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Abstract
The uncertainty of the mean of autocorrelated measurements from a stationary process has
been discussed in the literature. However, when the measurements are from a non-stationary
process, how to assess their uncertainty remains unresolved. Allan variance or two-sample
variance has been used in time and frequency metrology for more than three decades as a
substitute for the classical variance to characterize the stability of clocks or frequency
standards when the underlying process is a 1/f noise process. However, its applications are
related only to the noise models characterized by the power law of the spectral density. In this
paper, from the viewpoint of the time domain, we provide a statistical underpinning of the
Allan variance for discrete stationary processes, random walk and long-memory processes
such as the fractional difference processes including the noise models usually considered in
time and frequency metrology. Results show that the Allan variance is a better measure of the
process variation than the classical variance of the random walk and the non-stationary
fractional difference processes including the 1/f noise.

1. Introduction

In metrology, it is a common practice that the dispersion or
standard deviation of the average of repeated measurements
is calculated by the sample standard deviation of the
measurements divided by the square root of the sample size.
When the measurements are autocorrelated, this calculation
is not appropriate as pointed out by the Guide to the
Expression of Uncertainty in Measurement (GUM) [1, 4.2.7].
Thus, appropriate approaches are needed to calculate the
corresponding uncertainty. Recently, a practical approach
was proposed in [2] to calculate the uncertainty of the mean
of autocorrelated measurements when the data are from a
stationary process. Related to [2], reference [3] discussed
the use of autocorrelation function to characterize time series
of voltage measurements for stationary processes. However,
as stated in [2], if measurements are from a non-stationary
process, using the average value and the corresponding
variance to characterize the measurement standard may be
misleading.

In time and frequency metrology, the power spectral
density has been proposed to measure frequency stability in
the frequency domain. As discussed in [4–11], it has been
found empirically that random fluctuations in standards can be
modelled or at least usefully classified by a power law of the

power spectral density given by

f (ω) =
2∑

α=−2

hαωα, (1)

when ω is small. In (1), f (ω) is the spectral density at the
Fourier frequency ω and the hαs are intensity coefficients.
Among several common noise types classified based on (1)
and encounters in practice, a process which has the property
that f (ω) ∼ 1/ω when ω → 0 is called 1/f noise or flicker
frequency noise. For such processes, it was concluded that the
process variance is infinite while its Allan variance is finite.
Recently, [12] and [13] found that in electrical metrology the
measurements of Zener-diode voltage standards retain some
‘memory’ of its previous values and can be modelled as 1/f

noise. In addition to the spectral density, Allan variance
or two-sample variance has been used widely in time and
frequency metrology as a substitute for the classical variance
to characterize the stability of clocks or frequency standards in
the time domain. In [1, 4.2.7], it states that specialized methods
such as the Allan variance should be used to treat autocorrelated
measurements of frequency standards. However, the stochastic
processes studied in time and frequency metrology and in [12]
and [13] are characterized by the power law of frequencies
as in (1). The Allan variance often gives an impression of
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being an ad hoc technique. For that we think it is important
to provide a stronger statistical underpinning of the Allan
variance technique. In this paper, we study the properties of the
Allan variance for a wide range of time series including various
non-stationary processes. Therefore, some basic concepts of
time series models, in particular the stationary processes, are
needed.

In the time and frequency literature, discrete observations
are implicitly treated as being made on continuous time series.
In most cases, the time indices are expressed in units of time
such as seconds. In this paper, we consider discrete time series
with equally spaced (time) intervals. The time indices here
are counts and thus are unitless. Specifically, we consider
a discrete weakly stationary process {X(t), t = 1, 2, ...}.
By stationarity, we mean E[X(t)] = µ (constant) and the
covariance between X(t) and X(t + τ) (τ = 0, 1, . . .) is finite
and depends only on τ , i.e.

r(τ ) = Cov[X(t), X(t + τ)].

Here τ is the time lag. Again t and τ are unitless. In particular,
the process variance is σ 2

X = r(0). The autocorrelation
function of {X(t)} is ρ(τ) = r(τ )/r(0). Obviously, ρ(0) = 1.
The simplest stationary process is white noise, which has a
mean of zero and ρ(τ) = 0 for all τ �= 0. We define the
process {Yn(T ), T = 1, 2, . . .}, n � 2 of arithmetic means of
n consecutive X(t)s (n > 1) or moving averages as

Yn(1) = X(1) + · · · + X(n)

n

. . . . . . . . . . . .

Yn(T ) = X((T − 1)n + 1) + · · · + X(T n)

n
. (2)

It is obvious that
E[Yn(T )] = µ. (3)

The autocovariance function of {Yn(T )} can be expressed in
terms of the autocovariance of {X(t)} and n. When lag m > 0,
the autocovariance function of {Yn(T )} can be expressed by

Rn(m) = Cov[Yn(T ), Yn(T + m)]

= n · r(mn) +
∑n−1

i=1 i · [r(mn − n + i) + r(mn + n − i)]

n2
.

(4)

From (3) and (4), it is clear that for any fixed n, {Yn(T ), T =
1, 2, . . .} is also a stationary process. When m = 0 and n � 2,
the variance of {Yn(T )} is given by

Var[Yn(T )] = Rn(0)

= n · r(0) + 2
∑n−1

i=1 i · r(n − i)

n2
. (5)

As shown in [14, p 319] and [15], the variance can also be
expressed as

Var[Yn(T )] = σ 2
X

n

[
1 +

2
∑n−1

i=1 (n − i)ρ(i)

n

]
= Var[X̄], (6)

where X̄ is the sample mean and n � 2. In particular,
when {X(t)} is a stationary and uncorrelated process
or an independently identically distributed (i.i.d.) sequence,
Var[Yn(T )] = σ 2

X/n. This fact has been used in metrology to
reduce the standard deviation or uncertainty of the Yn(T ) or X̄,
using a large sample size n. When {X(t)} is autocorrelated,
the variance of Yn(T ) or X̄ can be calculated from (6) and is
used to calculate the uncertainty of the mean of autocorrelated
measurements when they are from a stationary process. That
is, the uncertainty of Yn(T ) can be calculated by substituting
σ 2

X by the sample variance S2
X and substituting ρ(i) by the

corresponding sample autocorrelation ρ̂(i) and thus given by

u2
Yn(T ) = S2

X

n

[
1 +

2
∑nt

i=1 (n − i)ρ̂(i)

n

]
,

where nt is a cut-off lag estimated from the data. See [2]. For
example, when {X(t)} is a first order autoregressive (AR(1))
process,

X(t) − µ − φ1[X(t − 1) − µ] = a(t).

