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Abstract

This note concerns the mathematical aspects of fusion for several biometric algerithms in the recognition or iden-
tification problem. It is assumed that a biometric signature is presented to a system which compares it with a database
of signatures of known individuals (galiery). On the basis of this comparison, an algorithm produces the similarity
scores of this probe to the signatures in the gallery, which are then ranked according to their similarity scores of the
probe. The suggested procedures define scveral versions of aggregated rankings. An example from the Face Recognition
Technology (FERET) program with four recognition algorithms is considered.
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1. Introduction

This note concerns the mathematical aspects of
a fusion for algorithms in the recognition or iden-
tification problem, where a biometric signature of
an unknown person, also known as probe, is pre-
sented to a system. This probe is compared with
a database of, say, N signatures of known individ-
uals called the gallery. On the basis of this compar-
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ison, an algorithm produces the similarity scores of
this probe to the signatures in the gallery, whose
elements are then ranked according to their simi-
larity scores of the probe. The top matches with
the highest similarity scores are expected to con-
tain the true identity,

A variety of commercially available biometric
systems are now in existence; however, in many in-
stances there is no universally accepted optimal
algerithm. For this reason it is of interest to inves-
tigate possible aggregations of two or several dif-
ferent algorithms. See Xu et al. (1992), Ho et al.
(1994), Lam and Suen (1995), Kittler et al.
(1998), Jain et al. (2000) for a review of different
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schemes for combining multiple matchers. A com-
mon feature of many recognition algorithms is
representation of a biometric signature as a point
in a multidimensional vector space. The similarity
scores are based on the distance between the gal-
lery and the query (probe) signatures in that space
{or their projections onto a subspace of a smaller
dimension). Because of inherent commonality of
the algorithms, the similarity scores and their
resulting orderings of the gallery can be dependent
for two different algorithms. For this reason tradi-
tional methods of combining different procedures,
tike classifiers in pattern recognition are not
appropriate. Another reason for failures of popu-
lar methods like bagging and boosting (e.g. Scha-
pire et al, 1998, Breiman, 2004) is that the
sallery size is much larger than the number of
algorithms involved. Indeed the majority voting
methods used by these techniques (as well as In
analysis of multi-candidate elections and social
choice theory, Stern, 1993} are based on aggre-
gated combined ranking of a fairly small number
of candidates obtained from a large number of
voters, judges or classifiers. The axiomatic ap-
proach to this fusion Jeads to the combinations
of classical weighted means (or random dictator-
ship) (Marley, 1993).

As the exsct nature of the similarity scores
derivation is typically unknown, the use of non-
parametric measures of association seems to be
appropriate. The utility of such statistics such as
rank correlation statistics, like Spearman’s rho or
Kendall’s tau, for measuring the relationship be-
tween different face recognition algorithms, was
reported by Rukhin et al. (2002). Rukhin and
Osmoukhina (in press) employed the so-called
copulas to study the dependence between different
algorithms. They had shown that for common im-
age recognition algorithms the strongest (positive)
correlation between algorithms similarity scores
happens for both large and small rankings. Thus,
in all observed cases the algorithms behave some-
what similarly, not only by assigning the closest
images in the gallery but also by deciding which
gaflery objects are most dissimilar to the given
image exhibiting significant positive tail depend-
ence. This finding is useful for construction of
new procedures designed to combine several algo-

rithms and also underlines the difficulty with a di-
rect application of boosting techniques.

Notice that the methods of averaging or com-
bining ranks can be applied to several biometric
algorithms, one of which, say, is a face recogaition
algorithm, and another is a fingerprint (or gait, or
ear) recognition device. Jain et al. (1999), and Sne-
lick et al. (2003) discuss several experimental stud-
ies of multimodal biometrics, in particular, fusion
techniques for face and fingerprint classifiers. They
can be useful in a verification problem when a per-
son presents a set of biometric signatures and
claims that a particular identity belongs to these
signatures.

The exampie considered in Section 4 comes
from the Face Recognition Technology (FERET)
program (Philiips et af., 2000) in which four recog-
nition algorithms each produced rankings from
galleries in three 1996 FERET datascts of facial
Hnages.

The authors are grateful to P. Grother and J.
Phiilips for these datasets.

2. Averaging of ranks via minimum distance

It is suggested to think of the action of an algo-
rithm (its ranking) as a permutation = of N objects
in the gallery. Thus {7) is the rank given to the gal-
lery clement #; in particular, if =(é) =1, then the
item i is the closest image in the gallery to the given
probe, i.e., its similarity score is the largest.

If the goal is to combine K independent algo-
rithms whose actions m, k= 1,..., K, can be con-
sidered as permutations of a gailery of size V, then
the combined (average) ranking of observed ran-
kings 7y, . . ., Tg can be defined by the analogy with
classical means. Namely, et d(m,¢) be a distance
between two permutations = and o. The list of
the most popular metrics (see Diaconis, 1988} in-
cludes Hamming’s metric dy, Spearman’s Lo,
Footrule L, Kendall’s distance, Ulam’s distance
and Cayley’s distance. The Spearman L, metric,

N

di(m,0) =Y [=(i) — (),

i=!

and Footrule L, metric,
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N

de(n, o) = z |n(7) —

(besides the metric dy used here) are the most con-
venient in calculations. The “average permuta-
tion”, 7, of w,....mp can be defined as the
minimizer (in ) of

~

«
Z d{m;, =) | or of Z de{m, o)
=

=

Then # can be taken as the action of the combined
algorithm.

