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Abstract

This paper investigates statistical issues that arise in interlaboratory studies known as Key Comparisons when one has to link
several comparisons to or through existing studies. An approach to the analysis of such a data is proposed using Gaussian distributions
with heterogeneous variances. We develop conditions for the set of sufficient statistics to be complete and for the uniqueness of
uniformly minimum variance unbiased estimators (UMVUE) of the contrast parametric functions. New procedures are derived
for estimating these functions with estimates of their uncertainty. These estimates lead to associated confidence intervals for the
laboratories (or studies) contrasts. Several examples demonstrate statistical inference for contrasts based on linkage through the
pilot laboratories. Monte Carlo simulation results on performance of approximate confidence intervals are also reported.
© 2005 Published by Elsevier B.V.
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1. Introduction and summary

The Mutual Recognition Arrangement (MRA) (1999) for national measurement standards is a principal feature of
international cooperation for measurement quality assurance. The MRA is realized through Key Comparisons (KC)
which typically involve several laboratories with several of them (typically National Metrology Institutes), serving as the
pilot laboratories designed to coordinate the whole study. Each of the regional laboratories analyzes its measurements
and reports the results consisting of its estimate of the measurement value alon g with the combined standard uncertainty.
It is expected that the decomposition of this uncertainty into type A and type B components is presented as required by
International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement, (ISO GUM)
(ISO, 1993) and NIST Guidelines for Evaluating and Expressing Uncertainty (Taylor and Kuyatt, 1994). The key
comparison reference value (KCRV) and its associated uncertainty are determined on the basis of these characteristics.
One of the goals is to establish the degree of equivalence of measurements made by participating laboratories and to
quantify these degrees of equivalence for all pairs of the laboratories.
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This paper is motivated by the need for rigorous statistical analysis in this situation where one has to link several
comparisons to or through existing KC. In these studies laboratories commonly use a transfer instrument to assess the
value of a laboratory standard and to compare the relative biases of their measurement processes and standards. Two
important parts of such comparisons are estimates of the difference between two artifacts or between two laboratory
effects, i.e., the mentioned degrees of equivalence. There are situations where a direct comparison is not possible
because the laboratories have not participated in the same KC study or have not measured the same artifact. In the
simplest case one has to seek linking laboratories which have made measurements on the artifacts common to these
two laboratories. In this paper we call such laboratories pilot labs.

The MRA does not specify exactly how to perform the linkage. Most recent proposals (e.g. Elster et al., 2003) treat
the statistical estimates of uncertainties as known constants which could lead fo artificially small confidence intervals
for contrasts.

A motivating example for this work is the study by Delahaye and Witt (2002) which was designed to link two
existing Capacitance Standards Key Comparisons: CCEM-K4 and the EUROMET project 345 (10 pF results). These
two interlaboratory studies were carried out by the Consultative Committee for Electricity and Magnetism (CCEM)
and by the European Metrology Cooperation (EUROMET) in the late nineties. Six national institutes (BIPM, CSIRO-
NML, NIST, NMi, NPL and PTB) agreed to serve as linking (pilot) labs. These institutes participated in both Key
Comparisons, while ten (regional) institutes (BEV, CEM, CM], CSIR, GUM, IEN, METAS, MIKES/VTT, SP, UME)
were additional members of the EUROMET project 345. Delahaye and Witt (2002) formulated the goal of the study as
to evaluate “the correction” to the measurements of the labs participating only in the EUROMET project 345 to obtain
“the best estimate of what would have been the result from such a laboratory had it actually participated in CCEM-K4”.
After this correction has been found, the table of pairwise laboratory contrasts or bilateral equivalences along with
associated (combined) uncertainties is determined.

The main contribution of this paper is a procedure implementing such a correction along with the characteristic
uncertainty of the resulting estimates. In Section 2 we suggest a linear model for linkage. Conditions for completeness
of sufficient statistics are derived and applied to an example in Section 3. Several models for type B uncertainty are
presented and discussed in Section 4. The situation when the sufficient statistics are not complete is investigated in
Section 5. A curious and potentially useful aspect of such non-saturated designs is that there may exist UMVUE’s
for certain contrasts of interest. In Section 6 confidence intervals for contrasts are discussed and compared, and some
Monte Carlo simulation results for the coverage probability of the developed approximate confidence intervals are
reported. The paper is concluded with discussion in Section 7 and the Appendix which contains selected proofs.

2. The basic model

We use a natural model, which assumes that a number, say, K of laboratories serve as pilot labs measuring several of
J given artifacts (or participating in several out of J different studies.) Non-pilot laboratories measure only one of these
artifacts with data in each laboratory having an additive error structure. Mare precisely, we investigate the following
linear model for the data Yjji:

Yiig =120 +aj+eéijk

Herei =1, .... M indexes the laboratories, j=1,...,J corresponds to different artifacts, and n;; 2, represents the
sample size (the number of measurements) in laboratory i which measures artifact j; £; is the effect of the ith laboratory
and a; is the effect of jth artifact. It will be assumed that e; ;. ~ N(O, ‘L'?’-), k=1,...,n; are mutually independent.
Notice that the variances r,.zl. are not assumed to be equal as in standard linear normal models. However, unequal error
variances are common, indeed virtually universal, in interlaboratory studies. In some situations it is assumed that the
variances 7;; do not depend on j. We do not make this assumption; all results with minor modifications hold in the
model when the variances do not depend on the artifact measured.

