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Abstract. We develop a new generic long-message second preimage at-
tack, based on combining the techniques in the second preimage attacks
of Dean [8] and Kelsey and Schneier [16] with the herding attack of Kelsey
and Kohno [15]. We show that these generic attacks apply to hash func-
tions using the Merkle-Damgård construction with only slightly more
work than the previously known attack, but allow enormously more con-
trol of the contents of the second preimage found. Additionally, we show
that our new attack applies to several hash function constructions which
are not vulnerable to the previously known attack, including the dithered
hash proposal of Rivest [25], Shoup’s UOWHF[26] and the ROX hash
construction [2]. We analyze the properties of the dithering sequence used
in [25], and develop a time-memory tradeoff which allows us to apply our
second preimage attack to a wide range of dithering sequences, including
sequences which are much stronger than those in Rivest’s proposals. Fi-
nally, we show that both the existing second preimage attacks [8, 16] and
our new attack can be applied even more efficiently to multiple target
messages; in general, given a set of many target messages with a total
of 2R message blocks, these second preimage attacks can find a second
preimage for one of those target messages with no more work than would
be necessary to find a second preimage for a single target message of 2R

message blocks.

Keywords: Cryptanalysis, Hash Function, Dithering

1 Introduction

A number of recent attacks on hash functions have highlighted weaknesses of
both specific hash functions, and the general Merkle-Damgård construction.
Wang et al. [28–31], Biham et al. [3], Klima [19] and Joux et al. [14] all show that
differential attacks can be used to efficiently find collisions in specific hash func-
tions based on the MD4 design, such as MD5, RIPEMD, SHA-0 and SHA-1. This



type of result is important for at least two reasons. First, collision resistance is a
required property for a hash function, and many applications of hash functions
fail when collisions can be found. Second, efficiently found collisions permit ad-
ditional attacks on hash functions using the Merkle-Damgård construction, as in
Joux’s [13] multicollision attack on cascade hashes, and the long-message second
preimage attacks of Dean [8] and Kelsey and Schneier [16].

After Kelsey and Schneier published their attack, several researchers pro-
posed a variant of the Merkle-Damgård construction, in which a third input to
the compression function, called a “dithering sequence” in [25] and this paper,
is used to block the attack. Specifically, using a dithering sequence prevents the
construction of “expandable messages,” required for both Dean and Kelsey and
Schneier’s attacks. In this paper, we develop a new kind of second preimage
attack, which applies to some dithered variants of the Merkle-Damgård con-
struction.

1.1 Related Work

The PhD thesis of Dean [8] presented a second preimage attack that works
against a subset of hash functions using the Merkle-Damgård construction.
Kelsey and Schneier [16] extended this result to work for all Merkle-Damgård
hashes. For an n-bit hash function, their result allows an attacker to find a sec-
ond preimage of a 2k block1 target message with k · 2n/2+1 + 2n−k evaluations
of the compression function. The attack relies on the ability to construct an
expandable message, a set of incomplete messages of widely varying length, all
of which yield the same intermediate hash result. This attack can be seen as a
variant of the long message attack [20], in which the expandable message is used
to carry out the attack despite the Merkle-Damgård strengthening.

Variants of the Merkle-Damgård construction that attempt to preclude the
aforementioned second preimage attacks are the Haifa

2 [23] construction pro-
posed by Biham and Dunkelman and the “dithered” Merkle-Damgård hash by
Rivest [25]. Haifa includes the number of message bits hashed so far in the
message block. The simplest way to implement Haifa is to shorten each data
block by 64 bits, filling those 64 bits with the 64 bit counter used internally to
track the length of the hash input so far. Rivest, on the other hand, introduced a
clever way to decrease the number of bits used for this extra input to either 2 or
16, thus increasing the bandwidth available for actual data, by using a specific
sequence of values to “dither” the actual inputs. The properties of this sequence
were claimed by Rivest to be sufficient to avoid the second preimage attack on
the hash function.

The herding attack of Kelsey and Kohno [15] can be seen as another variant
of the long-message attack. In their attack, the attacker first does a large precom-
putation, and then commits to a hash value h. Later, upon being challenged with

1 In this paper, we describe message lengths in terms of message blocks, rather than
bits. Most common hash functions use blocks of length 512 or 1024 bits.

2 We do not have any attacks more efficient than exhaustive search on Haifa.



a prefix P , the attacker constructs a suffix S such that hash(P ||S) = h. Their
paper introduced the “diamond structure”, which is reminiscent of a complete
binary tree. It is a 2ℓ-multicollision in which each message in the multicollision
has a different initial chaining value, and which is constructed in the precompu-
tation step of the attack. The herding attack on an n-bit hash function requires
approximately 22n/3+1 work.

1.2 Our Results

In this paper, we develop a new generic second preimage attack on Merkle-
Damgård hash functions and dithered Merkle-Damgård variants, treating the
compression functions as black boxes. Our basic technique relies on the diamond
from the herding attack of [15]. If the diamond is a 2ℓ-multicollision, we obtain a
second preimage of a message of length 2k blocks with 2n/2+ℓ/2+2 +2n−ℓ +2n−k

compression function computations. The attack is optimized when ℓ ≈ n/3,
yielding an attack of complexity 5 · 22n/3 + 2n−k.

