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Nonparametric analysis of fingerprint data on large data sets
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Abstract

By executing different fingerprint-image matching algorithms on large data sets, it reveals that the match and non-match similarity scores
have no specific underlying distribution function. Thus, it requires a nonparametric analysis for fingerprint-image matching algorithms on large
data sets without any assumption about such irregularly discrete distribution functions. A precise receiver operating characteristic (ROC) curve
based on the true accept rate (TAR) of the match similarity scores and the false accept rate (FAR) of the non-match similarity scores can
be constructed. The area under such an ROC curve computed using the trapezoidal rule is equivalent to the Mann–Whitney statistic directly
formed from the match and non-match similarity scores. Thereafter, the Z statistic formulated using the areas under ROC curves along with
their variances and the correlation coefficient is applied to test the significance of the difference between two ROC curves. Four examples from
the extensive testing of commercial fingerprint systems at the National Institute of Standards and Technology are provided. The nonparametric
approach presented in this article can also be employed in the analysis of other large biometric data sets.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, the National Institute of Standards and Technol-
ogy (NIST) has evaluated the fingerprint-image matching al-
gorithms from different vendors1 [1,2], using large samples of
fingerprint data from a wide range of government sources. Sev-
eral types of fingerprints (such as flat, rolled, and slap finger-
print images) and the fingerprint collection methods (e.g., using
live scan devices or paper fingerprint cards) are included in
these data sets. In the SDK tests [2], 6000 subjects’ finger-
print images are used as a probe and 6000 second fingerprint
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1 These tests were performed for the Department of Homeland Security in
accordance with Section 303 of the Border Security Act, codified at 8 U.S.C.
1732. Specific hardware and software products identified in this report were
used in order to adequately support the development of technology to conduct
the performance evaluations described in this document. In no case does
such identification imply recommendation or endorsement by the National
Institute of Standards and Technology nor does it imply that the products
and equipment identified are necessarily the best available for the purpose.
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images of the same subjects are used as a gallery. The probe
is matched against the gallery. The evaluations were conducted
on 19 vendor’s fingerprint-image matching algorithms.2

Comparing two different fingerprint images of the same sub-
ject who appears both in the probe and in the gallery gener-
ates match similarity score (i.e., genuine-match score). Match-
ing two fingerprint images of two different subjects creates
non-match similarity score (i.e., impostor-match score). The
fingerprint-image matching algorithms tested in Ref. [1,2] are
designed in such a way that the higher values of similarity
scores tend to indicate that two fingerprint images are more
similar. Hence, the distribution function of the match similar-
ity scores will be centered at higher score than the distribution
function of the non-match similarity scores does.

The true accept rate (TAR) and the false accept rate (FAR)
are defined, respectively, as the cumulative probability of the
match and non-match similarity scores from the highest simi-
larity score to a specified similarity score, i.e., threshold, in re-
lation to their distribution functions. Based on TAR and FAR,

2 The algorithms are proprietary. Hence, they cannot be disclosed.
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a receiver operating characteristic (ROC) curve can be con-
structed. The evaluations of fingerprint-image matching algo-
rithms can be carried out by measuring and comparing the
corresponding ROC curves.

The similarity scores generated directly from different
fingerprint-image matching algorithms can be either integers
or real numbers in different ranges. But real numbers with
certain number of significant decimal places can be converted
into integers. As a result, the similarity scores can be treated
as discrete random variables rather than continuous random
variables. Thus, a precise ROC curve can be built by moving
the threshold one integral score at a time from the highest
similarity score to the lowest similarity score for large size of
data sets.

By executing different fingerprint-image matching algo-
rithms on large data sets, it reveals that the match and non-
match similarity scores for large samples have no definite
underlying distribution function, and their distribution func-
tions vary substantially from algorithm to algorithm. This
suggests that a nonparametric analysis is pertinent to evaluat-
ing fingerprint-image matching algorithms on large data sets.
Therefore, the evaluation of an ROC curve can be made with-
out any assumption about such irregularly discrete distribution
functions.