This model assumes that the results of all measurements are of the same order of magnitude and of the same physical
dimension. If this condition is not met, a transformation of variables of the type suggested by Elster et al. (2003) may
be necessary.
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The vector of sufficient statistics for unknown parameters ¢; + a; and 11.2,. is formed by the sample means Y;; =
> « Yijx/nij. and by sample variances vfi = 0. O Yij)z/K,',‘ with k;; = n;; — 1. Clearly,

Yij=ti+a;+e (H
with independent ¢;; ~ N(0, afj E rl?j/n,-j) and x;; vizj/r?j 3 xi_,_j. It is convenient to put n = Zij nij,and sizj =S vl.zj/n,-j
as this is a classical estimate of the variance 61.2. of the sample mean Y;;. This and also the unequal variances condition
make application of standard results from two-way classified data designs infeasible.

Let G ; denote the set of all laboratories which measure artifact j, j =1, ..., J. Then for j # j', G; N G consists
of all pilot laboratories measuring both artifacts j and j’ (or is the empty set.) Further, we use notation H; for the set
of artifacts measured by the lab (.

Observe that in our model the individual laboratory effects ¢; and artifact effects a; are not identifiable (as the sum
£; + a; is unchanged by adding a constant to all a’s and subtracting a constant from all £’s). However, any contrast
in £;,i € G, measuring the same artifact or any linear combination of such contrasts is estimable. Indeed, our main
problem of interest is to estimate the difference a; —a j» between two artifacts, or the contrast £; — £;+ for two laboratories
i and i’. We seek estimators with the smallest mean squared error,

If L; and Ly are two laboratories, we write L; ~ L/, if they measure the same artifact. One can form a graph G with
vertexes formed by all laboratories, and edges connecting any two vertexes measuring the same artifact, i.e. if they are
equivalent under relation “~”.

Assumption 1. The graph G is connected, i.e. for any two laboratories L; and L, there exists a sequence of labs (path)
Ly,...,L;,suchthat L; ~ L; ~---~L; ~ L.

im

Notice that in this graph the non-pilot labs are connected to the pilot labs measuring the same artifact. Then n, the
total number of labs, is the total number of vertexes in the graph G.

The motivation for our setting comes from the existing Key Comparison projects organized by CCEM, in particular,
from the Key Comparisons Capacitance Standards linkage problem introduced in Section 1. In this example, artifacts
correspond to different studies (say, a; means the EUROMET project 345, and a corresponds to CCEM-K4), so that
J =2, and K = 6. In this study G2 had four non-pilot laboratories (MSL, NIM, NRC and VNIM), so that n = 20;
G1 N G consists of mentioned six pilot laboratories, and, in addition, G| has 10 regional institutes listed in Section
1. The parameter of interest is the difference a; — a; between two studies, since by subtracting this term form the
measurements Y;;,I € G, one indeed obtains “the best estimate of what would have been the result from such a
laboratory had it actually participated in CCEM-K4”. Clearly, a good estimate of a; — a; leads to an estimate of £; — ¢;/
for laboratory i,i € G|, and i’,i’ € G (and reversely).

In another, more complicated, study CCT-K3 done under the auspices of the Consultative Committee for Thermometry
(Magnum et al., 2002) there were 9 different serial numbered thermometers (artifacts) with 3 pilot labs (NIST, NML
and PTB) (some of which measured more than 2 of these thermometers) and 12 regional laboratories (most of which
measured just 1 thermometer.) The goal here was to obtain the table of differences of realizations between these fifteen
laboratories along with their expanded uncertainties. Albeit more involved, such a table can be derived by methods of
this paper if one studies linkage problems for labs measuring only a particular subset of all thermometers.

3. Conditions for completeness and confidence intervals for contrasts (saturated models)

The following general result is useful in our study of linkage analysis.

Proposition 1. Ler X; ~ N(y;, ol?) and let Si2 be independent of X;, so that S,.2 / a,.z has a y*-distribution with k; degrees

of freedom,i =1, ..., m. Assume that the vector (uy, ..., y,,) belongs to a vector space @ of dimension p, p <m, and
the values of 61.2 are unrestricted. Then a necessary and sufficient condition for (Xy, ..., Xpm, s2 ..., S,%,) to form a
complete sufficient statistic for unknown parameters (fy, ..., by, 0%, o 0',2,1) is that p = m.

The proof of Proposition 1 follows from standard facts about exponential families. Notice that if the vector ¢ =
(c1, ..., cm) is orthogonal to @, then the linear combination ) ¢; X; is an unbiased estimator of zero. According to
Proposition 1 when p = m, each linear combination of the X’s is the UMVUE of its expected value.
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We show that under an additional assumption, ¥; j's form a complete sufficient statistic if and only if the number of
pilot laboratories is equal to the number of artifacts minus one.

Proposition 2. Assume that each pilot laboratory is in exactly two of G ;’s and each non-pilot lab belongs exactly to
one such set. Then under Assumption 1 the vector Yj;, sZ,ie Gj,j=1,...,J, forms a complete sufficient statistic if

i’
and only if J = K + 1.

Proposition 2 whose proof is in the Appendix gives conditions under which a design has complete sufficient statistics,
Le., is saturated. In the most straightforward case, the first pilot lab measures artifacts ay and az, the second pilot lab
measures a; and a3, etc, the last Kth pilot lab measures ax and ak+1- But, for example, the design where all pilot labs
measure artifact ag 1.1, while the ith laboratory measures artifact a;, i = 1, ..., K, is also saturated in this sense.

Whenever two different pilot labs (say L| and L2) measure the same two artifacts, say, a; and ay, completeness is
lost, as

2 2

2 2
EY > (=Fy; =" 3 (1)@ +a)) =0.

i=l j=I i=1 j=I

This also is the case for more complicated schemes in which the same two (or more) artifacts circulate through the
same (wo (or more) labs. We study non-saturated designs in Section 5.

Proposition 3. Under conditions of Proposition 2, when K = J — 1, any estimator
=X T wri=X 3 oty @
j ieGy i JeH,

is a UMVUE of the parametric function > ZIEGJ bij(l; +aj).