Our attack is slightly more expensive than the k · 2n/2+1 + 2n−k complexity
from [16] (for SHA-1, in which n = 160 and k = 55, the Kelsey-Schneier attack
complexity is about 2105 work whereas ours is approximately 2109). However, the
new attack can be applied to Merkle-Damgård variants for which the attack of
[16] is impossible. Our result also permits the attacker to leave most of the target
message intact in the second preimage, or to arbitrarily choose the contents
of roughly the first half of the second preimage, while leaving the remainder
identical to the target message.

We can also apply our new second preimage attack to the dithered Merkle-
Damgård hash variant of [25], exploiting the fact that the dithering sequences
have many repetitions of some subsequences. For Rivest’s proposed 16-bit dither-
ing sequence, the attack requires 2n/2+ℓ/2+2 + (8ℓ + 32768) · 2n−k + 2n−ℓ work,
which for SHA-1 is approximately 2120. This is slightly worse than the attacks
against the basic Merkle-Damgård construction but it is still much smaller than
the 2160 security which was expected for the dithered construction. We show
that the security of a dithered Merkle-Damgård hash is dependent on the num-
ber of distinct ℓ-letter subwords in the dithering sequence, and that the sequence
chosen by Rivest is very susceptible to our attack.

We also show that the attack on dithered hashes is subject to a time-memory
tradeoff that enables the construction of second preimages for any dithering input
defined over a small alphabet with only a small amount of online computation
after an expensive precomputation stage.

We further apply our attack to a one way hash function designed by Shoup [26],
which has some similarities with dithered hashing. The attack applies as well to
constructions that derive from this design, such as ROX [2]. Our technique yields
the first published attack against these particular hash functions. This addition-
ally proves that Shoup’s security bound is tight, since there is asymptotically
only a factor of O (k) between his bound and our attack’s complexity.

Finally, we show that both the original second-preimage attack of [8, 16]
and our attack can be extended to the case in which there are multiple target



messages. In general, finding a second preimage for any one of 2t target messages
of length 2k blocks each requires approximately the same work as finding a single
second preimage for a message of 2k+t blocks.

1.3 Organization of the Paper

We describe our attack against the Merkle-Damgård construction in section 2.
We introduce some terminology and describe the dithered Merkle-Damgård con-
struction in section 3, and then we extend our attack to tackle dithered Merkle-
Damgård in section 4. We apply it to Rivest’s concrete proposal, as well as to
some of the variations that he suggested. In section 5, we show that our attack
works also against Shoup’s UOWHF construction. We conclude with section 6,
where we show how the second preimage attack may be applied to finding a
second preimage for one of a large set of target messages.

2 A New Generic Second Preimage Attack

2.1 The Merkle-Damgård construction

We first describe briefly the classical Merkle-Damgård construction. An iterated
hash function HF : {0, 1}∗ → {0, 1}n is built by iterating a basic compression
function F : {0, 1}m × {0, 1}n → {0, 1}n. The hash process works as follows:

– Pad and split a message M into r blocks x1, . . . , xr of m bits each.
– Set h0 to the initialization value IV .
– For each message block i compute hi = F (hi−1, xi).
– Output HF (M) = hr.

The padding is usually done by appending a single ’1’ bit followed by as
many ’0’ bits as needed to complete an m-bit block. Merkle [21] and Damgård
[7] independently proved in 1989 that making the binary encoding of the message
length part of the padding improves the security of the construction: with this so-
called strengthening, the scheme is proven to be Collision-Resistance Preserving,
in the sense that a collision in the hash function HF would imply a collision in
the compression function F . As a side effect, the strengthening defines a limit
over the maximal size of the messages that can be processed. In most deployed
hash functions, this limit is 264 bits, or equivalently 255 512-bit blocks. In the
sequel, we denote the maximal number of admissible blocks by 2k.

2.2 Second Preimage Attack on Merkle-Damgård hash

We now describe a new technique to find second preimages on a Merkle-Damgård
hash. It relies heavily on the “diamond structure” introduced by Kelsey and
Kohno [15].

A diamond of size ℓ is a multicollision that has the shape of a complete
converging binary tree of depth ℓ, with 2ℓ leaves (hence we often refer to it



as a collision tree). Its nodes are labelled by chaining values over n bits, and
its edges are labelled by message blocks over m bits, which map between the
chaining values at the two ends of the edge by the compression function. Thus,
from any one of the 2ℓ leaves, there is a path labelled by ℓ message blocks that
leads to the same target value hT labelling the root of the tree.

Let M be a target message of length 2k blocks. The main idea of our attack
is that connecting a message to a collision tree can be done in less than 2n

work. Moreover, connecting the root of the tree to one of the 2k chaining values
encountered during the computation of HF (M) takes only 2n−k compression
function calls. The attack works in 4 steps as described in figure 1.

1. Preprocessing step: compute a collision tree of depth ℓ with an arbitrary target
value hT . Note that this has to be done only once, and can be reused when com-
puting second preimages of multiple messages.

2. Connect the target hT to some chaining value in the message M . This can be
done by generating random message blocks B, until F (hT , B) = hi0

for some i0,
ℓ + 1 ≤ i0 <

˛

˛M
˛

˛. Let B0 be a message block satisfying this condition.
3. Generate an arbitrary prefix P of size i0 − ℓ − 1 blocks whose hash is one of the

chaining values labelling a leaf. Let h = HF (P ) be this value, and let T be the
chain of ℓ blocks traversing the tree from h to hT .