Evaluation of ROC curves had been studied in depth in the
literature. In some approaches, the TARs at a specific FAR or
within a region of FARs are chosen to be criteria [1–4]. How-
ever, in other approaches, the area under an ROC curve is in-
voked [4–10]. In the cited references and references therein, the
studies of the area under an ROC curve were mainly focused
on medical practice over small data sets. The biometric eval-
uations of fingerprint technology cited in the references [1,2]
used large data sets, but the area under an ROC curve was not
employed. Thus, the technique of using the area under an ROC
curve as a criterion has never been explored for large amount
of data.

The motivations behind using the area under an ROC curve
as the criterion are twofold. First, the area under an ROC curve
is a very important index in the analysis of ROC curves. This
area is equal to the probability of correctly identifying which
is more likely than the other in the two stimuli under inves-
tigation [9–11], and it measures the overall ROC curve as a
whole. Second, the area under an ROC curve computed using
the trapezoidal rule is equivalent to the Mann–Whitney statis-
tic directly formed, in our case, by the match similarity scores
and the non-match similarity scores [9,10,12,13].

The above second point has two consequences. First, the
variance of the Mann–Whitney statistic can be utilized as
the variance of the area. Second, because the Mann–Whitney
statistic is asymptotically normally distributed regardless
of the distributions of the match and non-match similarity
scores thanks to the Central Limit Theorem [8,13,14], the Z

statistic formulated in terms of areas under two ROC curves
along with their variances and the correlation coefficient is
subject to the standard normal distribution and can be used
to test the significance of the difference of these two ROC
curves.

The discrete distribution functions of the match and non-
match similarity scores from the large-size fingerprint data set
are explored in Section 2. Based on these distributions, a pre-
cise ROC curve is created, as discussed in Section 3. The area
under such an ROC curve is studied in Section 4. Thereafter,
the Z statistic is applied to the significance test of the differ-
ence between two ROC curves, as presented in Section 5. As
the contents are presented, the test results of four fingerprint-
image matching algorithms will be given as examples. The de-
tailed formulas for constructing an ROC curve, computing the
area under an ROC curve using the trapezoidal approach, and
calculating its variance are provided in the forms that can be
coded easily. Finally, conclusions are presented in Section 6.

2. The discrete distribution functions of the match and
non-match similarity scores

The similarity scores are supposed to be represented in inte-
gers, as discussed earlier. Different fingerprint-image matching
algorithms invoked different scoring systems. Without loss of
generality, for a matching algorithm, let the integral score set
be {s} = {smin, smin +1, . . . , smax}, running consecutively from
the minimum score smin to the maximum score smax. To make
the presentation clear, from here on, the symbol “∀s ∈ {s}” in-
dicates that s takes all integral scores from smin up to smax in
the ascending order, and the symbol “∀s ∈ {s}” means that s

takes all integral scores from smax down to smin in the descend-
ing order.

While executing a matching algorithm over a fingerprint-
image data set, comparing two different fingerprint images of
the same subject generates match similarity score. The match
similarity score set is denoted as

T = {si|∀i ∈ {1, . . . , NT}}, (1)

where NT is the total number of match similarity scores. Here,
the similarity scores si take values from the integral score set
{s}, i.e., si ∈ {s}. But si may not exhaust all members in the
integral score set {s}. In addition, some of the comparisons may
very well share the same integral value. Therefore, the match
similarity score set T can be partitioned into pairwise-disjoint
subsets {Ts}. In each subset Ts, members have the same integral
score s ∈ {s}. The match similarity score set T is the union of
all these subsets {Ts}.

With respect to each subset Ts, the frequency fT(s) of the
similarity score s is the size of Ts and the corresponding prob-
ability is pT(s) = fT(s)/NT. Therefore, to deal with the whole
spectrum of the scores by including zero frequencies, the dis-
crete frequency and probability distribution functions of the
match similarity scores can be expressed, respectively, as

FT =
{

fT(s)|∀s ∈ {s} and
s max∑

�=s min

fT(�) = NT

}
, (2)

PT =
{

pT(s)|∀s ∈ {s} and
s max∑

�=s min

pT(�) = 1

}
. (3)
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Fig. 1. The discrete probability distribution functions of the match and non-match similarity scores generated by using the fingerprint-image matching Algorithm
1. The integral similarity scores run from 0 to 2000. The widths of peaks at the highest score and at the lowest score are enlarged to show the characteristics
of the distributions.