The above expression can be rewritten as

(1 − φ1B)[X(t) − µ] = a(t),

where B is the back shift operator, i.e. B[X(t)] = X(t − 1)

and {a(t)} is white noise with a variance of σ 2
a . Without loss

of generality, we assume that the process means for AR(1)
and other stationary processes in this paper are zero. From (6)
when {X(t)} is a stationary AR(1) process with |φ1| < 1, in [2]
it is shown that

Var[Yn(T )] = n − 2φ1 − nφ2
1 + 2φn+1

1

n2(1 − φ1)2
σ 2

X. (7)

In this case, the variance of Yn(T ) or X̄ still decreases with a
rate of 1/n when the sample size n increases.

However, for some processes which are not stationary,
the variance of Yn(T ) or X̄ may not decrease with a rate
of 1/n or even may not always decrease when n increases.
For illustration, we show the behaviour of a time series
of a Zener voltage standard measured against a Josephson
voltage standard with a nominal value of 10 V. Figure 1
shows time series of the differences of the 8192 voltage
measurements in units of microvolt (µV). The length of
the time interval between successive measurements is 0.06 s.
Figure 2 demonstrates the autocorrelations of the time series
for the first 500 lags with an approximate 95% confidence
band centred at zero and with limits of ±1.96/

√
n assuming

the process is white noise with n = 8192. Obviously, the
data are autocorrelated and the autocorrelation persists even
for lags larger than 250. In figure 3, sample variance of Yn(T )

is plotted against n. Note that when n increases, the sample
variance of Yn(T ) decreases quickly when n < 100. But
the decrease becomes slow when n > 200. This means that
in this case continued averaging of repeated measurements
does not reduce the uncertainty and improve the quality of
measurements, as when the measurements are statistically
independent. This concern was the main reason for the use
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Figure 1. The differences between the measurements from a Zener
voltage standard and a Josephson voltage standard in the unit of
microvolt.

Figure 2. Sample autocorrelation function of the time series of the
voltage differences.

of Allan variance in [6] and [16]. In section 2, Allan variance
is introduced for a weakly stationary process in general and
its properties are studied for autoregressive-moving average
(ARMA) processes. Sections 3, 4 and 5 will discuss the Allan
variance for random walk, ARIMA(0,1,1) processes and the
fractional difference ARFIMA(0, d, 0) processes, including
the cases where d = −0.5 and 0.5, respectively. The results are
extended to ARFIMA (p, d, q) processes in section 5 followed
by the summary and conclusions.

2. Allan variance for a weakly stationary process

In [5], [17], [10] and [11], the two-sample variance or Allan
variance of {X(t)} for the average size of n � 2 is defined as

AVarn[X(t)] = E[[Yn(T ) − Yn(T − 1)]2]

2
. (8)

Figure 3. Variance of the moving averages of the time series of
voltage differences in the unit of µV2 as a function of the
average size.

When {X(t)} is stationary, the Allan variance can be
expressed as

AVarn[X(t)] = Var[Yn(T ) − Yn(T − 1)]

2

= Var[Yn(T )] − Rn(1).

(9)

From (4),

Rn(1) = n · r(n) +
∑n−1

i=1 i · [r(i) + r(2n − i)]

n2

= σ 2
X

n2

[
n · ρ(n) +

n−1∑
i=1

i · [ρ(i) + ρ(2n − i)]

]
.

(10)

From (5), (9) and (10),

AVarn[X(t)]

= n[1 − ρ(n)] +
∑n−1

i=1 i[2ρ(n − i) − ρ(i) − ρ(2n − i)]

n2
σ 2

X.

(11)

From (6), (9) and (11), it is clear that both the variance of
moving averages and the Allan variance of a stationary process
are functions of the autocorrelation function, the size of the
average and the variance of the process. From (8), for a
given data set of {X(1), . . . , X(N)}, the Allan variance for
the average size of n is estimated by

ÂVarn[X(t)] =
∑m

i=2[Yn(i) − Yn(i − 1)]2

2(m − 1)
, (12)

where m = [N/n]. See [6, 8]. Obviously, this is an
unbiased estimator of AVarn[X(t)]. Reference [18] studies
the uncertainty of ÂVarn[X(t)]. Denote Zn(T ) = Yn(T ) −
Yn(T − 1) for T = 2, . . . , m. Since {X(t)} is stationary,
E[Zn(T )] = 0. Thus,

ÂVarn[X(t)]
S2

Zn(T )

2
(13)
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for large n, where S2
Zn(T ) is the sample variance of {Zn(T )}. For

the asymptotic distribution of ÂVarn[X(t)], consider a general
linear process

X(t) = µ +
∞∑

k=−∞
γka(t − k),

where {a(t)} consists of i.i.d. random variables with
E[a(t)] = 0 and finite variance. Obviously, {Zn(T )} is a
general linear process. When some regularity conditions are
met, by a theorem in [19, p 478] it can be shown that for
any fixed n the limiting distribution of

√
N{ÂVarn[X(t)] −

AVarn[X(t)]} when N → ∞ is normal with zero mean and a
certain variance.

We now investigate the properties of Allan variance
for several stationary time series models in the following
subsections.

2.1. i.i.d. sequences

When {X(t)} is an i.i.d. sequence or a stationary and
uncorrelated process, ρ(i) = 0 when i �= 0 and ρ(0) = 1.
The spectral density f (ω) = σ 2

X/2π , which is a constant for
−π � ω � π . From (10), it is obvious that when n > 1,
Rn(1) = 0. Therefore, from (9),

AVarn[X(t)] = Var[Yn(T )] = σ 2
X

n
. (14)

That is, in the case of an i.i.d. sequence, the Allan variance
equals the variance of the sample average.

2.2. MA(q) processes

When {X(t)} is an MA(q) process,

X(t) = a(t) − θ1a(t − 1) − · · · − θqa(t − q), (15)

where {a(t)} is white noise with a variance of σ 2
a . Using the

backshift operator, the above expression can be rewritten as

X(t) = [1 − θ1B − θ2B
2 − · · · − θqB

q]a(t).