4. Form a message M ′ = P ||T ||B0||xi0+1 . . . x2k .

Fig. 1: Summary of the attack on classic Merkle-Damgård.

Messages M ′ and M are of equal length and hash to the same value, before
strengthening, so they produce the same hash value despite the Merkle-Damgård
strengthening.

A collision tree of depth ℓ can be constructed with time and space complexity
2

n
2
+ ℓ

2
+2 (see [15] for details). The second step of the attack can be carried out

with 2n−k work, and the third one with 2n−ℓ work. The total time complexity
of the attack is then: 2

n
2
+ ℓ

2
+2 + 2n−k + 2n−ℓ. This quantity becomes minimal

when ℓ = (n − 2)/3, and in this setting, the total cost of our attack is about
5 · 22n/3 + 2n−k.

2.3 Comparison With Kelsey and Schneier

On the original Merkle-Damgård construction, the attack of [16] is more efficient
than ours (on SHA-1, they can find a second preimage of a message of size 255

with 2105 work, whereas we need 2109 calls to the compression function to obtain
the same result).

However, our technique gives the adversary more control on the second preim-
age, since she can typically choose about the first half of the message in an arbi-
trary way. For example, she could choose to replicate most of the target message,
leading to a second preimage that differs from the original by only k + 2 blocks.



The main apparent difference between the two techniques is that the attack
of Kelsey and Schneier relies on expandable messages. An expandable message
M is a family of messages with different number of blocks but with the same
hash when the final length block is not included in the computation. Their attack
constructs such an expandable message in time k · 2n/2+1. Our attack can also
be viewed as a new, more flexible technique to build expandable messages, by
choosing a prefix of the appropriate length and connecting it to the collision
tree. This can be done in time 2n/2+k/2+2 + 2n−k. Altough it is more expensive,
this new technique can be adapted to work even when an additional dithering
input is given, as we will demonstrate in the sequel.

3 Dithered Hashing

The general idea of dithered hashing is to perturb the hashing process by using an
additional input to the compression function, formed by the consecutive elements
of a fixed dithering sequence. This gives the attacker less control over the input
of the compression function, and makes the hash of a message block dependent
on its position in the whole message. In particular, the goal of dithering is to
prevent attacks based on expandable messages.

Since the dithering sequence z has to be at least as long as the maximal
number of blocks in any message that can be processed by the hash function,
it is reasonable to consider infinite sequences as candidates for z. Let A be a
finite alphabet, and let the dithering sequence z be an eventually infinite word
over A. Let z[i] denote the i-th element of z. The dithered Merkle-Damgård
construction is obtained by setting hi = F (hi−1, xi, z [i]) in the definition of the
Merkle-Damgård scheme.

3.1 Words and Sequences

Notations and Terminology. Let ω be a word over the finite alphabet A. The
dot operator denotes concatenation. If ω can be written as ω = x.y.z (where
x,y or z can be empty), we say that x is a prefix of ω and that y is a factor

(or subword) of ω. A finite word ω is a square if it can be written as ω = x.x,
where x is not empty. A finite word ω is an abelian square if it can be written as
ω = x.x′ where x′ is a permutation of x (i.e., a reordering of the letters of x). A
word is said to be square-free (resp. abelian square-free) if none of its factors is
a square (resp. an abelian square). Note that abelian square-free words are also
square-free.

An Infinite Abelian Square-Free Sequence. In 1992, Keränen [17] exhib-
ited an infinite abelian square-free word k over a four-letter alphabet (there are
no infinite abelian square-free words over a ternary alphabet). In this paper, we
call this infinite abelian square-free word the Keränen sequence. Details about
this construction can be found in [17, 18, 25].



Sequence Complexity. The number of factors of a given size of an infinite
word gives an intuitive notion of its complexity : a sequence is more complex (or
richer) if it possesses a large number of different factors. We denote by Factz(ℓ)
the number of factors of size ℓ of the sequence z.

3.2 Rivest’s Proposals.

Keränen-DMD. Rivest suggested to directly use the Keränen sequence as a
source of dithering inputs. The dithering inputs are taken from the alphabet
A = {a, b, c, d}, and can be encoded by two bits. The number of data bits in
the input of the compression function is thus reduced by only two bits, which
improves the hashing efficiency (compared to longer encodings of dither inputs).
It is possible to generate the Keränen sequence online, one symbol at a time, in
logarithmic space and constant amortized time.

Rivest’s Concrete Proposal. Rivest’s concrete proposal is referred to as
DMD-CP (Dithered Merkle-Damgård – Concrete Proposal). To speed up the
generation of the dithering sequence, Rivest proposed a slightly modified scheme,
in which the dithering symbols are 16-bit wide. If the message M is r blocks long,
then for 1 ≤ i < r the i-th dithering symbol has the form:

(

0,k
[⌊

i/213
⌋]

, i mod 213
)

∈ {0, 1} × A× {0, 1}13

The idea is to increment the counter for each dithering symbol, and to shift
to the next letter in the Keränen sequence, only when the counter overflows. This
“diluted” dithering sequence can essentially be generated 213 times faster than
the Keränen sequence. The last dithering symbol has a different form (recall that
m is the number of bits in a message block):

(1, |M | mod m) ∈ {0, 1} × {0, 1}15

4 Second Preimage Attacks on Dithered Merkle-Damgård

In this section, we present the first known second preimage attack on Rivest’s
dithered Merkle-Damgård construction. In section 4.1, we adapt the attack of
section 2 to Keränen-DMD, obtaining second preimages in time (k + 40.5) ·
2n−k+3. We then apply the extended attack to DMD-CP, obtaining second
preimages with about 2n−k+15 evaluations of the compression function. We show
some examples of sequences which make the corresponding dithered construc-
tions immune to our attack. This notably covers the case of Haifa [23]. Lastly,
in section 4.2 we present a variation of the attack, which includes an expensive
preprocessing, but which is able to cope with sequences of high complexity over
a small alphabet with a very small online cost.