Fig. 2. The discrete probability distribution functions of the match and non-match similarity scores generated by using the fingerprint-image matching Algorithm
2. The integral similarity scores run from 0 to 9999. The widths of peaks at the highest score and at the lowest score are enlarged to show the characteristics
of the distributions.

Matching two fingerprint images of two different subjects
creates non-match similarity score. The non-match similarity
score set is denoted as

F = {si|∀i ∈ {1, . . . , NF}} (4)

where NF is the total number of non-match similarity scores.
By analogy with the match similarity scores, the discrete fre-
quency and probability distribution functions of the non-match
similarity scores can be formulated in terms of the frequency
fF(s) and the probability pF(s) = fF(s)/NF, respectively, as

FF =
{

fF(s)|∀s ∈ {s} and
s max∑

�=s min

fF(�) = NF

}
, (5)

PF =
{

pF(s)|∀s ∈ {s} and
s max∑

�=s min

pF(�) = 1

}
. (6)

By executing fingerprint-image matching Algorithms 1–4 on
a large-size fingerprint database, it is found that the match and
non-match similarity scores for large samples have no definite
underlying distribution functions, and different algorithms have
different characteristics of probability distribution functions of
the match and non-match similarity scores, as demonstrated in
Figs. 1–4. Thus, a nonparametric analysis must be employed in
order to deal with such fingerprint data. In our studies, NT is
6000 and NF is 35 994 000. This means that the least probabi-
lities of the match and non-match similarity scores are on the
order of 10−4 and 10−8, respectively. Hence, the probability is
depicted in logarithmic scale.

For Algorithm 1, the match similarity scores with relatively
high probabilities at higher scores have a stand-alone peak
at 2000 occupying 67.52% of the whole population, and the
probability distribution of the non-match similarity scores is
a normal-like distribution skewed toward higher scores. For
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Fig. 3. The discrete probability distribution functions of the match and non-match similarity scores generated by using the fingerprint-image matching Algorithm
3. The real-number similarity scores run from 0.0 to 1.0 in five significant decimal places, which can be converted into integers. The widths of peaks at the
highest score and at the lowest score are enlarged to show the characteristics of the distributions.

Fig. 4. The discrete probability distribution functions of the match and non-match similarity scores generated by using the fingerprint-image matching Algorithm
4. The integral similarity scores run from 0 to 338. The width of peak at the lowest score is enlarged to show the characteristics of the distributions.

Algorithm 2, the match similarity scores are almost uniformly
distributed with a small peak at 9999 taking 8.98% of the
whole population, but the non-match similarity scores with
very steep-decay probabilities have an extremely sharp peak
at zero overwhelmingly dominating 97.56% of the whole
population.

Algorithms 1 and 2 behave differently in the sense that Al-
gorithm 1 tried to push similarity scores higher and Algorithm
2, on the contrary, tended to push similarity scores lower. How-
ever, there is one thing that is common between these two algo-
rithms. That is, both of them attempt to separate the center of
the probability distribution of the non-match similarity scores
from the center of the probability distribution of the match sim-
ilarity scores by as wide a margin as possible. In such a way,
it can produce a better ROC curve.

For Algorithm 3, the peak of the non-match similarity scores
at 0.0 counts 41.33% of the population, and is separated from

other scores. For Algorithm 4, the peak of the non-match sim-
ilarity scores is not as high as that one, but is also separated
from other scores. The distances between two centers of the
probability distributions of the match and non-match similarity
scores, respectively, for Algorithms 3 and 4 are not as wide as
those for Algorithms 1 and 2.

3. The ROC curve of the match and non-match similarity
scores

Investigating the ROC curve of the match and non-match
similarity scores is a way to discover how the discrete probabil-
ity distribution functions of the match and non-match similar-
ity scores are related to each other, and thus how well/bad the
fingerprint-image matching algorithm works. An ROC curve is
constructed based on the cumulative discrete probability distri-
bution functions of the match and non-match similarity scores.
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From Eqs. (3) and (6) for the discrete match and non-match
similarity scores, respectively, the cumulative discrete proba-
bility distribution functions can be computed by moving the
threshold one integral score at a time from the highest similar-
ity score smax down to the lowest similarity score smin. They
are expressed as

CT =
{

cT(s) =
s max∑
�=s

pT(�)|∀s ∈ {s}
}

(7)

and

CF =
{

cF(s) =
s max∑
�=s

pF(�)|∀s ∈ {s}
}

, (8)

where cT(s) and cF(s) are the cumulative probabilities of the
match and non-match similarity scores, respectively, at the in-
tegral score s from the highest similarity score smax. Therefore,
in the FAR-and-TAR coordinate system, an ROC curve of the
match and non-match similarity scores is a curve connecting
smax − smin +1 points, {(cF(s), cT(s))|∀s ∈ {s}}, and extending
to the origin of the coordinate system.