In this paper we assume that the roots of the characteristic
equation θ(z) = 1 − θ1z − · · · − θqz

q = 0 lie out of
the unit circle. Thus, the MA(q) process is invertible (see
[20, pp 86–7]). An MA(q) process has the property that its
autocovariance and autocorrelation are zero after lag q. That
is, the autocorrelation function at lag m is

ρ(m) = −[θm − θ1θm+1 − · · · − θq−mθq]

1 + θ2
1 + · · · + θ2

q

, (16)

when m = 1, 2, . . . , (q−1) and ρ(q) = −θq/[1+θ2
1 +· · ·+θ2

q ].
See [21, p 68]. When m > q, ρ(m) = 0. From (15), it is
obvious that

Var[X(t)] =
(

1 +
q∑

i=1

θ2
i

)
σ 2

a . (17)

Assuming n � q + 1, from (6)

Var[Yn(T )] = σ 2
X

n

[
1 +

2
∑q

i=1(n − i)ρ(i)

n

]
. (18)

In particular, when q = 1 from (16),

Var[Yn(T )] = σ 2
X

n


1 −

2(n − 1)
θ1

1 + θ2
1

n


 . (19)

In general, when θ1 �= 1, Var[Yn(T )] decreases with a rate of
1/n when n increases. When θ1 = 1, Var[Yn(T )] decreases
with a rate of 1/n2 when n increases.

Now we consider the behaviour of Allan variance when n

increases. Under the condition of n � q + 1, from (9) it can
be shown that

AVarn[X(t)] = n · r(0) +
∑q

i=1(2n − 3i) · r(i)

n2
. (20)

Hence, in general the Allan variance of an MA(q) process
decreases to zero when n → ∞ with a rate of 1/n.
In particular, when q = 1, i.e. for an MA(1) process,

AVarn[X(t)] = n · r(0) + (2n − 3) · r(1)

n2

= n + (2n − 3)ρ(1)

n2
σ 2

X,

(21)

which can also be expressed as

AVarn[X(t)] = (1 + θ2
1 )

n − (2n − 3)
θ1

1 + θ2
1

n2
σ 2

a . (22)

The spectral density of an MA(1) process is given by (see [21,
p 69])

f (ω) = (1 − 2θ1 cos ω + θ2
1 )σ 2

a

2π
(23)

for −π � ω � π . In particular, an MA(1) process with θ1 = 1
is not invertible and is sometimes called white phase noise (see
table 1 in [22]). In this case, from (19)

Var[Yn(T )] = 2σ 2
a

n2
. (24)

From (21),

AVarn[X(t)] = 3σ 2
a

n2
. (25)

Thus, the variance of the average of a white phase noise process
and its Allan variance decrease with a rate of 1/n2, which is
faster than those for white noise. The corresponding spectral
density is

f (ω) =
2 sin2 ω

2
π

σ 2
a (26)

for −π � ω � π . Obviously, when ω → 0, f (ω) ∼ ω2.
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2.3. AR(1) processes

When {X(t)} is an AR(1) process with the parameter of φ1,

X(t) − φ1X(t − 1) = a(t). (27)

We assume that |φ1| < 1, which guarantees the stationarity of
the process. The process {a(t)} is white noise with a variance
of σ 2

a . In this case, ρ(i) = φi
1 for i = 1, 2, . . . and the spectral

density from [20, p 123], is given by

f (ω) = σ 2
a

2π(1 − 2φ1 · cos ω + φ2
1)

(28)

when −π � ω � π . When ω → 0,

f (ω) → σ 2
a

2π(1 − φ1)2
.

From (10),

Rn(1) = φ2n+1
1 − 2φn+1

1 + φ1

n2(1 − φ1)2
σ 2

X. (29)

From (7) and (9), the Allan variance for the AR(1) process is

AVarn[X(t)] = n − 3φ1 − nφ2
1 + 4φn+1

1 − φ2n+1
1

n2(1 − φ1)2
σ 2

X

= n − 3φ1 − nφ2
1 + 4φn+1

1 − φ2n+1
1

n2(1 − φ1)2(1 − φ2
1)

σ 2
a

(30)

since σ 2
X = σ 2

a /(1−φ2
1). Note that when φ1 = 0, X(t) = a(t),

which is a white noise process, then (30) becomes (14). We
now consider the case of the values of the Allan variance when
n increases. From (30), when n → ∞,

AVarn[X(t)] ∼ σ 2
a

n(1 − φ1)2
. (31)

Namely, for a fixed |φ1| < 1, the Allan variance approaches
zeros with a rate of 1/n when n → ∞.

2.4. AR(p) processes

We now consider an AR(p) process,

X(t) − φ1X(t − 1) − · · · − φpX(t − p) = a(t). (32)

We assume that the process is stationary, which means that all
the roots of its characteristic equation, i.e. φ(z) = 1 − φ1z −
· · · − φpzp = 0, are out of the unit circle. Without loss of
generality, we assume that the roots are real and distinct. The
autocorrelation function can be expressed as

ρ(k) = c1v
−k
1 + c2v

−k
2 + · · · + cpv−k

p , (33)

where vi(i = 1, . . . , p) are the roots of characteristic equation
and ci(i = 1, . . . , p) are constants (see [20, p 94]). |vi | > 1
for i = 1, . . . , p. Similar to the case of AR(1), from (6)

Var[Yn(T )] = σ 2
X

n


1 + 2

p∑
j=1

cjv
−1
j

n − 1 − nv−1
j + v−n

j

n(1 − v−1
j )2




while from (10)

Rn(1) = σ 2
X

n2


n

p∑
j=1

cjv
−n
j

+
p∑

j=1

cjv
−1
j

1 − nv
−(n−1)
j + (n − 1)v−n

j

(1 − v−1
j )2

+
p∑

j=1

cjv
1−2n
j

1 − nvn−1
j + (n − 1)vn

j

(1 − vj )2


 .

From (9), similar to AR(1) the Allan variance of a stationary
AR(p) process approaches zero with a rate of 1/n when n

increases.