However, this approach does not take into ac-
count different precisions of diflerent alporithms,
Indeed, equal weights are implicitly given to all
7, and the dependence structure of algorithms,
which are to be combined, is neglected. A possible

model for the combination of dependent aigo-

rithms employs a distance d((n,,...,7g), (oy,...,
ax)) oa the direct product of K copies of the per-
mutation group. Then the combined (average)

ranking # of observed rankings my,. .., 7x is the
minimizer {in 7) of a{(x,,...,7x){n, ..., 7). The

simplest metric is the sum Z" d(m; n) as above.

To define 2 more appr oplmte dlstdnce, We 4880-
ciate with a permutation = the N x N permutation
matrix £ with elements pp =1, if £=xr(); =0
otherwise. A distance between two permutations
7 and ¢ can be introduced as the matrix norm of
the diflerence between the corresponding permuta-
tion matrices,

For.a matrix P, one of the most useful matrix
norms is

7|} = te(PPT) =

ZPJ

Here tr(4) denotes the trace of the matrix 4.

For two permutation matrices P and § corre-
sponding to permutations = and &, the resulting
distance  d{m,0) = |[P — S|| essentially coincides
with Hamming's metric,

ali) = a(i)}.

For a positive definite symmetric matrix C (which
is designed to capture dependence between n's) a

du(n, o) = N — card{i :

convenient distance ({n,...
defined as

de({m, ... mx), (0, ... o)
= u{(Y - 2)C(P - 05,

with ¥ = P, @ - - - & Py the direct sum of permuta-
tion matrices corresponding to my,..., g, and X
similarly defined for ay,...,04

The eptimization problem, which one has to
solve for this metric, consists of finding the
permutation matrix [T minimizing the trace
of the block matrix formed by submatrices
(P~ INCy (P, — I, with C,,, j, m=1,.. K
denoting N x N submatrices of the pditltlon(.d ma-
trix C. In other terms, one has to minimize

JERNE L TR

K
N tr{(p; - 1Cy (P, — M)
- tr H Z CHHT - 2'[1‘ HZ CJUP;'{
i i

> opCyrr. (1
7

Matrix differentiation (Rogers, 1980) shows that
the mmimum is attained at the matrix,

Iy = ZP, Cf‘j Z Cif
i b

The matrix Ho is stochastic, ie., with e =(1,. ..,
L e Hy=¢", but typrcally 1t is not a permutation
matrix, and the problem of finding the closest per-
mutation matrix, say, determined by a permuta-
tion my, remains. In this problem with 7y = {p,}
we seek the permutation & which maximizes

L;‘jjm(:‘) ’
= argmax Z Pintiy- (2)

An eflicient numerical algorithm to determine 7g is
based on the so-called Hungarian method for
the assignment problem. See for example Bazaraa
et al., 1990, Section 10.7.

In ilns selting one has to use an appropriate ma-
trix C, which must be estimated on the basis of the
training data; €' is the covariance matrix of all
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permutition matrices Py,..., Pr i the training

sample.

3. Linear aggregation

Since we have to estimate matrix € and numer-
ical evaluation of (2) for large &V can be difficult,
one may look for a simpler aggregated algorithm.

Such an algorithm can be defined by the matrix
P, which is a convex combination of the permuta-
tion matrices Py,..., P P = Zf:iijj. The prob-
lem is that of assigning non-negative weights
(probabilities) wi,...,Wwg such that w +---+
wg = 1, to matrices Py, ..., Pg. The fairness of all
(dependent) algorithms can be interpreted as
EP; =y with the same “central” matrix g In other
terms, we assume that in average, for a given
probe, all algerithms measure the same quantity,
the main difference between them is their accuracy.

The optimal weights w9 ..., w%, minimize

2
Ewy (P — )l

This optimization problem reduces to the mini-
mization of

Z ww, Etr(P, P:Tn 2K Z ijtr(Pj,uT).

1< jmek 152k
Note that for afl m

Etw(P,PL) =E Z Srata)

and for m # j
Etr(P;P!) = Ecard{¢: m, (¢

m )= m(f)}.

These “covariances” can be estimated from the
available training data whick can also be used to
estimate p by the grand mean ji of all matrices in
the training set, Then d; = Etr(Pu™) =3, ty,
can be estimated by tr(P;ii").