4.1 Adapting the Attack to Dithered Merkle-Damgård

Let us now assume that the hashing algorithm uses a dithering sequence z. When
building the collision tree, we must choose which dithering symbols to use. A
simple solution is to use the same dithering symbol for all the edges at the same
depth in the tree. A tuple of ℓ letters is then required to build the collision tree.
We will also need an additional letter to connect the tree to the message M .
This way, in order to build a collision tree of depth ℓ, we have to fix a word ω
of size ℓ + 1, use ω[i] as the dithering symbol of depth i, and use the last letter
of ω to realize the connection.

The dithering sequence makes the hash of a block dependent on its position
in the whole message. Therefore, the collision tree can be connected to its target
only at certain positions, namely, at the positions where ω and z match. The
set of positions in the message where this is possible is then given by:

Range =
{

i ∈ N

∣

∣

∣

(

ℓ + 1 ≤ i
)

∧
(

z[i − ℓ] . . . z[i] = ω
)

}

.

Note that finding a connecting block B0 in the second step defines the length
of the prefix that is required. If i0 ∈ Range, it will be possible to build the
second preimage. Otherwise, another block B0 has to be found.

To make sure that Range is not empty, ω has to be a factor of z. Ideally, ω
should be the factor of length ℓ+1 which occurs most frequently in z, as the cost
of the attack ultimately depends on the number of connecting blocks tried before
finding a useful one (with i0 ∈ Range). What is the probability that a factor ω
appears at a random position in z? Although this is highly sequence-dependent,
it is possible to give a generic lower bound: in the worst case, all factors of size
ℓ + 1 appear in z with the same frequency. In this setting, the probability that
a randomly chosen factor of size ℓ + 1 in z is the word ω is 1/Factz(ℓ + 1).

The main property of z influencing the cost of our attack is its complexity
(which is related to its min-entropy), whereas its repetition-freeness influences
the cost of Kelsey and Schneier type attacks.

1. Choose the most frequent factor ω of z, with |ω| = ℓ + 1.
2. Build a collision tree of depth ℓ using ω as the dithering symbols in all the leaf-to-

root paths. Let hT be the target value of the tree.
3. Find a connecting block B0 mapping hT to anyone of the hi (say hi0

), by using
ω[ℓ] as the dithering letter. Repeat until io ∈ Range.

4. Carry the remaining steps of the attack as described in Fig. 1.

Fig. 2: Summary of the attack when a dithering sequence z is used.

The cost of finding this second preimage for a given sequence z, in the worst-
case situation where all factors appear with the same frequency, is given by:

2
n
2
+ ℓ

2
+2 + Factz(ℓ + 1) · 2n−k + 2n−ℓ.



Cryptanalysis of Keränen-DMD. The cost of the extended attack against
Keränen-DMD depends on the complexity of the sequence k. Since it has a very
regular structure, k has an unusually low complexity.

Lemma 1. For ℓ ≤ 85, we have:

Factk(ℓ) ≤ 8 · ℓ + 332.

Despite being strongly repetition-free, the sequence k offers an extremely
weak security level against our attack. We illustrate this by evaluating the cost
of our attack on Keranen-DMD:

2
n
2
+ ℓ

2
+2 + (8 · ℓ + 340) · 2n−k + 2n−ℓ.

If n is of the same order than about 3k, then the first term of this sum is
of the same order than the other two, and if n ≫ 3k then it can simply be
neglected. We will use this approximation several times in the sequel. By setting
ℓ = k− 3, the total cost of the attack is about: (k +40.5) · 2n−k+3 which is much
smaller than 2n in spite of the dithering.

Cryptanalysis of DMD-CP. We now apply the attack to Rivest’s concrete
proposal. We first need to evaluate the complexity of its dithering sequence.
Recall from section 3.2 that it is based on the Keränen sequence, but that we
move on to the next symbol of the sequence only when a 13 bit counter overflows.
The original motivation was to reduce the cost of the dithering, but it has the
unintentional effect of increasing the resulting sequence complexity. However, it
is possible to prove that this effect is quite small:

Lemma 2. Let c denote the sequence obtained by diluting k with a 13-bit counter.

Then for every 0 ≤ ℓ < 213, we have:

Factc(ℓ) = 8 · ℓ + 32760.

The dilution does not generate a sequence of a higher asymptotic complexity:
it is still linear in ℓ, even though the constant term is bigger due to the counter.
The cost of the attack is therefore:

2
n
2
+ ℓ

2
+2 + (8 · ℓ + 32768) · 2n−k + 2n−ℓ.

Again, if n is greater than about 3k, the best value of ℓ is k − 3, and the
complexity of the attack is then approximately: (k + 4094) · 2n−k+3 ≃ 2n−k+15.
For settings corresponding to SHA-1, a second preimage can be computed in
time 2120.