2.5. ARMA(p, q) processes

An ARMA(p, q) process is a combination of AR and MA
processes. If {a(t)} is white noise, the ARMA(p, q) process
is defined by

X(t) − φ1X(t − 1) − · · · − φpX(t − p)

= a(t) − θ1(t − 1) − · · · − θq(t − q) (34)

assuming the process mean is zero. We assume that the process
is stationary and the roots of the characteristic equation of
the process are distinct and also assume that the process is
invertible. Then, for the autocorrelation of {X(t)} when lag
k � max(p, q + 1) − p, (33) holds (see [20, pp 91–3]). Thus,
when n is large enough, a result similar to AR(p) processes
holds. Namely, the Allan variance of a stationary and invertible
ARMA(p, q) process approaches zero with a rate of 1/n when
n increases. In particular, for an ARMA(1,1) process,

X(t) − φ1X(t − 1) = a(t) − θ1(t − 1)

from [21, pp 76–7]

ρ(1) = (1 − φ1θ1)(φ1 − θ1)

1 + θ2
1 − 2φ1θ1

and

ρ(k) = ρ(1)φk−1
1 (35)

for k � 1 and

Var[X(t)] = 1 − 2θ1φ1 + θ2
1

1 − φ2
1

σ 2
a . (36)

The spectral density is given by

f (ω) = 1 − 2θ1 cos ω + θ2
1

1 − 2φ1 cos ω + φ2
1

σ 2
a

2π
. (37)

By (11), the Allan variance for an ARMA(1,1) process can be
expressed as

AVarn[X(t)] = [
n(1 − φ1)

2(1 − 2φ1θ1 + θ2
1 )

+ (φ1 − θ1)(1 − φ1θ1)(2n − 3 − 2nφ1 + 4φn
1 − φ2n

1 )
]

× [
n2(1 − φ1)

2(1 − φ2
1)

]−1
σ 2

a . (38)
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From (38), it is obvious that the Allan variance of an
ARMA(1,1) process approaches zero with a rate of 1/n when
n increases.

In this section, we show that for stationary and invertible
ARMA processes, the variance of the sample average and the
Allan variance have the same convergent rate of 1/n when
n → ∞. Therefore, they are similar uncertainty measures for
measurements from a stationary ARMA process.

3. Random walk and ARIMA(0,1,1) processes

3.1. Random walk

A random walk process {X(t), t = 0, 1, . . .} is defined as
follows (see [20, p 10]): X(0) = 0 and

X(t) = X(t − 1) + a(t) (39)

for t > 1, where {a(t)} is white noise with variance of σ 2
a .

From [2],
Var[X(t)] = t · σ 2

a . (40)

Since

Yn(T ) = X((T − 1)n + 1) + · · · + X(T n)

n
,

from (39)

Var[Yn(T )] = σ 2
a

n

2n2(3T − 2) + 3n + 1

6
. (41)

Thus, the variance of Yn(T ) depends on T and approaches
infinity with a rate of n when n increases. Although a random
walk is not stationary, we can treat it as a limiting case of an
AR(1) process (with X(0) = 0) when φ → 1. From (28), the
limit of spectral density is

f (ω) → σ 2
a

4π(1 − cos ω)
= σ 2

a

8π · sin2 ω

2

(42)

for −π � ω � π although it is in the sense of non-Wienran
spectral theory as indicated by [23]. It is clearly that when
ω → 0, f (ω) increases and approaches infinity with a rate of

f (ω) ∼ 1

ω2
, (43)

which is consistent with the results in the frequency domain [7].
The Allan variance of a random walk {X(t)} is given by

AVarn[X(t)] = 2n2 + 1

6n
σ 2

a . (44)

The derivation is in appendix A. Note that the Allan variance of
a random walk is independent of the time index T and depends
on n only. In that sense, it is a better measure than the variance
of the moving averages. Obviously, the Allan variance of
random walk increases and approaches infinity with a rate of
n when n → ∞. Alternatively, (44) can also be obtained as
a limit from (30). For an AR(1) process with φ1 = 1 or an
ARIMA(0,1,0) and X(0) = 0, it is a random walk. In (30),

the Allan variance for an AR(1) process for fixed n has a limit
when φ1 → 1. The limit is obtained by using L’Hospital Rule
three times, i.e. when {X(t)} is an AR(1) process,

lim
φ→1

AVarn[X(t)] = 2n2 + 1

6n
σ 2

a . (45)

3.2. ARIMA(0,1,1) processes

An ARIMA (0,1,1) process, also called an integrated moving
average (IMA(1,1)) process, is a non-stationary process:

X(t) − X(t − 1) = a(t) − θ1a(t − 1), (46)

where {a(t)} is white noise with a variance of σ 2
a . Treating it as

a limiting case of an ARMA(1,1) process when φ1 → 1, from
(36), the process has an infinity variance. From (37), when
φ1 → 1 the limit of spectral density is

f (ω) → (1 − 2θ1 cos ω + θ2
1 )σ 2

a

8π sin2
(ω

2

) (47)

for −π � ω � π , which is similar to that for a random walk
shown in (43). That is, when ω → 0, f (ω) ∼ 1/ω2. The
Allan variance of {X(t)} can be calculated as a limit of that
for an ARMA(1,1) process when φ1 → 1 similar to (45) and
is given by

AVarn[X(t)] = (2n2 + 1)(1 + θ2
1 ) − 4θ1(n

2 − 1)

6n
σ 2

a . (48)

Thus, the Allan variance of an ARIMA(0,1,1) approaches
infinity with the same rate of a random walk when n → ∞.

4. Fractional difference ARIMA (ARFIMA) (0, d, 0)
processes

4.1. Stationary ARFIMA (0, d, 0) process

The fractional difference model was proposed by [24] and [25].
In particular, the ARFIMA(0,d,0) is defined as

(1 − B)dX(t) = a(t), (49)

where {a(t)} is white noise and d can be any real number. By a
binomial series the fractional difference (1 −B)d is defined as

(1 − B)d = 1 − dB − d(1 − d)

2
B2

− d(1 − d)(2 − d)

6
B3 − · · · .

When d = 1 and X(0) = 0, it is a random walk. When d is
not an integer, {X(t)} is called a fractional difference process.
When d < 0.5, the process is stationary and when d > −0.5
it is invertible [25]. When d < 0.5, reference [25] shows that
the spectral density of a stationary {X(t)} can be written as

f (ω) = σ 2
a

2π
(

2 sin
ω

2

)2d
(50)
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for −π � ω � π . When ω → 0

f (ω) ∼ ω−2d .

Thus, it is a long-memory process. Reference [25] shows that
the autocovariance function at lag k of {X(t)} can be expressed
by gamma functions as

r(k) = (−1)k
(1 − 2d)


(k − d + 1) · 
(1 − k − d)
σ 2

a (51)

for k = 1, 2, . . .. In particular, the variance of {X(t)} is

Var[X(t)] = 
(1 − 2d)

[
(1 − d)]2
σ 2

a . (52)

Obviously, when d → 0.5 Var[X(t)] = σ 2
X → ∞.