In particular, if for each j, ZieGjbl'j =0, then EJ = Zi ZieGj b;;¢;. Similarly, if for each i, Zieﬂi bi; =0, the
expected value is 3 ZieGJ_ bijaj. If K <J — 1, this estimator is unbiased, but not in general UMVUE.

Proposition 4. The variance of estimator (2) has the form

Var(d) = Z Z b%,-o‘%,,

j ieG,
- ; Yot ; 2582
which can be unbiasedly estimated via y P2 ec; biisii-

Note that the estimators which are UMVUE of the linear combinations of ¢; + a; under the assumption of normality
will be best linear unbiased estimators under general distributional assumptions.

As was mentioned in Section 2, any contrast in ¢;,i € G j, is unbiasedly estimable. In particular, all comparisons
of the form ¢; — ¢; and a; — ay are estimable. These unbiased estimators are obtained from the linkage through the
intermediate pilot labs. We start with the approximate Welch—Satterthwaite confidence interval (Welch, 1937), the use
of which is reccommended by the ISO. The following example illustrates this process.

Example 1. Suppose that there are three artifacts, a;. ay and as, the first of which circulates through labs L;,i =
1, ..., I. The second artifact is measured by labs with { = I, ..., M, and the last one circulates through labs L;,i =
M, ....n(I <M <n). Thus, there are two pilot labs L; and L 5;. We start with the interlaboratory difference, £; — ¢;/,
which admits a UMVUE according to Proposition 2.

LIf1<i, i"<1,the UMVURis ¥;| — Y1, with the variance 0',?] + o-iz, |- An unbiased estimator of this variance has the
form sizl +512' |- An approximate Welch—Satterthwaite confidence interval for ¢; — ¢, is givenby ;1 — Y 1, }s,-zl + sl.z,] ;

where ¢ is the upper «/2 point of a t-distribution with v = (51.2l + siz,l)z/(sfl/rc” + s?,] /K1) degrees of freedom.
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2IU1<i<I — 1, T+ 1<i"$ M, the UMVUE is ¥;; — Y;1 + Y72 — Yira, so that this estimate is “linked” through
the pilot lab L. The variance now is ‘7:'21 + o-%] + 6?2 + 0',.2,2 with an unbiased estimator si?'1 + s%l + 5%2 + s,.z,z. Here
the requirement that we link through the pilot lab L increases the variance of the estimated contrast. The degrees of
freedom for the approximate Welch—Satterthwaite confidence interval are

2 002 12 22
(s51 + 571 + 515 + 875)

sh/ki 4 st /e + st /K2 + S/ Kir

3IICi<TI— 1, M+ 1<i'<N,i.e.if lab i measured artifact 1, and lab i’ measured the artifact 3, the UMVUE is
Yit = Y11+ Y2 — Yy + Y3 — Yirs, so that this estimate is linked through the pilot labs L; and L ;. The variance of
this esti.n}ator is-a,.z1 + a%, + a%Q + o‘,zw2 + 012‘43 + ‘71'2’3 with z}n unbiased estim_ator sl.z1 + s,z1 + sfz + s,%“ + 512‘4.3 + siz,}. Thus,
the additional linkage through the pilot lab L, further increases the variance. The Welch-Satterthwaite confidence
interval is based on

, L

2 2 2 2 2 232 si41 st St 5242 Sm3 i
V:[(S[_l +S[1 +512+5M2+5M3 +S,~r3) ] —+—+_+—+_+ .
Kil Kr1 Kr2 Km2 Km3 K3
degrees of freedom.
The unbiased estimator of the difference a; —a; is based on ¥;; —¥;2, 0f as —as3 on Yyo—Y w3, and to estimate a; —az
one has to use Y71 + Ypr2 — Y12 — Yr3. The degrees of freedom for the confidence interval are (s,zl + 3?2)2/(3;‘[ /K +
2 2 ) 4 4
Sp/12)s (i + 553l /a2 + shgs /m3), and (s}y + sy + sky + 5320/ (s /i + st/ ki + sty /iaz +
Sya/Km3), respectively.
More generally, the approximate Welch—Satterthwaite confidence interval for the function I : Z,.GGI bij (i +aj)

isdoxrt /> Ziecj bi2.isi2j’ where  denotes the critical 2/2 point of a ¢-distribution with

2
(Z) Ziec, 35%)
4= § 4, 3
Z,‘ Ziecj "".','Sij/"ii
degrees of freedom. We consider an alternative approximation by a multiple of a t-random variable for non-saturated
designs in Section 6.
When n =2, ¢ = ¢; = 0, the situation is that of the Behrens—Fisher problem, where a confidence interval for the
difference between two normal means a; — as is desired. This shows that only approximate confidence intervals for
the contrasts can be anticipated as similar tests or confidence intervals do not exist in this problem (Linnik, 1968).

4. Type B error

It has become common in interlaboratory studies to include a Type B error in the final analysis. Typically, the
Type A error is the standard experimental error captured by the residual term in the model, and it can be measured
by the estimated variances s?j {or by some other statistical procedures.) The type B error, on the other hand, cannot
be measured through experimental replication, but rather through a process of creating an uncertainty budget for all
important sources of variability that could have affected the experimental result. This process results in a total type B
uncertainty which must be included in error assessments of all estimates and decisions.

We start with a fairly simple model that embodies the type B error as follows. The sample means now have the form

Yij=tli+a;+bi+e; )

fori e G, j=1,...,J. Here ¢;, a;, e;; have the same meaning as in (1); b; corresponds to independent realizations
of normal N(O, ﬁ,-z) random variables independent of e;; and of the estimates 512 The values /)’,2 are assumed to be
known and taken to be the Type B error specified in the uncertainty budget. Model (4) falls into domain of variance
components analysis, but in our case one of the variances is known.