Countermeasures. Even though the dilution does not increase the asymptotic
complexity of a sequence, the presence of a counter increases the complexity of
the attack. If we simply used a counter over i bits as the dithering sequence,



the number of factors of size ℓ would be Fact(ℓ) = 2i (as long as i ≤ ℓ). The

complexity of the attack would then become: 2
n
2
+ ℓ

2
+2 + 2n−k+i + 2n−ℓ.

In practice, the dominating term is 2n−k+i. By taking i = k, we would obtain
a scheme which is resistant to our attack. This is essentially the choice made by
the designers of Haifa [23], but such a dithering sequence consumes k bits of
bandwidth. Note that as long as the counter does not overflow, no variation of
the attack of Kelsey and Schneier can be applied to the dithered construction.

Using a counter (i.e., a big alphabet) is a simple way to obtain a dither-
ing sequence of high complexity. An other, somewhat orthogonal, possibility to
improve the resistance of Rivest’s dithered hashing to our attack is to use a
dithering sequence of high complexity over a small alphabet (to preserve band-
width). In appendix A we show that there is an abelian square-free sequence
over 6 letters with complexity greater than 2ℓ/2. Then, with ℓ = 2k/3, the total
cost of the online attack is about 2n−2k/3.

Another possible way to improve the resistance of Rivets’s construction against
our attack is to use a pseudo random sequence over a small alphabet. Even
though it may not be repetition-free, its complexity is almost maximal. Suppose
the alphabet has size

∣

∣A
∣

∣ = 2i. Then the expected number of ℓ-letter factors in a

pseudo random word of size 2k is lower-bounded by: 2i·ℓ ·
(

1−exp−2k−i·ℓ
)

(refer
to [12], theorem 2, for a proof of this claim)). The total optimal cost of the online
attack is then at least 2n−k/(i+1)+2 and is obtained with ℓ = k/(i + 1). With
8-bit dithering symbols and if k = 55, as in the SHA family, the complexity of
the attack is 2n−5.

4.2 A Generic Attack on any Dithering Scheme With a Small
Alphabet

The attacks described so far exploited the low complexity of Rivest’s specific
dithering sequences. In this section we show that the weakness is more general,
and that after an O (2n) preprocessing, second preimages can be found for mes-
sages of length 2k ≤ 2n/4 in O

(

22·(n−k)/3
)

time and space for any dithering
sequence (even of maximal complexity) if the dithering alphabet is small. Sec-
ond preimages for longer messages can be found in max

(

O
(

2k
)

,O
(

2n/2
))

time

and min
(

O
(

2n−k
)

,O
(

2n/2
))

memory.

Outline of the Attack. The new attack can be viewed as a type of time-
memory tradeoff. For any given compression function, we precompute a fixed
data structure which can then be used to find additional preimages for any

dithering sequence and any given message of sufficient length. In the attack
we will need to find connecting blocks leading from the message to our data
structure and from our data structure to the message. The data structure will
allow us to generate a sequence of blocks of the required length, leading from
the entry point to the exit point, using the given dithering sequence.



A simple structure of this type is the kite generator3 which will allow us to
find a second preimage for a message made of O

(

2k
)

message blocks in time

max
(

O
(

2k
)

,O
(

2(n−k)/2
))

and O
(∣

∣A
∣

∣ · 2n−k
)

space. Note that for the SHA-1
parameters of n = 160 and k = 55, the time complexity of the new attack
is 255, which is just the time needed to hash the original message. However,
the size of the kite generator for the above parameters exceeds 2110. The kite
generator is a labelled directed graph whose 2n−k vertices are labelled by some
easily recognized subset of the chaining values that includes the IV (e.g., the
tiny fraction of hash values which are extremely close to IV ). Each directed
edge (which can be traversed in both directions) is labelled by one letter α
from the dithering alphabet and one message block x, and it leads from vertex
h1 to vertex h2 if F (h1, x, α) = h2. Each vertex in the generator should have
exactly two outgoing edges labelled by each dithering letter, and thus the expected

number of ingoing edges labelled by each letter is also 2. The generator is highly
connected in the sense that there is an exponentially large diverging binary tree
with any desired dithering sequence starting at any vertex, and an exponentially
large converging tree 4 with any desired dithering sequence (whose degrees are
not always 2) ending at most vertices. It can be viewed as a generalization of
the collision tree of Kelsey and Kohno [15], which is a single tree with a single
root in only the converging direction and with no dithering labels.

Once computed (during an unbounded precomputation stage), we can use
the generator to find a second preimage for any given message M with 2k blocks
and any dithering sequence. We first hash the long input M to find (with high
probability) some intermediate hash value hi which appears in the generator.
We then use the generator to replace the first i blocks in the message by a
different set of i blocks. We start from the generator vertex labelled by IV , and
follow some path in the generator of length i − (n − k) which has the desired
dithering sequence (there are exponentially many paths we can choose from). It
leads to some hash value ht in the generator. We then evaluate the full diverging
tree of depth (n − k)/2 and the desired dithering sequence starting at ht, and
the full converging tree of depth (n − k)/2 and the desired dithering sequence
ending at hi. Since the number of leaves in each tree is O

(

2(n−k)/2
)

and they

3 We call it a kite generator since we use it to generate kites of the form

Message

h1 h2kh2IV hi(· · ·) (· · ·)

hiIV ht

= =

Fig. 3: A Kite

4 See [10] for a formal justification of this claim.



are labelled by only 2n−k possible values, we expect by the birthday paradox to
find a common chaining value among the two sets of leaves. We can now combine
the long random chain of length i − (n − k) with the two short tree chains of
length (n − k)/2 to find a kite-shaped structure of the same length i and with
the same dithering sequence as the original message between the two chaining
values IV and hi. Note that the common leaf of the two trees can be found with
no additional space by using a variant of Pollard’s rho method which traverses
pseudo-randomly chosen paths in the two trees until it cycles.