The autocorrelation function of {X(t)} is given by

ρ(k) = d · (1 + d) . . . (k − 1 + d)

(1 − d) · (2 − d) . . . (k − d)
= 
(1 − d)
(k + d)


(d)
(k + 1 − d)

(53)

for k = 1, 2, . . .. As shown in [25], when −0.5 < d < 0.5
and k → ∞, the autocorrelation of {X(t)} has the following
property:

ρ(k) ∼ 
(1 − d)


(d)
k2d−1. (54)

From (6),

Var[Yn(T )] =
[

1 +
2

∑n−1
i=1 (n − i)ρ(i)

n

]

(1 − 2d)

[
(1 − d)]2

σ 2
a

n
.

(55)

When n � 2, from (11)

AVarn[X(t)]

= n[(r(0) − r(n)] +
∑n−1

i=1 i[2r(n − i) − r(i) − r(2n − i)]

n2
.

(56)

By (52) and (56), the Allan variance can be expressed as

AVarn[X(t)]

= n[1 − ρ(n)] +
∑n−1

i=1 i[2ρ(n − i) − ρ(i) − ρ(2n − i)]

n2

× 
(1 − 2d)

[
(1 − d)]2
σ 2

a . (57)

Thus, by (53) and (57) for given d and n, the Allan variance
for a stationary fractional difference process can be calculated.

4.2. ARFIMA(0, d, 0) processes with d = −0.5

As shown in [25], when d > −0.5, an ARFIMA(0, d, 0) is
invertible. In particular, when d = −0.5, this is called flicker
phase noise (see table 1 in [22]). The process is stationary but
not invertible as described in [25]. From (50),

f (ω) =
sin

ω

2
π

σ 2
a (58)

for −π � ω � π . Obviously, when ω → 0, f (ω) ∼ ω.
From (53)

ρ(k) = − 0.25

k2 − 0.25
. (59)

Thus, ρ(k) < 0 when k > 1 and ρ(k) ∼ k−2 when k → ∞.
It is shown in appendix B that when n → ∞

Var[Yn(T )] ∼ ln n

n2
, (60)

which is faster than the rate of 1/n.
Similar to the argument for the rate of convergence for the

variance of Yn(T ), it is also shown in appendix B that when
d = −0.5 and n approaches infinity, the Allan variance will
go to zero with a rate of ln n/n2, i.e.

AVarn[X(T )] ∼ ln n

n2
. (61)

4.3. ARFIMA(0, d, 0) processes with d = 0.5

We now consider the fractional difference process when
d = 0.5. First we know that in this case, the process has long-
memory and is not stationary. From (50), as a limit, the spectral
density of the process is given by

f (ω) = σ 2
a

4π sin
ω

2

∼ ω−1 (62)

as ω → 0. Because of the limiting behaviour of the spectral
density this process is a flicker frequency process (see table
1 in [22]) or a discrete 1/f noise as indicated in [25]. We
re-express (6) as

Var[Yn(T )] = 1

n

[
1 +

2
∑n−1

i=1 (n − i)ρ(i)

n

]
σ 2

X

�= b(n, d)σ 2
X,

(63)

where

b(n, d) = 1

n

[
1 +

2
∑n−1

i=1 (n − i)ρ(i)

n

]
(64)

and σ 2
X is given by (52). As shown in [24] when d = 0.5, σ 2

X

is infinite, and this is the case in (52) as d → 0.5. For a fixed
n, when d → 0.5, ρ(k) → 1 by (53). Hence,

lim
d→0.5

b(n, d) = 1

n

[
1 +

2
∑n−1

i=1 (n − i)

n

]
= 1. (65)

Thus, when d → 0.5, Var[Yn(T )]/Var[X(t)] → 1 for any
fixed n. That is, when d → 0.5, Var[Yn(T )] and Var[X(t)] go
to infinity with a same rate. Hence, Var[Yn(T )] is not a good
measure of uncertainty of ARFIMA(0,0.5,0). From (52), (57)
can be written as

AVarn[X(t)] = C(n, d) · Var[X(t)],
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Table 1. Allan variance for ARFIMA(0, d, 0) in the units of σ 2
a .

n = 2 40 100 200 400 800

d = 0.49 0.5078 0.4151 0.4072 0.4016 0.3960 0.3906
0.499 0.5091 0.4389 0.4378 0.4371 0.4365 0.4359
0.499 9 0.5093 0.4414 0.4410 0.4409 0.4408 0.4407
0.499 99 0.5093 0.4416 0.4413 0.4413 0.4412 0.4412
0.499 999 0.5093 0.4417 0.4413 0.4413 0.4413 0.4413

where

C(n, d)

= n[1 − ρ(n)] +
∑n−1

i=1 i[2ρ(n − i) − ρ(i) − ρ(2n − i)]

n2
.

Note that all ρ(i)s in C(n, d) are functions of d . Thus, the
Allan variance is a function of d as well as n. For a fixed n,
the Allan variance for an ARFIMA(0,0.5,0) may be obtained
by letting d → 0.5 in (56). Note that in (57) when d → 0.5,

(1 − 2d) → ∞. In addition, for a fixed n, when d → 0.5
the numerator in the first term on the right-hand side of (57)

n[1 − ρ(n)] +
n−1∑
i=1

i[2ρ(n − i) − ρ(i) − ρ(2n − i)] → 0

since ρ(k) → 1 when d → 0.5 for k = 1, 2, . . . from (53).
For a fixed n, for example, n = 2, analytically, it seems
intractable to find the limit of Allan variance in (57) when
d → 0.5. Numerically, for various n the Allan variance of
ARFIMA(0, d, 0) can be calculated from (57) for those ds
which are very close to 0.5. Table 1 lists the Allan variance
in the unit of σ 2

a for various d close to 0.5 and n. For
example, when n = 2, the limit seems equal to 0.5093 · σ 2

a

when d → 0.5. In general, we found that for a fixed n, the
Allan variance increases when d → 0.5. On the other hand,
for a fixed d, the Allan variance decreases when n → ∞,
which is reasonable. The computation results show that when
d � 0.499 99 and n � 100, the Allan variance stabilized
at the value of 0.4413 · σ 2

a , which is close to (2 ln 2/π)σ 2
a .