The fingerprint-image matching algorithm for identifying the
similarity of fingerprint images is designed in such a way that
the probability distribution of the match similarity scores is
centered at higher scores than the probability distribution of the
non-match similarity scores. At the highest similarity score, the
probability of the non-match similarity score is always zero.
Thus, an ROC curve always starts from the origin of the FAR-
and-TAR coordinate system, ends at the point (1, 1), and is
above the straight line from the origin to (1, 1). Overlap of
points (cF(s), cT(s)) can occur, while both pF(s) and pT(s) are
zero. An ROC curve goes horizontally, vertically, or inclined
upper rightwards at the score s, depending on whether only
pF(s) is nonzero, or only pT(s) is nonzero, or both of them are
nonzero, respectively.

Except at scores at which both pF(s) and pT(s) are zero,
such a precise ROC curve provides the same information as
that nonzero pF(s) and nonzero pT(s) provide. The precise
ROC curve uniquely and accurately represents the cumulative
discrete probability distribution functions of the match and
non-match similarity scores. Moreover, such an ROC curve is
constructed directly from the original data, after converting to
integral scores if necessary, without any assumption regarding
their distributions.

The ROC curves, corresponding to the four fingerprint-
image matching algorithms presented in the previous section,
are shown in Figs. 5 and 6. In Fig. 5 In a logarithmic scale is
used for the FAR to show ROC curves at the higher-score re-
gion of the non-match similarity scores. In Fig. 6 a linear scale
is used for the FAR to show ROC curves at the lower-score
region of the non-match similarity scores.

For Algorithm 1, the second point on the ROC curve, i.e.,
one point above the origin (0, 0), is at (0, 0.6752), because
the peak of the match similarity scores at the highest similarity
score 2000 dominates 67.52% of the population (see Figs. 1
and 6). Then, the ROC curve does not leave the TAR coordinate
axis until the highest non-match similarity score is reached. At

that point, the highest non-match similarity score appears only
once with probability of a little above 10−8, and the cumula-
tive probability of the match similarity scores from the high-
est similarity score has already reached 89.05% (see Figs. 1
and 5). After that, the ROC curve gradually reaches the point
(1, 1) (see Figs. 1 and 6), because of the shape of the prob-
ability distribution of the non-match similarity scores and the
relative position of two probability distributions of the match
and non-match similarity scores.

In contrast, for Algorithm 2, on one hand, the ROC curve
leaves the TAR coordinate axis when the cumulative probability
of the match similarity scores gets to 93.47% (see Figs. 2 and
5). This is higher than 89.05% for Algorithm 1. On the other
hand, it is intriguing to see that its ROC curve jumps from one
side of the FAR-and-TAR coordinate system to the final point
(1, 1) (see Fig. 6). This is because the probability distribution
of the non-match similarity scores has a peak at the lowest
similarity score zero, and it overwhelmingly occupies 97.56%
of the population (see Fig. 2). Therefore, the ROC curve of
Algorithm 1 starts to be higher than the ROC curve of Algorithm
2 after the FAR reaches about 20%, as evidenced by Fig. 7.
This indicates that an ROC curve may be higher than the other
one in a region but lower than the other one in other region.

The same qualitative analyses can be applied to the ROC
curves of Algorithms 3 and 4. The ROC curve of Algorithm
3 connects many more points in the FAR-and-TAR coordinate
system than the one of Algorithm 4 does, because of different
scoring systems (see Figs. 3–5).

For large data sets, very little computation power is needed
to create a precise ROC curve. For instance, even for a scoring
system using real-number scores ranging from zero through
one with five significant decimal places, the total number of
integer scores is just 105 plus one. Thus, the total number of
points in the FAR-and-TAR coordinate system, which the ROC
curve needs to connect, is not very large when compared to the
computing power of the current desk-top computers.