This attack can be applied with essentially the same complexity even when
the IV is not known during the precomputation stage (e.g., when it is time
dependent). When we hash the original long message, we have to find two in-
termediate hash values hi and hj (instead of IV and hi) which are contained in
the generator and connect them by a properly dithered kite-shaped structure of
the same length.

The main problem of this technique is that for the typical case in which
k < n/2, it uses more space than time, and if we try to equalize them by
reducing the size of the kite generator, we are unlikely to find any common
chaining values between the given message and the generator. Finding a way
to connect the generator back into the message will require 2n−k+1 additional
steps, which will make the time complexity too high. To bypass this difficulty,
we will use the classic time-memory tradeoff of Hellman tables.

Hellman’s TMTO attack. Time/memory Tradeoffs (TMTO) were first in-
troduced in 1980 by Hellman [11]. The idea is to improve brute force attacks
by trading time for memory when inverting a function f : {0, 1}n → {0, 1}n.
Suppose we have an image element y and wish to find a pre-image x ∈ f−1(y).
One extreme would be to go over all possible elements x until we find one such
that f(x) = y, while the other extreme would be to pre-compute a huge table
containing pairs (x, f(x)) sorted by the second element. Hellman’s idea was to
consider what happens when applying f iteratively. We start at a random el-
ement x0 and compute xi+1 = f(xi) for t steps saving only the start and end
points of the generated chain (x0, xt). We repeat this process with different ini-
tial points and generate a total of c chains. Now on input y we start generating
a chain starting from y and check if we reach one of the saved endpoints. If we
have, we generate the corresponding chain, starting from the original starting
point and hope to find a preimage of y. Notice that as the number of chains c
increases beyond 2n/t2, the contribution from additional chains decreases with
the number of chains. To counter this birthday paradox effect, Hellman sug-
gested to construct a number of tables, each using a slightly different function
fi, such that knowing a preimage of y under fi implies knowing such a preimage
under f . Hellman’s original suggestion, which works well in practice, was to use
fi(x) = f(x ⊕ i). Thus if we create d = 2n/3 tables each with a different fi,
such that each table contains c = 2n/3 chains of length t = 2n/3, about 88%
of the 2n points will be covered by at least one table. Notice that the running



time of Hellman’s algorithm is t · d = 22n/3 while the memory requirement is
d · c = 22n/3.

The Attack. As mentioned above, we need to find a linking block from the kite-
generator to the message when its size is too small to have a common point. To
solve this problem, we denote one of the vertices in the kite-generator by N and
construct for each α ∈ A a set of d Hellman tables with c chains, each of length
t, such that t · c · d = 2n−k by iterating the basic function fα(x) = F (N,x, α).
During the online phase, for each intermediate hash value hi in the message, we
use the set of tables corresponding to the dithering character α used to reach hi

and try to find a block leading from the specified vertex N to hi using α. Since
the tables cover approximately 2n−k elements, the probability of finding such a
block for hi is 2−k. As the message is of length 2k, we expect to find on average
one connecting hi. Notice that although we create chains for the Hellman tables,
they do not correspond to the chain of hash values of a message, and thus we
do not have to use the correct dithering sequence along these paths. The only
purpose of the chains is to invert the function fα and thereby find a single block
linking N to one of the intermediate hash values along the given message.

Now that we have a method for connecting a predetermined hash value N to
a message, we can replace the role of the kite-generator of finding a prefix which
ends at N with a simpler construction. Since we were not constrained in our
choice of N we can simplify the kite generator to the single point IV with a self
loop for each dithering symbol α ∈ A. During the preprocessing, we exhaustively
search for each α ∈ A a block xα such that F (IV, xα, α) = IV . Given such self
loops, we use in each step the block xα corresponding to the current dithering
symbol α and thus we can generate a message of any length starting and ending
with IV . This IV serves as the point N in Hellman’s algorithm. Note that this
construction does not have the advantage of the original kite generator that IV
can be unknown during the preprocessing stage.

Combining the two steps, we first find a linking block from IV to one of
the intermediate hash values of the message using the correct dithering symbol.
Then, using the IV self loops, we construct a prefix of the required length linking
back to IV . During the preprocessing, the cost of constructing the Hellman tables
is

∣

∣A
∣

∣ · t · c · d = O
(∣

∣A
∣

∣ · 2n−k
)

time and
∣

∣A
∣

∣ · c · d space, while constructing the

IV self loops takes O
(∣

∣A
∣

∣ · 2n
)

time and
∣

∣A
∣

∣ space. As the cost of finding the
self loops is the dominating factor, the total time used in the preprocessing
phase is O

(∣

∣A
∣

∣ · 2n
)

and the total space used is
∣

∣A
∣

∣ · c · d. In the online phase,

generating the prefix takes time O
(

2k
)

and finding a linking block to one of the

2k intermediate hash values takes time O
(

2k · t · d
)

, so the total time spent in

the online phase is O
(

2k · t · d
)

. For constant sized alphabets this leads to the
following complexities: for k ≤ n/4, a tradeoff balancing the time and memory
costs is t = 2(n−k)/3, c = 2(n+2k)/3, d = 2(n−4k)/3 giving total time and memory
complexities of O

(

22·(n−k)/3
)

. For n/4 < k ≤ n/2 the balanced time/memory

tradeoff is achieved by using for each α a single table with parameters c = 2n/2

and t = 2n/2−k giving a flat time and memory complexities of O
(

2n/2
)

. For



a non-constant sized alphabet A, the general time-memory tradeoff curve is

T · M2 · 22k = 22n ·
∣

∣A
∣

∣

2
for k ≤ n/4 and T ≥ 22k.