In summary, when n � 100 and d → 0.5, AVarn[X(T )]
approaches (2 ln 2/π)σ 2

a . This property characterizes the
ARFIMA(0,0.5,0) process and to a great extent is consistent
with the Allan variance for the 1/f noise in the frequent
domain and listed in table 1 in [11] and the observations
by [13], where the property of a stabilized Allan variance
was exploited to test whether the measurements of the Zener-
diode standards is 1/f noise. As pointed out above that the
variance of a moving average of ARFIMA(0,d ,0) will approach
infinity as d → 0.5, it is clear that using Allan variance has
an advantage over using the variance of the moving average.
Figure 4 shows the behaviours of Allan variance for AR(1) with
φ1 = 0.75 and 0.9, ARFIMA(0,0.499,0), ARFIMA(0,0.25,0),
ARFIMA(0,−0.5,0) and MA(1) with θ1 = 1 as functions
of n. For these processes, we set the white noise variance
σ 2

a = 1. The Allan variances are calculated by (25), (30) and
(57), respectively. The figure shows that the Allan variance
of a stationary AR(1) increases first when n increases then
decreases and approaches zero. It also shows that the Allan
variance of ARFIMA(0,0.499,0) with σ 2

a = 1, which is close

Figure 4. Allan variance as a function of the average size for
various processes.

(This figure is in colour only in the electronic version)

to the 1/f noise, is almost at the level of 0.44 when n > 20.
As noted in [11], for 1/f noise the increase in n will not reduce
the uncertainty. The figure demonstrates that the convergent
rates of Allan variance for stationary fractional difference
processes are slower than that of stationary AR processes when
0 � d < 0.5 and vice versa when −0.5 � d < 0. Figure 4
also shows that the convergent rate of Allan variance for the
ARFIMA(0,−0.5,0) (i.e. flicker phase noise) is slower than
that of the MA(1) process with θ1 = 1 (i.e. white phase noise).
This is certainly true from (25) and (61). However, when n

becomes larger, the differences become smaller. In time and
frequency metrology, the relatively poor discrimination against
white and flicker phase noises prompted the development of
the modified Allan variance. See [6, 26].

5. ARFIMA (p, d, q) processes

The fractional difference process ARFIMA(0,d,0) was
extended to ARFIMA(p, d, q) by [25]. {X(t), t = 1, 2, . . .}
is said to be an ARFIMA(p, d, q) process if {X(t)} satisfies
the following difference equation,

φ(B)(1 − B)dX(t) = θ(B)a(t), (66)

where φ(B) is for the AR part and θ(B) is for the MA part and
{a(t)} is white noise with a variance of σ 2

a . The properties
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Figure 5. Allan variance for ARFIMA(0,0.49,0),
ARFIMA(1,0.49,0) and ARFIMA(0,0.49,1).

of an ARFIMA(p, d, q) process are similar to those of an
ARFIMA(0, d, 0) process. Theorem 2 in [25] showed that
when |d| < 0.5 and all the roots of the characteristic equations
φ(z) = 0 and θ(z) = 0 lie outside the unit circle, {X(t)} is
stationary and invertible. It also shows that the process is a
long-memory process since the autocorrelation and spectral
density satisfy

(a) lim k1−2dρ(k) exists as k → ∞ and is finite,
(b) lim ω2df (ω) exists as ω → 0 and is finite.

(a) in the above gives the convergent rate of ρ(k)

for {X(t)}, which is the same for ARFIMA(0,d,0)
given in (54). Let W(t) = {θ(B)}−1φ(B)X(t) leading to
(1 − B)dW(t) = a(t). Thus {W(t)} ∼ ARFIMA(0, d, 0).
Therefore, an ARFIMA(p, d, q) process can be treated as
an ARMA(p, q) process with a noise of an ARFIMA(0,d,0)
process. In that theorem, the relationship between the
autocovariances of {X(t)} and {W(t)} was established,
which were demonstrated in lemmas 1 and 2 in [25] for
ARFIMA(1, d, 0) and ARFIMA(0, d, 1). When {X(t)} ∼
ARFIMA(1, d, 0), |d| < 0.5 and |φ1| < 1,

ρX(k) = ρW(k)

×F(1, d + k; 1− d + k; φ1) + F(1, d − k; 1− d − k; φ1) −1

(1− φ1)F (1, 1 + d; 1 − d; φ1)

(67)

and

Var[X(t)] = F(1, 1 + d; 1 − d; φ1)

1 + φ1


(1 − 2d)

[
(1 − d)]2
σ 2

a , (68)

where F is the hypergeometric function. See [27, p 361].
When{X(t)} is an ARFIMA(0, d, 1), similarly,

ρX(k) = ρW(k)
ak2 − (1 − d)2

k2 − (1 − d)2
(69)

and

Var[X(t)] =
[

1 + θ2
1 − 2θ1d

1 − d

]

(1 − 2d)

[
(1 − d)]2
σ 2

a , (70)

Figure 6. Sample autocorrelation of the residuals of the time series
of voltage differences after a fit of ARFIMA(5,0.497,0).

where a = (1−θ1)
2/{1+θ2

1 −2θ1d/(1−d)}. Thus from (57),
(67) and (70) for givend andn, the Allan variance for stationary
ARFIMA(1, d, 0) and ARFIMA(0, d, 1) can be calculated.
In figure 5, the Allan variances for ARFIMA(1,0.49,0) with
φ1 = −0.5 and ARFIMA(0,0.49,1) with θ1 = 0.5 as well as
the Allan variance for ARFIMA(0,0.49,0) for σ 2

a = 1 and n

from 2 to 100 are plotted. It is clear that when n > 20, the
curves for the Allan variances of the three processes are almost
parallel and flat, but at different levels. As demonstrated in
figure 5, for ARFIMA (1,0.49,0) with φ1 = −0.5, its Allan
variance is stabilized at the level of 0.18, which is different from
0.40 for ARFIMA (0,0.49,0) while for ARFIMA(0,0.49,1)
with θ1 = 0.5, its Allan variance is stabilized at the level
of 0.10. Not shown in the figure, for ARFIMA(1,0.49,0)
with φ1 = 0.5, its Allan variance is stabilized at the level of
1.64 while for ARFIMA(0,0.49,1) with θ1 = −0.5, its Allan
variance is stabilized at the level of 0.92. These stabilized
levels are similar to the 1/f noise floors for the Zener voltage
measurements as discussed in [12, 13].

