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1. Introduction

Quadratic forms in normal variables appear in many different areas of statistics: time series, decision theory, hypothesis
testing, particularly, in the context of the general linear model, etc. By now there is a substantial literature dedicated to
evaluation of their moments as well as the moments of ratios of quadratic forms. Numerous references are given by Mathai
and Provost (1992) who gave a compendium of formulas for inverse moments of quadratic forms in normal variables in
terms of Lauricella’s function. There is also an extensive bibliography (76 items) on the moments of quadratic forms and of
their ratios in Meng (2005).
Out of these references we mention that of Smith (1989) who expressed the expectation of the ratio via an infinite

series involving invariant (zonal) polynomials in three matrix arguments, and Lieberman (1994) who derived a saddlepoint
approximation. Meng (2005) provided rigorous derivation of many earlier results along with some generalizations and gave
an excellent review of their applications.
Assuming normality, we provide here some formulas relating negative central moments of the quadratic form defined

by a positive definite matrix to those determined by the inverse matrix. The ratios of quadratic forms exhibit a similar
relationship.

2. Main results

We start with a formula relating inverse central moments of the quadratic form determined by a positive definite matrix
Λ and those determined byΛ−1.

Theorem 2.1. Let Z = (Z1, . . . , Zr)T be a random vector composed by independent standard normal variables, and assume that
Λ is an r × r positive definite matrix. Then if 0 < q < r/2,

E(ZTΛZ)−q =
Γ (r/2− q)

22q−r/2Γ (q) det(Λ)1/2
E(ZTΛ−1Z)q−r/2. (1)
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Proof. Without loss of generalityΛ can be taken to be a diagonal matrix,Λ = diag(λ1, . . . , λr).
Then

2qΓ (q)E(ZTΛZ)−q =
∫
∞

0
tq−1Ee−tZ

TΛZ/2 dt =
∫
∞

0
tq−1

∏
i

Ee−tλiZ
2
i /2 dt

=

∫
∞

0

tq−1 dt∏
i

√
1+ λit

=

∫
∞

0

tq−r/2−1 dt∏
i

√
t−1 + λi

=

∫
∞

0

ur/2−q−1 du∏
i

√
λi + u

= (λ1 . . . λr)
−1/2

∫
∞

0

ur/2−q−1 du∏
i

√
1+ u/λi

= det(Λ)−1/2
∫
∞

0
ur/2−q−1Ee−uZ

TΛ−1Z/2 du

=
Γ (r/2− q)

2q−r/2 det(Λ)1/2
E(ZTΛ−1Z)q−r/2,

so that indeed (1) holds. �

Theorem 2.1 is valid ifΛ is a non-negative definite matrix, i.e. if some of the λ’s vanish. In this case r denotes the rank of
Λ,Λ−1 is to be replaced by theMoore–Penrose generalized inverse ofΛ (Rao andMitra, 1971), and the product of r positive
λ’s substitutes for det(Λ). Indeed the proof of Theorem 2.1 holds when

∏
i is taken over i such that λi > 0.

Under the notation,

Λ̃ = Λ/ det(Λ)1/r , (2)

it is suggestive to rewrite (1) as

E(ZTΛ̃Z)−q

E(ZTZ)−q
=
E(ZTΛ̃−1Z)q−r/2

E(ZTZ)q−r/2
.

Indeed Λ̃−1 = Λ−1/ det(Λ)−1/r , det(Λ̃) = 1, and

E(ZTZ)−q =
Γ (r/2− q)
2qΓ (r/2)

.

In particular,

det(Λ)1/2E(ZTΛZ)−r/4 = E(ZTΛ−1Z)−r/4. (3)

Formula (1) gives the limit when q→ r/2,

E(ZTΛZ)−q

E(ZTZ)−q
→ det(Λ)−1/2.

The condition 0 < q < r/2 guarantees the existence of moments in both sides of (1) so that interchange of integration
with differentiation in the proof of Theorem 2.1 is legitimate. The same comment holds for the next result which extends
Theorem 2.1 to the expectation of the ratio of powers of two quadratic forms.