5 An Attack on Shoup’s UOWHF

In this section, we show that our attack is generic enough to be applied against
hash functions enjoying a different security property, namely Universal One-
Way Hash Functions (UOWHF). A UOWHF is a family of hash functions H
for which any computationally bounded adversary A wins the following game
with negligible probability. First A chooses a message M , then a key K is chosen
at random and given to A. The adversary wins if she violates the Target Collision
Resistance (TCR) of H, that is if she generates a message M ′ different from M
that collides with M for the key K (i.e., such that HK(M) = HK(M ′) with
M 6= M ′).

Shoup [26] proposed a simple construction for a UOWHF that hashes mes-
sages of arbitrary size, given a UOWHF that hashes messages of fixed size. It
is a Merkle-Damgård-like mode of operation, but before every iteration, one of
several possible masks is XORed to the chaining value. The number of masks is
logarithmic in the length of the hashed message, and the order in which they
are used is carefully chosen to maximize the security of the scheme. This is
reminiscent of dithered hashing, except that here the dithering process does not
decrease the bandwidth available to actual data.

We first describe briefly Shoup’s construction, and then show how our attack
can be applied against it. The complexity of the attack demonstrates that for
this particular construction, Shoup’s security bound is nearly tight.

5.1 Description

This construction has some similarities with Rivest’s dithered hashing. It starts
from a universal one way compression function F that is keyed by a key K,
FK : {0, 1}

m
× {0, 1}

n
→ {0, 1}

n
. This compression function is then iterated, as

described below, to obtain a variable input length UOWHF HF
K .

The scheme uses a set of masks µ0, . . . , µk−1 (where 2k − 1 is the length of
the longest possible message), each one of which is a random n-bit string. The
key of the whole iterated function consists of K and of these masks. After each
application of the compression function, a mask is XORed to the chaining value.
The order in which the masks are applied is defined by a specified sequence over
the alphabet A = {0, . . . , k − 1}. The scheduling sequence is z[i] = ν2(i), for
1 ≤ i ≤ 2k, where ν2(i) denotes the largest integer ν such that 2ν divides i.
Let M be a message that can be split into r blocks x1, . . . , xr and let h0 be an
arbitrary n-bit string. We define hi = FK

(

hi−1 ⊕ µν2(i), xi

)

, and HF
K(M) = hr.

5.2 An Attack Matching the Security Bound

In [26], Shoup proves the following security result:



Theorem 1 (Main result of [26]). If an adversary is able to break the target

collision resistance of HF with probability ǫ in time T , then one can construct

an adversary that breaks the target collision resistance of F in time T , with

probability ǫ/2k.

In this section we show that this bound is almost tight. First, we give an
alternate definition of the dithering sequence z. We define:

ui =

{

0 if i = 1,

ui−1.(i − 1).ui−1 otherwise.

As an example, we have u4 = 010201030102010. It is clear that |ui| = 2i − 1,
and it is easy to show that for all i, ui is a prefix of z. The dithering sequence is
thus simply uk.

The most frequently-occurring factor of size ℓ < 2k in z is the prefix of size ℓ
of z. It is a prefix of uj with j = ⌈log2 (ℓ + 1)⌉, and uj itself occurs about 2k−j

times in z = uk. The probability for a random factor of z of size ℓ to be exactly
this candidate is equal to the number of occurrences of this candidate divided by

the number of ℓ-bit strings in z. Thus this probability is 2k−j

2k
−ℓ

. This can in turn

be lower-bounded by: 2−j ≥ 1
2(ℓ+1) . Our attack can be applied against the TCR

property of HF as described above. Choose at random a (long) target message
M . Once the key is chosen at random, build a collision tree using a prefix of z of
size ℓ for the dithering, and continue as described in section 4. The cost of the
attack is then:

T = 2
n
2
+ ℓ

2
+2 + 2(ℓ + 1) · 2n−k + 2n−ℓ.

This attack breaks the target collision resistance with probability nearly 1.
Therefore, with Shoup’s result, one can construct an adversary A against F
with running time T and probability of success 1/2k. If F is a black box, the
best attack against F ’s TCR property is the exhaustive search. Thus, the best
attacker in time T against F has success probability T/2n. When n ≥ 3k, T ≃
(2k + 3) · 2n−k (with ℓ = k − 1), and thus the best adversary running in time
T has success probability O

(

k/2k
)

when success probability of A is 1/2k. This
implies that there is no attack better than ours by a factor greater than O (k)
or, in other words, there is only a factor O (k) between Shoup’s security proof
and our attack.

The ROX construction by [2], which also uses the Shoup’s mask sequence to
XOR with the chaining values is susceptible to the same type of attack, which
is also provably near-optimal.