If the mean b; is non-zero, but is known, then, according to ISO GUM (1993) recommendations, it must be subtracted

from the data. When it is unknown, the problem is much more difficult. Model (4) assumes an accurate uncertainty
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budget. Even in highly qualified national institutes the possibility of inaccurate budgets are real, and we attempt to
allow for this later in this section.
The following result is an extension of Proposition 1 to cover the present model. Its proof is contained in the Appendix.

Proposition 5. Under conditions of Proposition | suppose that a random vector B ~ N, (0, V) with possibly singular
matrix V is independent of the vector X with independent coordinates X; ~ N(y;, 0',.2) and of Siz, with SI.2 / G? having

a y?-distribution. Assume that the vector (u,, . . ., 1t,,) belongs to a vector space © of dimension p, p <m. Then if the
observed data are (Y, SH) withY =X + B, §? = (82,..., S,zn), a necessary and sufficient condition for (Y, 52y, to form
a complete sufficient statistic for unknown parameters (U, . .., l,,, o‘%, cev,02) isthat p =m.

The next resull is an application of Propositions 4 and 5.

Proposition 6. Estimator (2) remains unbiased in model (4). Under conditions of Proposition 2 it is UMVUE if
K =J — |. Its variance has the form

2
Var(®)=Y_ Y bheii+> | D bij| B (5)

J i€Gj i jeH;
An unbiased estimator of this variance has the form

2

2.2 s+ | 2 b | B ©)

J ieG; i JEH;

The formula for the variance follows since EY Yy, = 5,'/((3,'1{0"-2/- + (5,-/(/)’,-2. Here and further d;; is the Kronecker
symbol. '
The approximate Welch-Satterthwaite confidence interval for the function ) ; > <G, bij(8i +aj) is

2

St | > Y bEsE+Y | D bii| B

i i€G; i \jeH;
where t is the upper «/2 point of a r-distribution with

2 2
[Zj Yicq, bish+ 3 (Z,—eH, b,-,,-) ﬁ?}

Ve 14
> Ziecj bisii /i

degrees of freedom.

Let us return to Example 1 of Section 4 with Type B error. The data are still complete and sufficient because of
Proposition 4, and the estimators of a; — a2 or of ¢; — £;- are UMVUE’s by completeness.

1.If1<i,i’<I,the UMVUE of ¢; — £y is Y;| — Yiry, with the variance al.zl + Jl.z,] + /3,-2 + /)’,.2,. An unbiased estimator
of this variance has the form, s,.z1 + s?,l + ﬁ;? + ﬁ,-z,. An approximate Welch-Satterthwaite confidence interval has the

form Y;; — Yy £ t\/sizl + s,.z,l + ﬂ,~2 + [)’,-2,, where ¢ is the upper o/2 point of a t-distribution with v = (siz1 + s,.z,l + ,3,2 +
ﬁizl)z/(sfl/Kn + sﬁl/lc,-q) degrees of freedom.

2.IF1<i <I—1, I+1<i' < M, the UMVUEstillis ¥;y —¥; | +¥;2— Y. Its variance is 67, +06%, +0%,+02, + 57+ 7.
An unbiased estimator is sl.z1 +s?1 +s?2 —l—s,.z,2 + ﬁ,-z + ﬁ?, . The degrees of freedom for the approximate Welch—Satterthwaite
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confidence interval are

P 0
(57 + 57, + 55 + 55, + B + B
shiKit+ st /en + shixn + 55 [Kir2

V=

3IFI<i<I—-1, M+1<i'"<N,the UMVUEis ¥;; =Y +Yr2—Yuma+Yy3—Yi3, and the variance of this estimator
is 67, + 62, 402, + 0%, +02,,+ 02 + %+ B2 with an unbiased estimator s + 52, 452, 452 +52 452+ B2+ B2
803 TO T O T Oy T O3 T 0+ P+ 550 . : TN T T M TS M3 TS TR T Py
The degrees of freedom of the Welch—Satterthwaite confidence interval are determined in a similar way.

Note that the type B errors associated with the linked pilot labs play no role in the variances of the lab comparisons in
Example 1. However, they do enter into the variances of the estimators Y;| — Y2, Y372 — Ywp,or Y+ Yy —Yr—Yu
of the artifact comparisons a| — az, ay — a3, or a; — a3.

Often a Type B uncertainty is expressed as a best estimate of the variance of the Type B error together with associated
degrees of freedom. We suggest the following models to describe this situation. In each of them, as in @),

Yij=4¢i+a;+ B +ej @)

forie G;,j=1,...,J. Here ¢;, a;, e;; have the same meaning as in (1) and (4), but B; corresponds to independent
realizations of random variables with mean zero, also independent of ¢;; and of the estimates slzj However, the

variances of these variables, §7, are not assumed to be known. Assume first that a realization of a random variable
p,.z 2= ﬁ?zﬁ(i)/v(i), with given v(i), is available. Then the Type B uncertainty is expressed through the pair (piz, v(i))
which is arrived at through the uncertainty budget analysis. In this sense Type B error assessment is uncertain, and the
case where v(i) = 0o corresponds to the previous setting.

In the second interpretation of (7), ﬂ,z is random (so that B; is normal only conditionally) with the distribution of the
form p‘.zzs(’.)/v(i) with known p? and v(i). The Type B error is still expressed through the pair (p[.z, v(i)).

Proposition 6 remains valid for this model with essentially the same proof except that in the second case in (5) the
unknown [3,2 are to be replaced by the known piz. Besides that, in the first case the modification to be made in Example
1 is that in the formula for the degrees of freedom v, the denominaror must have an additional term pf Jv(@) + pf, /v(ih,
and in (6), /)’,-2 are to be replaced by piz.