Theorem 2.2. Under the notation of Theorem 2.1, assume that 0 < q < p+ r/2 with p ≥ 0,Λ a positive definite matrix, and
Ψ is a symmetric matrix. If p is a non-negative integer or if Ψ is non-negative definite,

E
(ZTΨ Z)p

(ZTΛZ)q
=

Γ (r/2+ p− q)
22q−p−r/2Γ (q) det(Λ)1/2

E
(ZTΛ−1/2ΨΛ−1/2Z)p

(ZTΛ−1Z)p−q+r/2
. (4)

Proof. As in the proof of Theorem 2.1, one has for a non-negative integer p,

2qΓ (q)E
(ZTΨ Z)p

(ZTΛZ)q
=

∫
∞

0
tq−1E(ZTΨ Z)pe−tZ

TΛZ/2 dt

= (−2)p
∫
∞

0
tq−1

dp

dsp
Ee−Z

T(sΨ+tΛ)Z/2
∣∣∣∣
s=0
dt

= (−2)p
∫
∞

0
tq−1

dp

dsp
1

√
det(I + sΨ + tΛ)

∣∣∣∣
s=0
dt
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=
(−2)p

det(Λ)1/2

∫
∞

0
tq−r/2−1

dp

dsp
1√

det(I + st−1Λ−1/2ΨΛ−1/2 + t−1Λ−1)

∣∣∣∣∣
s=0

dt

=
(−2)p

det(Λ)1/2

∫
∞

0
ur/2−q−1

dp

dsp
1√

det(I + suΛ−1/2ΨΛ−1/2 + uΛ−1)

∣∣∣∣∣
s=0

du

=
(−2)p

det(Λ)1/2

∫
∞

0
ur/2−q−1

dp

dsp
Ee−Z

T(uΛ−1+suΛ−1/2ΨΛ−1/2)Z/2
∣∣∣∣
s=0
du

= det(Λ)−1/2
∫
∞

0
ur/2+p−q−1E(ZTΛ−1/2ΨΛ−1/2Z)pe−uZ

TΛ−1Z/2 du

=
Γ (r/2+ p− q)
2q−p−r/2 det(Λ)1/2

E
(ZTΛ−1/2ΨΛ−1/2Z)p

(ZTΛ−1Z)p−q+r/2
.

Justification of these formulas follows from Lemma 1 in Meng (2005), or the fact that for a positive definite matrix B, with
Qp(Ψ ) denoting a polynomial in elements of Ψ of degree p,

dp

dsp
1

√
det(B+ sΨ )

∣∣∣∣
s=0
=

Qp(Ψ )
det(B)p+1/2

,

is well defined even when Ψ is not a a positive definite matrix.
If p is not an integer (but Ψ is a non-negative definite matrix, so that ZTΨ Z is positive with probability one), we use the

fact that the pth moment is the pth fractional derivative of the moment generating function. Decompose p = dpe + 〈p〉,
where dpe is the largest integer not exceeding p, and 〈p〉, 0 < 〈p〉 < 1, denotes its fractional part. Then according to Lemma
2 in Meng (2005),

2qΓ (q)Γ (〈p〉)E
(ZTΨ Z)p

(ZTΛZ)q
=

∫
∞

0

∫
∞

0
s〈p〉−1tq−1E(ZTΨ Z)dpee−sZ

TΨ Z/2−tZTΛZ/2 dsdt

= (−2)dpe
∫
∞

0

∫
∞

0
s〈p〉−1tq−1

ddpe

dsdpe
Ee−Z

T(sΨ+tΛ)Z/2 dsdt

= (−2)dpe
∫
∞

0

∫
∞

0
s〈p〉−1tq−1

ddpe

dsdpe
1

√
det(I + sΨ + tΛ)