Let X denote the positive definite matrix formed
by the elements Etl‘(P,,,]jf), m, j=1,.. K This
matrix can be estimated by, say, 2. With the vec-
tors w = (w,.. .,WK)T, and d={d,... ,dK)T, our
problem is that of finding
min [WTE w— 2wTd].

wle=I

Basic Iinear algebra gives the form of the solution,

(1—¢"27'd)

} Fle
eti e

wl=Z7'd + :
provided that X is nensingular.
Thus, to implement the linear fusion, use the

training data to get the estimated optimal weights

P N —T ——
PR MM f
ey e

(3)
After these weights have been determined from the
available data and found to be nonnegative, define
a new combined ranking #, on the basis of newly
observed rankings mq,...,7mg as follows. Let the
N-dimensional vector Z = (Z1,...,Zy) be formed
by coordinates Z; = Ej‘;iﬁ{,rzj(i), representing a
combined score of element i Put np(i) = £ if and
only if Z;1s the £-th smallest of 2, ..., Zy. In other
terms, wp is merely the rank corresponding to Z. In
particular, according to 7, the closest image in the
gallery is m, such that

K

E W (mg) = IIHH E W (m).

F=1 =1

This ranking =g is characterized by the property

i.e., ng is the pezmutation that is the closest in the
L, norm to Z; vy, (See Theorem 2.2, p. 29 in
Marden, 1995))

Clearly some of the weights i can be negative.
In this situation these weights must be replaced
by 0, and the remaining positive weights are to
be renormalized by dividing by their sum. This
method can be easily extended to the situation
when only partial rankings are available, i.e., when
only the several top ranks are given. In this case
one has to consider metrics on the coset space of
all permutations with respect to the set of all per-
mutations leaving the first several ranks fixed.
Critchlow (1983) discusses mathematical proper-
ties of these metrics.

I
i
k

]
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Table ]
gize of FERET datasets

D1 D2 3
Gallery size 1196 552 644
Probe size 254 323 399

4. Example: FERET data

In order to evaluate the proposed fusion meth-
ods, four face-recognition algorithms were selected
for aggregation (I MIT, March 95; I USC,
March 97; I1I: MIT, Sept 96; 1V: UMD, March
97). In accordance with the Face Recognition
Technology (FERET) protocol, these algorithms
were ran on three 1996 FERET datasets of facial
images, dupll (D1), dupl training (D2), and dupl
testing (D3) (Table 1), yiclding similarity scores
between gallery and probe images. These scores
were used for training and evaluating the new clas-
sifiers; all methods were trained and tested on dif-
ferent datasets of similarity scores.

The primary measures of performance used for
evaluation were the recognition rate, or the per-
cent of probe images classified at rank 1 by the
methods, and the mean rank assigned to the true
images. Moreover, the relative recognition abilities
were differentiated by the Cumulative Match
Characteristic (CMC) Cusve, which is a plot of
the rank against the cumulative match score (the
percent of images identified below the rank).

On different pairs of training and testing data-
sets the overall recognition rate of the method fetl
short of this algorithm by 15% in the worst case
and surpassed it by 2% in the best case (Table 2).
The mean ranks of the two algorithms were gener-
ally within 5 ranks of each other, In terms of CMC
curves, the method of weighted averaging of ranks
(3) outperformed all but the best of constituent
algorithms, the algorithm 11, which was better in

Malioutov ! Patiern Recognition Letters 26 (2005} 679-684
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a] 100 200 300 400 500 600

Fig. }. Graphs of the cumulative match curves for algorithm I
{marked by ) and the linear aggregation (marked by -

the range of ranks from 1 to 30 (Fig. 1}. It looks
like this phenomenon is general for linear weight-
ing, namely for small ranks the best algorithm out-
performs (3) for any weights giving this particular
algorithm a weight smaller than 1. As a matter of
fact, the weighted averaging method outperformed
all of the four algorithms in the interval of ranks
from 30 to 100 in the D2 dataset (Fig. 2). For this
method there was about an 85% chance of the true
image being ranked 50 or below, which signifi-
cantly narrowed down the number of possible can-
didates, from more than a 1000 images to only 50.

The experiment showed that the weights derived
from training for the different algorithms were all
close (the last column of Table 2), which suggested
that equal weights might be given to the different
rankings. Although a simple averaging of ranks
is a viable alternative to weighted averaging In
terms of its computational efficiency, in our exam-
ples it was consistently inferior to the method (3)
and the benefit of training seems apparent.

Table 2

Percent of images at rank !

Dataset Training (3 I i 111 2% Weights

D2 D3 48.6 26.0 59.8 47.1 KYI (0.22, 0.32, 0.22, 0.24)
D3 D2 67.2 48.4 65.7 72.4 614 {0.20, 0.29, 0.25, 0.20)
D1 3 36.3 17.1 52.1 26.1 20.9 (0.24, 0.27, ¢.24, 0.25)
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Fig. 2. Graphs of the cumulative match curves for algorithms
-1V {marked by ., +, ©, X) and the linear aggregation (3}
{marked by —).

We never encountered negative weights ob-
tained from (3). Moreover, the matrix Z must have
positive elements, which suggests to use as weights
the coordinates of the normalized eigenvector
{with positive elements) corresponding to the larg-
est {positive) eigenvalue. These weights turned out
to be close to those found 1a (3). For example,
when D3 is the training sel, the corresponding vec-
tor is (0.17, 0.32, 0.26, 0.25).
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