Still another option under model (1) is to interpret Type B uncertainty for lab i as the parameter(s) of the prior inverse
gamma-density,

_ exp{—1/(4;v)}
AT ()% +17

i (v) (8)
v= o'izj (assuming that this distribution does not depend on j.) More precisely, the effective degree of freedom 24; in (8)

can be taken to be v(i), whereas the scale parameter /; is inversely proportional to uncertainty pl.z, Ai=1/ [p,.2 0.5v@E)—1)].

This formula is a consequence of the equation, £ 01.2,. = 1/[4;i(%; — 1)]. This model leads to usable formulas as for fixed

2
S5

K;jsﬁ,. + 0.5//{,'
nij(xij + 204 —2)

Var(Yy) =

and a (conditional) confidence interval for any linear combination > 7 Ziecj_ bij(¢; + a;) can be obtained from a
t-approximation as elaborated in Section 6. '

5. UMVUE when sufficient statistics are incomplete and unbiased estimators for non-saturated models

It may still happen that certain estimators are UMVUE’s of their expectations even when the linkage design is not
saturated. In particular, the following result is useful in the context of Proposition 1 (cf. Lehmann, 1983 Lemma 3.2,
which is a similar result for admissible estimators). Its proof as well as that of the following Proposition 8 are given in
the Appendix.
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Proposition 7. Suppose X has a distribution Py for 0 € © and Y has a distribution Py for n € H, and X and Y are
independent random variables in the model with the parameter space @ x H. If 3(X) is UMVUE of g(8), when only
X is observed. 6(X) remains UMVUE when (X, Y) is observed.

Proposition 8. In the model of Proposition 1, suppose that p < m, but the m — p independent linear restrictions on
(Hqs - - lyy) do not involve (i, ..., 1), r <m. Then any estimator 6(X1, ..., X,, Slz, Ty SZ) is a UMVUE of its
expectation.

An implication of this result is that ¥;; — Y;-; is always a UMVUE of the contrast ¢; — £, if  and i’ correspond to
two non-pilot labs within one group G ;. Similarly, if, say, lab i is in G and lab i"isin Gy, J =3, Hi={ay, az}), Hh =
{az, a3}, H3 = {ay, a3}, i.e., G| and G; have a single pilot lab, say Ly, in common, and G, has two other pilot labs,
say, L2 and L3, which both also measure artifact a3, then the estimator Y;1 — Y1 + Y2 — Y2 is UMVUE of ¢; — ¢;.
This follows from Proposition 8 because Y;1, ¥i2, Y11, Y12, 53, 552'2~ 5%, s1, form a complete sufficient subset of the
full data set, and the means of these ¥’s are not involved in any linear restrictions.

Also, if a pilot lab L; is the only one such lab measuring artifacts ¢ and a, i.e., if G; N G j» has a unique pilot lab
Ly, then the UMVUE of the difference a; — a; is Yy — Y. The fact that the estimators of the variances of these
estimators are also UMVUE’s follows from Proposition 8.

In general, there will be no UMVUE of a; —a; or ¢; — ¢; if the comparison made between two labs must be linked
through a pilot lab which is involved in the constraints in Proposition 8, and there will be no UMVUE for the artifacts
comparisons if these are measured by two (or more) different pilot labs. In such cases a reasonable approach is to find
an estimator expressed as the weighted linear combination of Y;; where the weights depend on the sample variances.
Assume thati € Gy, i’ € Gy, and we are interested in the contrast a; — ap or £; — £;:.

Example 2. Let us start with the case when G| and G» have at least two pilot labs in common. To be specific suppose
that with J =2, Hy = H> = {a|. a3}, so that pilot labs L) and L; are in G| N G».

Assume that neither of the two groups has any other pilot labs. In this case there is no UMVUE of a; —ay or ¢; — ;.
The estimator

Yip—w¥ —Yi2) — (1 —w)(Y21 — Ya2) — Yinn
is unbiased for ¢; — ¢,/ for any real w. Under model (4), the variance of this estimator is
0} 4 G+ B4 B+ wh(od + o) + (1 — w) (63 + oky).

The minimum value is attained when w = ((;‘%l + 0'%2)/(0'%| + 0%2 + 0%1 + a%z). Note that Type B variances for the pilot
labs, B,-z and [)’,2 play no role in the expression for w. It is not hard to see that with this optimal choice, the estimator
above would be UMVUE if all variances were known. (Indeed, when all variances are known, there is a complete
sufficient statistic whose dimension is that of the space spanned by the mean vector.) But since the optimal weights
depend on these variances, there is no UMVUE.

However, unbiasedness holds if the weight w is a function of the variance components as they are independent of
Y;j. Provided that the degrees of freedom of Si2/ are sufficiently large, a reasonable estimator of the optimal weight is

W= (522l + 5222)/(5121 + 5122 + 5221 + 5222) with the resulting estimator of a; — as,
v =w¥n — Yi2)+ (I —w)(Y21 — Y22), )

and the estimator, Y;| — ¢ — Yjn, of £; — £;.
The usual estimator of the variance of { in (9) is

Var()) = ﬁ)z(slz| + 5122) + (1 — li))z(s%l +5222).

The relationship of this problem to that of a common mean estimation omnipresent in interlaboratory studies is quite
clear. Indeed, Y| — Y12 and Y»; — Y27 are two independent unbiased estimators of a; — a>. However, here, unlike
the usual version of the common mean problem, the variance estimators (of the two independent estimates of the
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common mean) are not distributed as multiples of y2-distributions. Still estimator (9) bears considerable resemblance
to the popular Graybill and Deal (1959) estimator. Unbiased estimators of the common mean and of their variance is

reviewed in Voinov and Nikulin (1993, pp. 194-196).
A similar analysis can be made to obtain unbiased estimators when the linkage must be made through more than one

node. For instance, assume that pilot labs Ly and L are in the set G1 N G», which contains other pilot labs.