In addition, when d → 0.5, it can be shown that for an
ARFIMA(1, d, 0) with |φ1| < 1 the ratio between ρX(k) and
ρW(k) approaches 1. Namely,

ρX(k)

ρW (k)
→ 1. (71)

In addition, when d → 0.5

Var[Yn(T )]

Var[X(t)]
→ 1 (72)

and
AVarn[X(t)]

AVarn[W(t)]
→ 1

(1 − φ1)2
, (73)

where W(t) = X(t) − φ1X(t − 1) is the corresponding
ARFIMA(0, d, 0). Thus, from section 4.3, when n is large
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and d → 0.5, we believe

AVarn[X(t)] → (2ln 2/π)

(1 − φ1)2
σ 2

a .

For an ARFIMA(0, d, 1) process with |θ1| < 1, corresponding
to (73), when d → 0.5, (71) and (72) hold and

Var[X(t)]

Var[W(t)]
→ (1 − θ1)

2, (74)

where {W(t)} is the corresponding ARFIMA(0, d, 0) process.
Similarly, it has been shown that for ARFIMA(0, d, 1),

AVarn[X(t)]

AVarn[W(t)]
→ (1 − θ1)

2. (75)

Thus, from section 4.3, when n is large and d → 0.5, we
believe

AVarn[X(t)] → (2 ln 2/π)(1 − θ2
1 )σ 2

a .

The derivations of (71)–(75) can be found in appendix C.
For a general ARFIMA(p, d, q) process, it is expected that

the properties for ARFIMA(1, d, 0) and ARFIMA(0, d, 1) will
hold for the general case and the Allan variance will approach
a constant when d → 0.5.

We now return to the example of the time series of
the differences in voltage measurements presented in the
introduction. Using time series software [28], a model of
ARFIMA(5,0.497,0),

(1 − B)0.497[X(t) + 0.35X(t − 1)

+ 0.2X(t − 2) + 0.1X(t − 3)

+ 0.1X(t − 4) + 0.06X(t − 5) + 29.98] = a(t)

Figure 7. Allan variances in the unit of µV2 for the time series of
voltage differences plotted in figure 1.

Table 2. Limiting behaviours of spectral densities and Allan variances for various time series.

Time series f (ω) AVarn[X(t)]

White noise σ 2
X/2π for all ω σ 2

X/n

Stationary ARMA(1,1) [(1 − θ1)
2/(1 − φ1)

2]σ 2
a /2π ∼1/n when n → ∞

when ω → 0
MA(1) with θ1 = 1 (white phase noise) ∼ω2 when ω → 0 ∼1/n2 when n → ∞
Random walk and ARIMA(0,1,1) ∼1/ω2 when ω → 0 ∼n2 when n → ∞
ARFIMA(0,0.5,0) (1/f noise) ∼1/ω when ω → 0 → (2 ln 2/π)σ 2

a when n is large
and d → 0.5

ARFIMA(0,−0.5,0) (flicker phase noise) ∼ω when ω → 0 ∼ ln n/n2 when n → ∞

with σ̂ 2
a = 0.02, was found to be a good fit to this data set. Note

that all φis (i = 1, . . . , 5) are negative. Figure 6 demonstrates
the sample autocorrelation of the residuals indicating a good
fit from the ARFIMA(5,0.497,0) model. By (12) the sample
Allan variance was calculated based on the data. Thus, this
data set can be treated from an ARFIMA(5,0.5,0) or an AR(5)
process with an ARFIMA(0,0.5,0) noise, which is a 1/f noise
process. Figure 7 shows the Allan variance against the average
size. It is clear that the Allan variance decreases slowly and
becomes stabilized at the level of 0.0006 µV2 when n > 100,
which can be treated as a 1/f noise floor.

6. Summary and conclusions

As a summary, table 2 lists the limiting behaviours of spectral
densities and Allan variances for various time series models
discussed in this paper. The table includes the five common
types of noise in time and frequency metrology as listed in
[4, 6]. It is clear that for these time series the results are
consistent with those in [4, 6].

We have shown that the variance of moving averages
and the Allan variance of a stationary ARMA process and
a stationary fractional difference ARMA process are closely
related. They decrease with a same rate when the size of the
average increases. For a random walk process, which is a non-
stationary process, or in general an ARIMA(0,1,1) process the
variance of the moving averages of it will go to infinity when
the size of the averages increases. While the Allan variance
of random walk also approaches infinity with the same rate
for the variance of the moving averages when the size of the
averages increases, it is independent of the time index. For
a non-stationary fractional ARFIMA(0, d, 0) process as well
as an ARFIMA(1, d, 0) or an ARFIMA(0, d, 1) process when
d → 0.5, which is a 1/f noise process, we have demonstrated
that their Allan variances are stabilized at certain levels
when the size of the average is large enough while the variances
of the moving averages will approach infinity. We expect that
this property holds for a general ARFIMA(p, 0.5, q) when
the corresponding AR part is stationary and the MA part is
invertible.

We conclude that the Allan variance is a measure of
uncertainty similar to the variance of moving averages for
the measurements from stationary processes. However, for
the measurements from a random walk and in general non-
stationary ARFIMA(p, 0.5, q) processes the Allan variance is
stabilized when the size of the average increases and it is thus
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a better uncertainty measure than the variance of the moving
averages.
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Appendix A. Derivation of equation (44)

To calculate the Allan variance of a random walk process
{X(t)}, by (39), the difference in Yn(T ) − Yn(T − 1) can be
expressed as

Yn(T ) − Yn(T − 1)

= {
[X((T − 1)n + 1) − X((T − 2)n + 1)] + · · ·

+ [X(T n) − X((T − 1)n)]
}{n}−1

=
[

n∑
j=1

j · a((T −2)n + j + 1)

+
n−1∑
j=1

j · a(T n − j + 1)

]
[n]−1.

Thus,

Var[Yn(T ) − Yn(T − 1)]

= σ 2
a

n2


 n∑

j=1

j 2 +
n−1∑
j=1

j 2




= σ 2
a

n2


2

n−1∑
j=1

j 2 + n2




= 2n2 + 1

3n
σ 2

a .

Hence, from (9) the Allan variance of random walk is given by

AVarn[X(t)] = 2n2 + 1

6n
σ 2

a .