4. The area under an ROC curve

An ROC curve can be quantitatively assessed using the area
under the ROC curve. The area under an ROC curve is a very
important index, which represents the probability that the score
obtained for the genuine match, sG, is higher than the score
assigned for the impostor match, sI, i.e., Prob (sG > sI), given
both genuine match and impostor match, assuming the score is
a continuous random variable [11]. Moreover, the area under an
ROC curve computed using the trapezoidal rule is equivalent to
the Mann–Whitney statistic [9,10,12,13], directly formed from
the discrete match and non-match similarity scores in our case.
Therefore, the variance of the Mann–Whitney statistic can be
utilized as the variance of the area.

As shown earlier, an ROC curve can go horizontally, verti-
cally, inclined toward upper right, or stay where it is for each
increment of the two cumulative probabilities, depending on
whether pF(s) and/or pT(s) are nonzero or not. Thus, the area
under an ROC curve consists of a set of trapezoids, each of
which is built by a rectangle and a triangle in general. But the
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Fig. 5. The four ROC curves of Algorithms 1–4, respectively, where the FAR is in a logarithmic scale to show ROC curves at the higher-score region of the
non-match similarity scores. The cross points represent the points on which the ROC curves are constructed.

trapezoid can be reduced to a rectangle, a vertical line, or a
point.

As shown in Fig. 8, without loss of generality, in the FAR-
and-TAR coordinate system, at the score s ∈ {s}, by including
zero-frequency scores, a trapezoid is constructed by four points:
A (cF(s + 1), 0), B (cF(s + 1), cT(s + 1)), C (cF(s), cT(s)),
and D (cF(s), 0), in clockwise direction, assuming cF(smax +
1) = cT(smax + 1) = 0. This boundary condition corresponds
to the origin of the FAR-and-TAR coordinate system, and will
be applied throughout the following discussion. The lengths
(cF(s)−cF(s +1)) and (cT(s)−cT(s +1)) form a triangle, and
the lengths (cF(s)−cF(s +1)) and cT(s +1) create a rectangle.

From Eqs. (7) and (8), it follows that at the score s ∈ {s},
the above three lengths are

cF(s) − cF(s + 1) = fF(s)

NF
(9)

and

cT(s) − cT(s + 1) = fT(s)

NT
(10)

and

cT(s + 1) =
s max∑
�=s+1

fT(�)

NT
(11)

where
∑s max

�=s max +1 = 0 according to the above boundary con-
dition. This notation will be applied throughout the following
discussion. Hence, the area under an ROC curve can be com-
puted as

Â =
s min∑

s=s max

trapezoid(s)

=
s min∑

s=s max

triangle(s) +
s min∑

s=s max

rectangle(s)

= 1

NTNF
∗

s min∑
s=s max

fF(s) ∗
[

1

2
∗ fT(s) +

s max∑
�=s+1

fT(�)

]
.

(12)
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Fig. 6. The four ROC curves of Algorithms 1–4, respectively, where the FAR is in a linear scale to show ROC curves at the lower-score region of the
non-match similarity scores. The cross points represent the points on which the ROC curves are constructed.

Fig. 7. Enlarged parts of ROC curves of Algorithms 1 and 2, where the non-match similarity scores are more significant. In this region, the ROC curve of
Algorithm 1 is generally higher than the one of Algorithm 2. The cross points represent the points on which the ROC curves are constructed.
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Fig. 8. A schematic drawing of four points A–D along with their coordinates
in the FAR-and-TAR coordinate system. They form a trapezoid at the score
s, and BC is a segment of an ROC curve.

The summation runs consecutively in the descending order from
smax to smin, including zero-frequency scores.

In order to relate the area under an ROC curve to the
Mann–Whitney statistic, a nonparametric approach proceeds
as follows. All the NF scores in the non-match similarity score
set F are compared with all the NT scores in the match sim-
ilarity score set T. If a non-match similarity score sF is less
than a match similarity score sT, it counts 1; if equal, it counts
1
2 ; and if greater, it counts zero. That is, for discrete scoring,
this rule can be expressed as [10]

R(sT, sF) =
{ 1 if sF < sT,

1
2 if sF = sT,

0 if sF > sT.