Example 3. Assume that the pilot labs form a path of the form L ~ Ly ~ L3 ~ L. More specifically, with J =3,
H| = {a|, az}, Hy = {az, a3}, H3 = {a;, a3}, and L, Lz € G N Ga.
In this situation the linkage can be made “forward” through L, or “backward” through L3 and L. The first unbiased

estimator of £; — ¢;,
do =Yy — Y+ Y2 — Y2,

corresponds to the first type of linkage, the second estimator,
01 =Y — Y31 + Y33 — Ya3+ Yoo — Yo,

to the “backward” linkage. A broader class obtains by taking convex linear combinations of these statistics,
S = wdy + (1 — w)do = Yi1 — w(¥31 — Y33 + Yo3 — ¥2) — (1 —w)(Y11 — Y12) — Yira.

If all variances were known, the optimal choice for w is

6%l+a:{-'}
WhSt=s5 3 3 3 5 37
o3 + 033+ 0353+ 03 + o1 0

which does not involve the §’s for the pilot labs.

As in the previous example, it can be shown that this choice of w gives the UMVUE for the known variance case, so
that there is no UMVUE when the variance is unknown. However, one can estimate w by 1 obtained by substituting
sl-zl- for a,.zi above; then

Y =w(Y3 — Y33+ Y3 — Yo) + (1 = w) (Y11 — Y12)
is the weighted means estimator of a; — a2 which again plays the role of a common mean.

Example 4. This example illustrates linking through two sets of pilot labs. Assume again that there are three artifacts,
J =13, and four pilot labs of which L and L; are common to G and Gz, while L3 and L4 are common to G3 and G3.
Thus, H| = H, = {a|. a3}, H3 = Hy = {az. az}. In this case G| N G2 =@.

Estimators of the form
Y =w — Yi3) + (I — w)(¥21 — ¥23) +u(¥33 — ¥32) + (1 —u)(Ya3 — Ya2) (10)
are unbiased for a; — ay; the optimal choices of w and u are

2 2 2 2

051+ 053 ot o
Wi=i=p 2s o 22 o U= -5 2 2) P
031 + 05 T 07 T 073 043 + 04 + 033103

If the variances were known, these choices of w and u result in UMVUE, so in the unknown variance case there is
no UMVUE. A reasonable unbiased estimator is obtained by substituting the following estimates of w and u,

2 . 2 2
531 + 533 - 533+ 84

== £ = =, 0= .
S +533 + 57 + 53 Siy Sy 55 + 5%
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In this situation one can think of two non-standard common mean problems, one with a; — a3 and another with a3 — a5,
playing the role of a common mean which admits several unbiased independent estimators. The corresponding unbiased
estimator for £; — £ is ¥;; — ¥ — Yyip; the optimal choices of w and u remain the same.

These examples give rise to the following general result. Denote by & a generic path passing through pilot labs in
the graph G, Ly, ~ L, ~ - ~ Lj,,, and such that L;, € G NGj, Liy € GjNGjy,...,Liy € Gj,, N Ga,ip #
i1#--#iy.Weput jo=1, jys1=2,e=(1,..., DT, and write

)
L i oo ju
Proposition 9. Under model (1), each path 2 as above leads to an unbiased estimator ofa)—ay= lecw:O (@j,—aj. )

M
Vp = Z Figje = Yigjer)s

k=0

and to an unbiased estimator of €; — Ly, 5p = Y} — Vo — Yin, with

M
2 2 2 2
Var(@p) = o} + o2y + Y _ (0%, + 02, ),
k=0

and for any other path 2 different from 2,

_ 2 2 - 2 s L2 PSP . X 2
COU(&?, 5-’2) =01 + Oin + Z 5lklr [5Jk?l O-ikjk 5Jk+l.h'o—ikjk+1 o]k}r+l Jl'zkjk + 5Jk+1!r+lo-ik Jk+1 ]
k.r

Under model (4) the term ﬁ? + ﬂ,-z, should be added to the variance and the covariance. Any convex combination,
2 p w205 (0r Y » Wt p), is also an unbiased estimator. The vector of estimated weights
=1
2 e

—1

W= —
el e

where 2 is an estimate of the covariance matrix X of the vector & formed by all paths 2, with the diagonal elements

%
Var(6p) = s3 + s3; + Z(s-2 +s5%. ),

i jk ik Je+1
k=0

and similarly defined off-diagonal elements, leads to a Graybill-Deal type estimator.
The proof of Proposition 9 is straightforward. Notice that when the covariance matrix X is known and is nonsingular,
the estimator based on weights £~ le/(eT 2~ !e) is UMVUE. This fact follows from the general Gauss—-Markov Theorem.
One can assume in Proposition 9 that 2 is a minimal path, i.e. it does not contain a proper subset which is another
path (as non-minimal paths have larger variances). In Example 4 there are four minimal paths:

1 3Y (1 4 _ (23 (2 4
2=(3) 2= 3) 2=( 5 #=(19).

For the artifact contrast a; — ay, any convex combination of the corresponding four (dependent) unbiased estimators

V=wiYp, + wp, + w3, +walp, = (w1 + w2)(¥1] — ¥13)
+ (w3 + wa) (Y21 — Y23) + (w1 + w3) (Y33 — ¥32) + (w2 + wa) (Va3 — Y42)

has form (10) with w = w) + w; and & = w; + wj. Thus, ¥ can be conveniently represented as a linear combination
of four independent statistics ¥;; — Y.
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I, as in Examples 2 and 3, G| N G2 # @, say L; € G| N Ga, then Y1 — Y is always an unbiased estimator of
a| —az. When J =2, i.e. if there are only two artifacts, then any minimal path leads to such an unbiased estimator of
a|p —day.