dsdt

=
(−2)dpe

det(Λ)1/2

∫
∞

0

∫
∞

0
s〈p〉−1tq−1

ddpe

dsdpe
1√

det(I + st−1Λ−1/2ΨΛ−1/2 + t−1Λ−1)
dsdt

=
(−2)dpe

det(Λ)1/2

∫
∞

0

∫
∞

0
s〈p〉−1ur/2−q−1

ddpe

dsdpe
1√

det(I + suΛ−1/2ΨΛ−1/2 + uΛ−1)
dsdu

=
(−2)dpe

det(Λ)1/2

∫
∞

0

∫
∞

0
s〈p〉−1ur/2−q−1

ddpe

dsdpe
Ee−Z

T(uΛ−1+suΛ−1/2ΨΛ−1/2)Z/2 dsdu

=
(−2)dpe

det(Λ)1/2

∫
∞

0

∫
∞

0
v〈p〉−1ur/2+dpe+〈p〉−q−1

ddpe

dvdpe
Ee−Z

T(uΛ−1+vΛ−1/2ΨΛ−1/2)Z/2 dvdu

=
Γ (〈p〉)Γ (r/2+ p− q)
2q−p−r/2 det(Λ)1/2

E
(ZTΛ−1/2ΨΛ−1/2Z)dpe+〈p〉

(ZTΛ−1Z)dpe+〈p〉−q+r/2
. �

The formula derived from (4) when q = r/4+ p/2,

det(Λ)1/2E
(ZTΨ Z)p

(ZTΛZ)r/4+p/2
= E

(ZTΛ−1/2ΨΛ−1/2Z)p

(ZTΛ−1Z)r/4+p/2
,

extends (3).
By using notation (2), identity (4) can be rewritten as

E (Z
TΨ Z)p

(ZTΛ̃Z)q

E(ZTZ)p−q
=

E (Z
TΛ̃−1/2Ψ Λ̃−1/2Z)p

(ZTΛ̃−1Z)p−q+r/2

E(ZTZ)q−r/2
.

When Ψ = I, 0 < p = q < r/2, (4) and (1) give

E
(
ZTZ
ZTΛZ

)p
=

Γ (r/2)
2p−r/2Γ (p) det(Λ)1/2

E(ZTΛ−1Z)p−r/2
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=
2pΓ (r/2)
Γ (r/2− p)

E(ZTΛZ)−p =
E(ZTΛZ)−p

E(ZTZ)−p
.

For 0 < q < r/2 and positive p,

E (ZTZ)p

(ZTΛZ)q

E(ZTZ)p−q
=

E(ZTΛ−1Z)q−r/2

det(Λ)1/2E(ZTZ)q−r/2
=
22q−r/2Γ (q)E(ZTΛZ)−q

Γ (r/2− q)E(ZTZ)q−r/2
,

so that

E
(ZTZ)p

(ZTΛZ)q
=
2pΓ (r/2− q+ p)
Γ (r/2− q)

E(ZTΛZ)−q.

Ifm = r − 2(q− p) is a positive integer, then this formula takes the form

E
(ZTZ)p

(ZTΛZ)q
=
E(ZTΛZ)−q

E(UTU)−p
,

where U is anm-dimensional random vector with independent standard normal coordinates.
Further formulas of this type showing the close relationship between moments of ratios of quadratic forms and their

inverse moments can be obtained from (1) and (4). They could be used for checking the numerical accuracy of different
algorithms for evaluation of these moments (Paolella, 2003).
Obviously all results can be reformulated in terms of zero mean normal vectors with an arbitrary covariance matrix Σ ,

e.g. in Theorem 2.1,Λ has to replaced byΣ1/2ΛΣ1/2, and additionally in Theorem 2.2, Ψ is to be taken asΣ1/2ΨΣ1/2.
Jones (1987), as well as Mathai and Provost (1992), noticed that the function E(ZTΛZ)−q of λ1, . . . , λr can be expressed

in terms of a multiple hypergeometric function (Carlson’s R-function or Lauricella’s function). Formula (1) can be obtained
by application of the so-called Euler transformation (Carlson, 1977, Theorem 6.8-3). However the possibility of deriving (4)
via this route is not clear.

References

Carlson, B.C., 1977. Special Functions of Applied Mathematics. Academic Press, New York, NY.
Jones, M.C., 1987. On moments of quadratic forms in normal variables. Statist. Probab. Lett. 6, 129–136.
Lieberman, O., 1994. A Laplace approximation to the moments of a ratio of quadratic forms. Biometrika 81, 681–690.
Mathai, A.M., Provost, S.B., 1992. Quadratic Forms in Random Variables. M. Dekker, New York, NY.
Meng, X.-L., 2005. From unit root to Stein’s estimator to Fisher’s k statistic: If you have a moment I can tell you more. Statist. Sci. 20, 141–162.
Paolella, M., 2003. Computing moments of ratios of quadratic forms in normal variables. Comput. Statist. Data Anal. 42, 313–331.
Rao, C.R., Mitra, C.K., 1971. Generalized Inverse of Matrices and its Applications. J. Wiley, New York, NY.
Smith, M.D., 1989. On the expectation of a ratio of quadratic forms in normal variables. J. Multivariate Anal. 31, 244–257.