(13)

By including zero-frequency scores, the first term in Eq. (12)
shows the total number of score pairs in which the non-match
similarity score is equal to the match similarity score, weighted
by 1

2 and divided by NTNF. And the second term in Eq. (12)
represents the total number of score pairs in which the non-
match similarity score is less than the match similarity score,
weighted by 1 and divided by NTNF. This term is the so-called
“the number of inversions” in a sequence formed by non-match
and match similarity scores [14]. In other words, the area under
an ROC curve can be re-written as

Â = 1

NTNF
∗

NT∑
sT=1

NF∑
sF=1

R(sT, sF). (14)

Except for the coefficient, this is exactly the Mann–Whitney
statistic formed by the match and non-match similarity scores.
As a consequence, the variance of the area under an ROC
curve can be obtained by computing the variance of the
Mann–Whitney statistic.

In order to calculate the variance of the area under an ROC
curve, two more cumulative probability distribution functions
are required [10]. One of them cumulates the probabilities of
match similarity scores from the highest similarity score down

Table 1
The areas under ROC curves and their standard errors for four algorithms

Algorithms Areas (Â) Standard errors (SE (Â))

1 0.996228 0.000544
2 0.996002 0.000659
3 0.974103 0.001535
4 0.970838 0.001492

to the score that is one score higher than the current score,

QT =
{

qT(s) =
s max∑
�=s+1

pT(�)|∀s ∈ {s}
}

. (15)

And the other one cumulates the probabilities of non-match
similarity scores from the lowest similarity score up to the score
that is one score lower than the current score,

QF =
{

qF(s) =
s−1∑

�=s min

pF(�)|∀s ∈ {s}
}

, (16)

where another boundary condition
∑s min −1

�=s min = 0 is assumed.
Thereafter, using Eqs. (3) and (6), the probability BTTF, that
two randomly chosen genuine matches will obtain higher sim-
ilarity scores than one randomly chosen impostor match, can
be written as

BTTF =
s max∑

s=s min

pF(s) ∗
[
q2

T(s)+qT(s) ∗ pT(s)+1

3
∗ p2

T(s)

]
.

(17)

And the probability BFFT, that one randomly chosen genuine
match will get higher similarity score than two randomly chosen
impostor matches, can be expressed as

BFFT =
s max∑

s=s min

pT(s) ∗
[
q2

F(s)+qF(s) ∗ pF(s)+1

3
∗ p2

F(s)

]
.

(18)

Finally, the variance of the area under an ROC curve is pre-
sented as [10]

Var(Â) = 1

NTNF
∗ [Â(1 − Â) + (NT − 1)(BTTF − Â2)

+ (NF − 1)(BFFT − Â2)]. (19)

The standard error of the area under an ROC curve, SE
(Â), is defined as the square root of its variance. Since the
Mann–Whitney statistic is asymptotically normally distributed
due to the Central Limit Theorem, the margin of error and the
confidence interval with certain confidence level for each area
under an ROC curve can be computed for large-size fingerprint
data sets.

The areas under ROC curves generated by four fingerprint-
image matching algorithms along with their corresponding
standard errors are shown in Table 1. All the standard errors
are very small, because the areas are all very close to 1 and the
sizes of the match and non-match similarity scores are very
large [10]. Algorithm 1 has slightly larger area, i.e., higher
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matching power than Algorithm 2. Is this difference by chance
or real? By the same token, the matching power of Algorithm 3
is quite close to that of Algorithm 4, but both Algorithms 1 and
2 are better than Algorithms 3 and 4. The same questions arise.
All these questions can be resolved by the statistical significance
test of the difference between two areas under ROC curves.