6. Confidence intervals and simulation results

Cox (1975) gives a partially Bayesian setting of this problem in model (1) in which all unknown variances aiz’. are
independent and have common prior inverse-gamma density of form (8). Then conditionally on the sample variances
512/ the estimator Z,- ZfEGj bij(€; + a;) has a distribution of the form

) .q1/2
nijKkiisi; +0.5/4
Z Z b (€ +(l,')+z Z b[/[m Ly e

i ieG, j i€G;

Here x = 2o and 4 are parameters of the prior distribution and #y, j+,\-’s are independent #-distributed random variables
with indicated degrees of freedom. The same result holds when the parameters of the prior inverse-gamma densities of
o-,.z,. are different with obvious modifications.

‘Since all such (conditional) distributions have the form > ckty,, they may be approximated by a multiple ¢z; of a
t-random variable as follows:

O 2 v/ (v — 2)))?
Yt e =22 — 4))

. :-—22 o e
— 1 12
: \/ f‘ Ckvk-—z ( )

(Welch, 1937; Cox, 1975, p. 653; Fairweather, 1972, p. 231). This approximation is derived by equating the second and
the fourth cumulants and can be used only if min v > 4. If 2 < min v, <4, an analysis of the characteristic function of
r-distribution suggests the following formula for the degrees of freedom:

Y™ o Ve 2
=2+ %
2 ins
and for the multiple c,

YRIATS

p=44 (11)

Fremy =V
Vi

When there is some prior information, which allows specification of the parameters 7 and 4 (for example, as discussed
in Section 4), one can use this approximation to obtain a confidence interval as indicated below. The “non-informative”
prior corresponds to k = 0 and 1 = co. In other terms, the generalized prior for ¢;; is doj;/ai;. In this case the above
development leads to the same results as the fiducial distribution (Lee, 1997), i.e. the distribution can be derived from
Fisher’s fiducial argument.

As relevant prior information in the existing linkage studies seems to be missing, we used the non-informative prior
in all our examples for artifact contrasts. In Example 1, say, with I = 1, the conditional distribution of (Y;; — Y|p —

a) + ag)/,,-‘SIZl + 5122 for the fixed ratio s|2| /5122 is the linear combination with the weights w| = sll/‘{s%] + 5122 and

J1 = 0)% =512/ slzl + 5%2 of two independent ¢-distributions with degrees of freedom k|| and k2, respectively, i.e.
this is exactly the classical Behrens—Fisher distribution (Lee, 1997, pp. 148, 289-300).

Patil (1965) has studied the accuracy of the approximation through (11) and (12) and has found it superior to the
Welch—Satterthwaite approximation discussed in Section 3 (which takes ¢ = 1 and v from (3)). See also Fenstad (1983)
and Best and Rayner (1987). Fig. 1 shows that these two approximations are really very close. For this reason (and
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Fig. I. The histogram of the distribution of (Y| — Y12 — a; + az)/,/slz] + slzz and its +-density approximations (via (11) and (12), and the
Welch—Satterthwaite formula) in Example [.1.

since the Welch—Satterthwaite approximation is not applicable in the incomplete case) we report later numerical results
only for the more versatile multiple of z-variable approximation given in formulas (11) and (12).
To derive an (approximate) confidence intervals for a; — a; in Example 2, observe that the conditional distribution

of the pivotal ratio, ( — a; + az)/ V/ar(\llj) for fixed @, w; and wy = 551/ 5221 + s222, has the form m(cult,\-“ +

V1= 0tte,) + V1 - W(watiy, + /1 — co%t,m). In other terms, this conditional distribution is a mixture of four

independent ¢-distributions, which can be approximated by a multiple of another #-distribution via (11) and (12). A
similar representation (with six independent ¢-distributions) holds in the Example 3 and in Example 4 for statistic (10)
with estimated weights 1w and 7.

There are numerous studies of estimators of the common mean (see Rao, 1980; Rao et al., 1981; Rukhin and Vangel,
1998.) Approximate confidence intervals for the common mean were suggested in Rukhin (2003). In our situation the
role of measurements to be combined is played by the differences ¥;1 — Yy, with the variances a% |+ 0%2, or even
more complicated (dependent) sums of differences 2o Yo — Yii jierr)- Still, the desired confidence intervals can be

obtained from the conditional distribution of W, — a1 +a2)/ Vmu) via its t-approximation after (11) and (12).

Monte Carlo simulation results on the coverage probability of the confidence intervals for the between-artifacts
contrast @) — az in Examples 1-4 are given in Fig. 2. We have taken the sample sizes of K pilot [abs to be random
permutations of integers 1 through K plus four. The values of K and n are: K = 1, n =2 in Example 1.1, K =2,n =4
inExample 1.3, K =2,n=41in Example 2, K =3, n=6in Example 3,and K =4, n =8 in Example 4, The variances
a,.z. were taken to be a realization of an inverse gamma-variable (8) with & = 2 for the scale parameter A taking values
0.1:05: 3.

Clearly, all five intervals (especially in Example 1.1) have a deteriorating coverage probability for larger values of
A, but can be safely used for smaller values of this parameter, say, when A < 1.5. The standard errors (the average
half-widths) of these intervals are increasing as 1 increases but not fast enough to attain the desired coverage, which
confirms the deteriorating performance of the confidence intervals for large error variance.
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Fig. 2. Plot of coverage probability of confidence intervals vs /4 for the Examples -4 (the continuous line corresponds to Example 1.1, “+" line to

L)

Example [.3.*#” line to Example 2, the dotted line “:” to Example 3. the line marked by “0” to Example 4).

