
265, no. 1-3, pp. 417–420, 2003.

[16] K. Sriram, D. Montgomery, O. Borchert,
O. Kim, and D. R. Kuhn, “Study of BGP peer-
ing session attacks and their impacts on routing
performance,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 10, pp. 1901–
1915, October 2006.

	Introduction
	The S metric
	Generating graphs with an approximate s value
	Computing smax
	Conclusions