5. Z-test of areas under two ROC curves

As discussed before, the Mann–Whitney statistic is asymp-
totically normally distributed regardless of the distributions of
the match and non-match similarity scores thanks to the Cen-
tral Limit Theorem. Thus, the straightforward way to test the
significance of the difference between two areas under ROC
curves is the Z-test. The Z statistic is defined as the differ-
ence of two areas divided by the square root of the variance of
two-area difference [9], and it is subject to the standard normal
distribution with zero expectation and a variance of one. The
Z statistic can be expressed as

Z = Â1 − Â2√
SE2(Â1) + SE2(Â2) − 2rSE(Â1)SE(Â2)

(20)

where Â1 and Â2 are two areas under ROC curves, SE (Â1) and
SE (Â2) are two standard errors of areas, respectively, and r is
the correlation coefficient between two areas. While comparing
performances of two fingerprint-image matching algorithms,
for two areas with very close values, we have no reason to
believe a priori that one algorithm is likely to be better than
the other. In such cases, the two-tailed test needs to be invoked.
Otherwise, the one-tailed test should be employed.

The two areas under ROC curves may or may not be corre-
lated, depending on how the two ROC curves are constructed.
For many applications in the analysis of fingerprint data, the
two ROC curves are built based on different data sets, or dif-
ferent portions of the same data set, and so on. Under such cir-
cumstances, two sets of match similarity scores and two sets of
non-match similarity scores that construct the two ROC curves,
respectively, do not co-vary. And thus the two areas are not
correlated.

However, in the tests discussed in this article, where two
fingerprint-image matching algorithms are compared on the
same fingerprint data set, the two areas under ROC curves are
correlated. They are correlated through elements of the matrix
that is formed by the probe and the gallery. Each matrix el-
ement is either match or non-match similarity score for two
different algorithms, respectively, depending on whether or not
the subject in the probe is the same as the subject in the gallery.
Thus, such matrix elements establish the correlation between
two sets of match and non-match similarity scores of two al-
gorithms, respectively, and thereafter the correlation between
two ROC curves.

As shown in the literature [14], the nonparametric Kendall’s �
is asymptotically normally distributed, in the null hypothesis of
no association between two sets of random variables, with ex-
pectation zero and a variance of (4N+10)/9N(N−1) where N

is the size of the data set. For example, if N equals 6000, there

Table 2
The two-tailed p-values of two areas under ROC curves generated by four
fingerprint-image matching algorithms

Algorithms 1 2 3 4

1 1.0000 0.7714 0.0000 0.0000
2 1.0000 0.0000 0.0000
3 1.0000 0.0862
4 1.0000

is only 5% probability for the absolute value of the Kendall’s �
to be greater than 0.0169. However, for two matches of finger-
print images, all fingerprint-image matching algorithms have
the same tendency to assign a higher (or lower) similarity score
to the match where two fingerprint images are more (or less)
similar. Such a characteristic of fingerprint-image matching al-
gorithms may cause high positive correlation between two sets
of match and non-match similarity scores of two algorithms,
respectively. On the other side of the coin, this high correlation
may be reduced due to the large magnitude of the size of the
fingerprint data sets.

For the four fingerprint-image matching algorithms, the six
correlation coefficients between two sets of 6000 match sim-
ilarity scores range from 0.56 to 0.67. The size of non-match
similarity score data is as large as 36 million. It is impractical
to compute the Kendall’s � for this size of data sets, since its
complexity is O(N2). Thus, the stochastic approach is invoked.
A simple random sample with size of 360 000 non-match simi-
larity scores is selected without replacement out of 35 994 000
data for one iteration, and the average Kendall’s � is computed
from such 10 iterations. The six correlation coefficients be-
tween two sets of non-match similarity scores lie between 0.07
and 0.25. Using the table provided in Ref. [9], the six resultant
correlation coefficients between two areas under ROC curves
are from 0.17 through 0.24.

The pairwise two-tailed p-values of two areas under ROC
curves for the four fingerprint-image matching algorithms are
presented in Table 2. This table is symmetric. So the other part
of the table is left blank. And obviously, all diagonal elements
in Table 2 are identically equal to one.

For Algorithms 1 and 2, the two-tailed p-value is 0.7714,
which is much greater than 5%. According to the table shown in
article [9], the resultant correlation coefficient cannot be greater
than the largest one of the two correlation coefficients between
two sets of match and non-match similarity scores, respectively.
Therefore, conservatively, even if using the largest one, i.e., 0.60
in this case, which is the Kendall’s � between two sets of 6000
match similarity scores and is computed without sampling, the
two-tailed p-value is 0.6797, which is also much greater than
5%. This indicates that the difference between two areas under
ROC curves of Algorithms 1 and 2 is not real but by chance.
In other words, it is strongly assured that the performance of
Algorithm 1 is most likely the same as the performance of
Algorithm 2 at the significance level 77.14% and 67.97% in a
conservative way.