7. Conclusions

This paper is concerned with the issue of linkage in interlaboratory studies. We have shown that when each pilot
lab measures exactly two artifacts, the usual sufficient statistic is complete only when the number of artifacts is one
greater than the number of pilot labs. It is demonstrated that UM VUE of certain contrasts exist even in the non-saturated
case. Additionally, we have modeled and investigated the effect of Type B error on the above consideration and have
produced Welch—Satterthwaite and partially Bayesian confidence intervals for the contrasts.

In most practical situations, one has to link two KC studies. Thus, with J =2, an estimator of a; — a3 is desired. For
this purpose all pilot labs participating in both studies are to be determined. Each such lab, L; € G| N G2, leads to an
unbiased estimator Yy — Y7 of a; — ay. All these independent estimators can be combined to obtain the Graybill-Deal
estimator =3 Wi (Y7,1 — Yp,2) with iy = (512“ +si2)_ ! /O (sfm | —l—s,zmz)_I ). An approximate t~confidence interval
based on the non-informative prior for the variances can be obtained from the conditional distribution of the pivotal

ratio, (f —aj +a2)/ Vm) for fixed Wy, wr =s7,1/, Js%kl + siz, has the form > ;. +/ li)k(cuktK,kl +y1- cozt,c,kz).

This distribution can be approximated by a multiple of a ¢-distribution via (11) and (12).

The situation is more complicated when J > 2 and the linkage must be made through multiple pilot labs or when
there are no pilot labs participating in both studies, i.e. when the set G| N G3 is empty. Then all (minimal) paths
connecting the labs measuring the artifacts of interest are to be enumerated and combined as in Proposition 9. An
unbiased estimator for deg:rees of equivalence, ¢; — ¢, is always obtainable as ¥;| — ¢, — Y;»». This interval involves
Type B errors /3,2 + /3,-2, which must be added to the variance term under model (4).
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Appendix. Proofs

Proof of Propesition 2. In the context of Proposition 1, the dimension M + K in our situation is . Indeed, M — K
non-pilot laboratories perform exactly one measurement, and K pilot laboratories each perform two measurements.
A standard argument of analysis of variance shows that the maximum possible dimension of the vector space @ is
M + J — 1. Hence, according to Proposition 1, incompleteness holds when J — 1 < K.

Each non-pilot laboratory contributes 1 to the dimension of the space spanned by the vector ¢; +a;, i € Gj,
J=1,...,J,since ¢; is a free parameter unique for this lab. Also the equivalence relation is not affected by addition
or removal of a non-pilot lab. Hence it suffices to prove Proposition 2 for an experiment consisting only of K pilot
laboratories Ly, ..., Lg. There must exist a maximal path, which one cantaketobe Li ~ Ly ~ +.. ~ Lg.Ifa and
aj are two artifacts measured by L1, then at least one of them, say, a; must be measured by L, as these two labs are
directly linked. Since each lab in the linked sequence measures at least one artifact processed by the previous lab, each
succeeding lab must measure one artifact not already dealt with by any previous lab in the sequence. Otherwise, the
number of different measured artifacts would be less than K + 1, i.e. each lab starting with L, can process at most one
artifact not already measured, and it must measure at least one new artifact if the total number of measured artifacts is
K + 1. (This argument also shows that the range of possible values of J is from 2 to K + 1.}

Thus, the artifacts can be ordered as qy, . . ., ax+1, where a4 is the new artifact measured by L ;, but not processed
by any previous lab in the sequence. This leads to the ordering of 2K means ,, ..., pag, as u; = £ +ay, My =L+
a2, ..., ;1 =%; +a,wherea € {ay, ..., q}, and Ui =¥ +ajq1,i =2, ..., K. Hence the dimension of the space
spanned by (uy, ..., ipg) is 2K since each successive coordinate includes a free parameter. [

Proof of Proposition 5. Notice first that the data (Y, §?) is sufficient for itself. It follows from independence of all
variables and the definition of sufficiency that the vector (X, § 2) is sufficient for “augmented” data (B, X, Sz), and,
by Proposition 1, is complete when p = m. In this case assume that for some function h(Y, S2), Ehn(Y, 52) =0 for
all parametric values. Then by completeness, of (X, 5%), E(h(B + X, 52)|1X, 52) = 0 almost surely. Hence for almost
every fixed value of (x, s2), ER(B + x, s2) = 0. However, the distribution of B + x for x € R™ is always complete,
so that i(x, .5'3) = 0 with probability one, i.e. (¥, Sz) is a complete statistic.

Incompleteness of (¥, $2) when k < m follows from Proposition 1 since the expected values of linear functions of
Y and X are identical. O

Proof of Proposition 7. Under our assumptions X is sufficient for (X, Y) when 5 = »*. Suppose 6(X, Y) is any
unbiased estimator of g(6). Then by the Rac-Blackwell Theorem and the fact that (X)) is UMVUE of g(6), when only
X is observed, it follows that Varg »0(X,Y) > Varg y»Ey(6(X, )| X) > Varg ,(6(X)). Since n* was arbitrary, this
inequality holds for all (6, ), and hence the result follows. [7

Proof of Proposition 8. Partition the data into Xy, ..., Xy, S12, o Sf), Xrsty oo Xoms Sr2+1, S S,%,). The first
set is sufficient and complete for g, .. ou,, o%, - 0',2.) in the absence of Xrgtsenn, Xy, Sr2+1, 3. X S,i). Hence
0(X1,.... X, S, ..., S;") is UMVUE of its expected value if just (X4, ..., X,, Slz, S S,z), is observed. By Propo-
sition 7, 8(X1, ..., X,, 2, ..., §2) is UMVUE in the model with full data. [J
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