5.3 Comparing the Shoup and Rivest Dithering Techniques

An intriguing connection between Shoup’s and Rivest’s ideas shows up as soon
as we notice that the scheduling sequence z chosen by Shoup is abelian square-
free. In fact, one year after Shoup’s construction was published, Mironov [22]
proved that an even stronger notion of repetition-freeness was necessary: z is,



and has to be, even-free. A word is even-free if all of its non-empty factors contain
at least one letter an odd number of times. Note that all even-free words are
abelian square-free. We believe that the role these non-trivial sequences play in
iterated constructions in cryptography (such as hashing) has yet to be completely
understood.

6 Second Preimage Attack with Multiple Targets

Both the older generic second preimage results of [8, 16] and our results can be
applied efficiently to multiple target messages. The work needed for these attacks
depends on the number of intermediate hash values of the target message, as this
determines the work needed to find a linking message from the collision tree (our
attack) or expandable message ([8, 16]). A set of 2R messages, each of 2K blocks,
has the same number of intermediate hash values as a single message of 2R+K

blocks, and so the difficulty of finding a second preimage for one of a set of 2R

such messages is no greater than that of finding a second preimage for a single
2R+K block target message. In general, for the older second preimage attacks,
the total work to find one second preimage falls linearly in the number of target
messages; for our attack, it falls linearly so long as the total number of blocks
2R satisfies R < (n − 4)/3.

Consider for example an application which has used SHA-1 to hash 230 dif-
ferent messages, each of 220 message blocks. Finding a second preimage for a
given one of these messages using the attack of [16] requires about 2141 work.
However, finding a second preimage for any one of these of these 230 target
messages requires 2111 work. (Naturally, the attacker cannot control for which

target message he finds a second preimage.)
This works because we can consider each intermediate hash value in each

message as a potential target to which the root of the collision tree (or an
expandable message) can be connected, regardless of the message it belongs
to, and regardless of its length. Once we connect to an intermediate value, we
have to determine to which particuliar target message it belongs. Then we can
compute the second preimage of that message. Using similar logic, we can extend
our attack on Rivest’s dithered hashes, Shoup’s UOWHF, and the ROX hash
construction to apply to multiple target messages.

This observation is important for two reasons: First, simply restricting the
length of messages processed by a hash function is not sufficient to block the long
message attack; this is relevant for determining the necessary security parameters
of future hash functions. Second, this observation allows long-message second
preimage attacks to be applied to target messages of practical length. A second
preimage attack which is feasible only for a message of 250 blocks has no practical
relevance, as there are probably no applications which use messages of that
length. A second preimage attack which can be applied to a large set of messages
of, say, 224 blocks, might have some practical impact. While the computational
requirements of these attacks are still infeasible, this observation shows that the
attacks can apply to messages of practical length.
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1–16

A Some Sequence-Complexity Related Results

Sequences Generated by Morphisms. We say that a function τ : A∗ → A∗

is a morphism if for all words x and y, τ(x.y) = τ(x).τ(y). A morphism is then
entirely determined by the images of the individuals letters. A morphism is said
to be r-uniform (with r ∈ N) if for all word x, |τ(x)| = r · |x|. If, for a given
letter α ∈ A, we have τ(α) = α.x for some word x, then τ is non-erasing for
α. Given a morphism τ and an initialization letter α, let un denote the n-th
iterate of τ over α: un = τn(α). If τ is r-uniform (with r ≥ 2) and non-erasing
for α, then un is a strict prefix of un+1, for all n ∈ N. Let τ∞(α) denote the



limit of this sequence: it is the only fixed point of τ that begins with the letter
α. Such infinite sequences are called uniform tag sequences [5] or r-automatic

sequences [1]. Because they have a very regular structure, there is a spectacular
result [5] regarding the complexity of infinite sequences generated by uniform
morphisms:

Theorem 2 (Cobham, 1972). Let z be an infinite sequence generated by an

r-uniform morphism, and assume that the alphabet size
∣

∣A
∣

∣ is constant. Then z

has linear complexity:

Factz(ℓ) ≤ r · |A|2 · ℓ.

It is worth mentioning that similar results exist in the case of sequences
generated by non-uniform morphisms [24, 9], although the upper bound can be
quadratic in ℓ. Since the Keran̈en sequence is 85-uniform [17, 18, 25], the result of
theorem 2 gives: Factk(ℓ) ≤ 1360 · ℓ. This upper-bound is relatively rough, and
for particular values of ℓ, it is possible to obtain a much better approximation,
such as the one given in lemma 1 (which is tight). The interested reader should
consult the full version of this paper.

There are Abelian Square-Free Sequences of Exponential Complexity
It is indeed possible to construct an infinite abelian square-free sequence of
exponential complexity, although we do not know how to do it without slightly
enlarging the alphabet.

We start with the abelian square-free Keran̈en sequence k over {a, b, c, d},
and with another sequence u over {0, 1} that has an exponential complexity.
Such a sequence can be built for example by concatenating the binary encoding
of all the consecutive integers. Then we can create a sequence z̃ over the union
alphabet A = {a, b, c, d, 0, 1} by interleaving k and u: z̃ = k[1].u[1].k[2].u[2]. . . . .
The resulting shuffled sequence inherits both properties: it is still abelian square-
free, and has a complexity of order Ω

(

2ℓ/2
)

.