J.C. Wu, Charles L. Wilson / Pattern Recognition 40 (2007) 2574–2584 2583

For Algorithms 3 and 4, the two-tailed p-value is 0.0862
that is greater than 5% by 3.62%. By the same approach, the
conservative two-tailed p-value is 0.0161 that is lower than 5%
by 3.39%. Thus, the performance of Algorithm 3 is likely the
same as the performance of Algorithm 4. In all other cases, as
shown in Table 2, the two-tailed p-values are less than 0.00005
in four significant decimal places, which is way below 5%. As
mentioned above, in all these cases, the values of areas are not
quite close. Thus, the one-tailed test should be invoked. The
one-tailed p-value is half of the two-tailed p-value. Hence, it
unequivocally indicates that the differences between the areas
under ROC curves in these cases are significantly real. In other
words, the performances of the corresponding algorithms are
most likely different—one is significantly better (or worse) than
the other.

Even though the sizes of the fingerprint data sets are large,
the Z statistic hypothesis test of using the areas under ROC
curves along with their variances and the correlation coefficient
can be implemented. This provides a sound statistical ground
for testing the significance of the differences between two areas
under ROC curves, and thus for evaluating the performances
of fingerprint-image matching algorithms.

6. Conclusions

As illustrated in this paper, the discrete probability distribu-
tion functions of the match and non-match similarity scores,
generated by using fingerprint-image matching algorithms on
the large-size data sets, have no definite underlying distribu-
tion functions. These distributions vary considerably from al-
gorithm to algorithm. As a consequence, the nonparametric
approach must be employed in the analysis of the large size of
fingerprint similarity scores.

Although the sizes of fingerprint data sets are much larger
than the sizes of the data sets that are dealt with in the medi-
cal practice, a precise ROC curve can still be realistically con-
structed by moving the threshold one integral score at a time
from the highest similarity score down to the lowest similarity
score. Then, by invoking the trapezoidal rule, the area under
an ROC curve can be calculated. This area is equivalent to the
Mann–Whitney statistic directly formed from the match and
non-match similarity scores.

The area under an ROC curve stands for the probability that
the score obtained for the genuine match is higher than the score
assigned for the impostor match given both genuine match and
impostor match assuming the score is a continuous random
variable. Therefore, to evaluate a fingerprint-image matching
algorithm, an ROC curve as a whole rather than an ROC curve
at a specific point or within a chosen region should be taken into
account. Even if a part of an ROC curve produces higher TAR
values, this does not guarantee that the ROC curve as a whole
is better. The examples shown in this article demonstrated such
relationship.

Furthermore, the variance of the area under an ROC
curve can be obtained by calculating the variance of the
Mann–Whitney statistic. In addition, the Mann–Whitney statis-
tic is asymptotically normally distributed regardless of the

distributions of the match and non-match similarity scores
thanks to the Central Limit Theorem. Thus, the Z statistic can
be formulated. Two-tailed test and/or one-tailed test are con-
ducted based on how much close the values of two areas under
ROC curves are. The Z statistic can be computed in a con-
servative way depending on how to deal with the correlation
coefficient.

The fingerprint data sets are large-size data sets. Even on the
same data set, different fingerprint-image matching algorithms
generate a wide variety of match and non-match distributions.
Moreover, uncertainties can arise from processing and compar-
ing fingerprint system test results. Under such circumstances,
the Z statistic hypothesis test offers a systematic way to detect
the statistical significance of differences between two underly-
ing ROC curves, namely, differences between performances of
two fingerprint-image matching algorithms. The method inves-
tigated in this article provides the information on which algo-
rithm produces better results, as well as the information about
whether the difference is real or just by chance at a quantified
significance level.

The approach of analyzing ROC curves using areas under
ROC curves has been successfully applied to the analysis of
large samples of fingerprint data. In this article, this method-
ology is applied to comparing two fingerprint-image matching
algorithms on the same data set. It can also be applied, for
instance, to evaluating the relationship among different finger-
print image qualities. As a matter of fact, in general, the non-
parametric approach presented in this article can be employed
in the analysis of many kinds of biometric data.
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