Appendix B. Derivation of equations (60) and (61)

For Var[Yn(T )] when d = −0.5, first we inspect
∑n−1

i=1
(n − i)ρ(i). When d = −0.5, from (59)

n−1∑
i=1

ρ(i) = (−0.25)

n−1∑
i=1

1

i2 − 0.25

= (−0.25)

(
2 − 1

n − 0.5

)
.

(B.1)

We also have

n−1∑
i=1

iρ(i) = (−0.25)

n−1∑
i=1

i

i2 − 0.25

= (−0.25)

[
n−1∑
i=1

1

i + 0.5
+

n−1∑
i=1

0.5

i2 − 0.25

]

= (−0.25)

n−1∑
i=1

1

i + 0.5
− 0.125

(
2 − 1

n − 0.5

)
.

From P. 3, 0.131 of [29] or P. 14, (70) from [30],

n∑
i=1

1

i
∼ ln n

when n → ∞. In addition,

n−1∑
i=1

1

i + 1
<

n−1∑
i=1

1

i + 0.5
<

n−1∑
i=1

1

i
.

Both sides in the above inequalities ∼ ln n when n → ∞.
Thus, when n → ∞

n−1∑
i=1

iρ(i) ∼ ln n. (B.2)

From (B.1) and (B.2), when n → ∞
n−1∑
i=1

(n − i)ρ(i) ∼ −0.5n + ln n. (B.3)

From (6), when n → ∞

Var[Yn(T )] ∼ ln n

n2
.

For the proof of (61),

n−1∑
i=1

iρ(n − i) =
n−1∑
i=1

(n − i)ρ(i).

Thus,
n−1∑
i=1

iρ(n − i) ∼ −0.5n + ln n. (B.4)

Similarly, it can be shown that

n−1∑
i=1

iρ(2n − i) ∼ O(1). (B.5)

From (57), (59), (B.2), (B.4) and (B.5), (61) holds.
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Appendix C. The proofs of equations (71)–(75)
regarding the limiting behaviours of Allan variances
for ARFIMA(1,d,0) and ARFIMA(0,d,1) processes

(1) For ARFIMA(1,d ,0). From (67), first we show that when
d → 0.5 the ratio between ρX(k) and ρW(k) approaches 1.

ρX(k)

ρW (k)
= [

F(1, d + k; 1 − d + k; φ1)

+ F(1, d − k; 1 − d − k; φ1) − 1
][

(1 − φ1)

×F(1, 1 + d; 1 − d; φ1)
]−1 �= Rn

Rd

. (C.1)

From [25],

F(a, b; c; z) = 1 +
a · b

c · 1
z +

a(a + 1)b(b + 1)

c(c + 1) · 1 · 2
z2 + · · · .

(C.2)

From [27], F(a, b; c; z) converges when |z| < 1. By
(C.2) when d → 0.5,

Rn → 2(1 + φ1 + φ2
1 + · · ·) − 1 = 1 + 2(φ1 + φ2

1 + · · ·).
Similarly, when d → 0.5

Rd → (1 − φ1)(1 + 3φ1 + 5φ2
1 + 7φ3

1 + · · ·)
= 1 + 2φ1 + 2φ2

1 + 2φ3
1 + · · · .

Thus, from (C.1) when d → 0.5,

ρX(k)

ρW (k)
→ 1 (C.3)

uniformly for all k. Similar to ARFIMA(0,d,0)
and (63)–(65), for any fixed n, when {X(t)} is
an ARFIMA(1,d ,0) and d → 0.5, Var[Yn(T )]/
Var[X(t)] → 1.
Now we show that when {X(t)} is an ARFIMA(1,d,0)
and d → 0.5, Var[X(t)] → ∞. In this case, W(t) =
X(t) − φ1X(t − 1) with |φ1| < 1. Since {X(t)} is
stationary,

Var[W(t)] = [1 + φ2
1 − 2φ1ρX(1)]Var[X(t)],

where ρX(1) is used to denote the autocorrelation of
{X(t)} at lag 1. When d → 0.5,

Var[X(t)]

Var[W(t)]
= 1

1 + φ2
1 − 2φ1ρX(1)

∼ 1

1 + φ2
1 − 2φ1ρW(1)

→ 1

(1 − φ1)2
(C.4)

since {W(t)} is an ARFIMA(0,d ,0) process and
ρW(1) → 1. Since Var[W(t)] → ∞ when d → 0.5,
Var[X(t)] → ∞. Therefore, when d → 0.5,
Var[Yn(T )] → ∞.

From (11), (C.3) and (C.4),

AVarn[X(t)]

AVarn[W(t)]
=

{
n[1 − ρX(n)] +

n−1∑
i=1

i[2ρX(n − i)

− ρX(i) − ρX(2n − i)]Var[X(t)]

}

×
{

n[1 − ρW(n)] +
n−1∑
i=1

i[2ρW(n − i) − ρW(i)

− ρW(2n − i)]Var[W(t)]

}−1

→ 1

(1 − φ1)2
. (C.5)

(2) For ARFIMA(0,d,1). Similar to the case of ARFIMA
(1,d,0), from (69),

ρX(k)

ρW (k)
= ak2 − (1 − d)2

k2 − (1 − d)2
,

where a = (1 − θ1)
2/{1 + θ2

1 − 2θ1d/(1 − d)} with
|θ1| < 1. Obviously, when d → 0.5, a → 1 and thus
ρX(k)/ρW(k) → 1 uniformly for all k. Similar to the case
of ARFIMA(1,d,0), when {X(t)} is an ARFIMA(0,d,1),
W(t) − θ1W(t − 1) = X(t) with |θ1| < 1. Since {W(t)}
is stationary,

[1 + θ2
1 − 2θ1ρW(1)]Var[W(t)] = Var[X(t)],

where ρW(1) is used to denote the autocorrelation of
{W(t)} at lag 1. When d → 0.5,

Var[X(t)]

Var[W(t)]
= 1 + θ2

1 − 2θ1ρW(1) → (1 − θ1)
2 (C.6)

since {W(t)} is an ARFIMA(0,d,0) process and
ρW(1) → 1. Similar to the case of ARFIMA(1,d,0),
when {X(t)} is an ARFIMA(0,d,1), the corresponding
Var[Yn(T )] → ∞ when d → 0.5. Similarly to (C.5),
from (11), (C.3) and (C.6),

AVarn[X(t)]

AVarn[W(t)]
→ (1 − θ1)

2.
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