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Estimation of �-Factors and Resonant Frequencies
Kevin J. Coakley, Jolene D. Splett, Michael D. Janezic, Senior Member, IEEE, and Raian F. Kaiser

Abstract—We estimate the quality factor and resonant
frequency � of a microwave cavity based on observations of a res-
onance curve on an equally spaced frequency grid. The observed
resonance curve is the squared magnitude of an observed complex
scattering parameter. We characterize the variance of the additive
noise in the observed resonance curve parametrically. Based on
this noise characterization, we estimate and � and other
associated model parameters using the method of weighted least
squares (WLS). Based on asymptotic statistical theory, we also
estimate the one-sigma uncertainty of and �. In a simulation
study, the WLS method outperforms the 3-dB method and the
Estin method. For the case of measured resonances, we show that
the WLS method yields the most precise estimates for the resonant
frequency and quality factor, especially for resonances that are
undercoupled. Given that the resonance curve is sampled at a
fixed number of equally spaced frequencies in the neighborhood
of the resonant frequency, we determine the optimal frequency
spacing in order to minimize the asymptotic standard deviation
of the estimate of either or �.

Index Terms—Cylindrical cavity, experimental design,
microwave, noise characterization, optimal frequency spacing,
quality factor, resonance curve, resonant frequency.

I. INTRODUCTION

I N THIS study, we characterize the frequency-dependent ad-ditive noise in measured microwave cavity resonance curves
and estimate the quality factor and resonant frequency of
the microwave cavity. The data used are the squared magnitudes
of the observed values of frequency-dependent complex scat-
tering parameters .
The resonance curve parameters and can be estimated

from the observed values of using either the 3-dB or the
Estin method [1]. The Estin method is an example of a reso-
nance curve area (RCA) method [2]. In these approaches, the
estimated resonant frequency is the frequency at which the res-
onance curve reaches its maximum value. Hence, the estimated
resonant frequency is constrained to take discrete values. Fur-
ther, neither the 3-dB nor the Estin method exploits knowledge
about frequency-dependent additive noise in the data. In related
work, Petersan and Anlage [3] demonstrated that the method
of least squares (LS) provides superior estimates of and
when compared to the 3-dB method and to the related RCA
method for a similar resonance curve problem. However, for
cases where the variance of the additive noise varies with fre-
quency, the method of LS is suboptimal. Further, the LS method
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Fig. 1. Resonant cavity equivalent circuit model.

does not provide an estimate of the covariance of the estimated
model parameters.
Here, we present a new method to estimate and that

accounts for frequency-dependent additive noise. We charac-
terize the frequency-dependent noise in the measured resonance
curve in terms of a parametric model with two parameters. In
the statistical literature, such an approach is known as vari-
ance function estimation [4]. In our model, one parameter
corresponds to a noise floor, while the other parameter rep-
resents the frequency-dependent part of the noise. Based on
the estimated variance function parameters, we estimate the
resonance curve parameters (including and ) using the
weighted least squares (WLS) method. Due to the sensitive
nature of this optimization problem, we take special care to
ensure that we find (or very nearly find) the global minimum of
the objective function that we seek to minimize. In particular,
instead of starting our optimization algorithm from just one
set of initial guesses for the model parameters, we perform the
optimization algorithm for each of many randomly selected
initial guesses.
Based on the estimated variance function parameters and esti-

mated resonance curve model parameters, we estimate the one-
sigma random errors of and using asymptotic statistical
theory. In our experiments, the resonance curve is sampled at
201 equally spaced frequencies in the neighborhood of the res-
onant frequency.We compute the asymptotic standard deviation
of the and estimates as a function of the frequency spacing
, the model parameters that characterize the resonance curve,

and the additive noise. For optimal estimation of , using our
experimental data, , where is
the largest frequency. For optimal estimation of .

II. RESONANCE CURVE MODEL

We model a two-port cylindrical cavity with the equivalent
circuit shown in Fig. 1 [5], [6]. In particular, we are interested
in measuring an undercoupled cavity, with a high quality factor,
operating near resonance. In this case, we assume that the resis-
tances and self-inductances of the coupling loops are negligible
[5]. We employ two ideal transformers to model the coupling
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loops that excite the cylindrical cavity. We use a series inductor
, capacitor , and resistor to model the cylindrical

cavity. An impedance-matched source is connected to port one
of the cavity while an impedance-matched load is connected
to port two. Note that the source and load can be interchanged
without loss of generality.
We define as the transmission loss through the cylin-

drical cavity

(1)

where is the frequency, is the maximum power delivered
to amatched load connected at port one, and is themaximum
power delivered to the load at port two [5]. Solving for and
we find

(2)

and

(3)

where

(4)

and

(5)

In (3), the resonant frequency is defined as

(6)

and the unloaded quality factor is

(7)

Substituting (2) and (3) into (1) we obtain

(8)

At resonance , the transmission loss reduces to

(9)

Taking the ratio of we obtain

(10)

Note that, in practice, the unloaded quality factor is larger
than the measured quality factor due to the effects of the cou-
pling loops

(11)

However, if we reduce the coupling level so that the cylindrical
cavity is very undercoupled ( and ), we can
neglect the coupling factors and and rewrite (10) as

(12)

with the assumption that the measured quality factor is ap-
proximately . (If coupling cannot be ignored, see [7] for
methods of calculating and .)
At the th frequency, wemodel themeasured resonance curve

as

(13)

where represents the observed measure-
ment, denotes the true value or “noise-free”measurement,
BG is a noise floor, and is additive noise with an expected
value of zero and variance . The model parameters form
a four-vector, . For
the observed data, we model the variance of the additive noise
as

(14)

where and correspond to the frequency-dependent noise
and the noise floor, respectively. In Appendix C, we prove that
our variance function model (14) is exact for the case where the
additive noise in the measurement of the real part of and the
additive noise in the measurement of the imaginary part of
are statistically independent realizations of the same Gaussian
process. In our proof, we assume that the expected values of the
additive noise realizations are zero.

A. Parameter Estimation
Suppose we measure the resonance curve at distinct fre-

quencies and estimate the model parameters by minimizing a
weighted sum of squared residuals

(15)

If the weights are all equal, minimization of yields the LS
estimate of . If the th weight is set to the reciprocal of the
(estimated) variance of , i.e., ,
then minimization of yields the WLS estimate of .
We assume that additive noise realizations are statistically in-

dependent. Given the parameters which characterize the reso-
nance curve and the variance of the additive noise, asymptotic
theory [8] predicts the covariance of the parameter estimates.
From one curve, the predicted covariance is

(16)

where the elements of the diagonal matrix are

(17)
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and

(18)

Thus, the predicted asymptotic variance of the th parameter
estimated from a resonance curve is

(19)

Alternatively, the asymptotic standard error (ASE) of the esti-
mate of is

(20)

where

(21)

The ASE can be thought of as an approximation for the stan-
dard deviation of the parameter. As the signal-to-noise ratio
(SNR) of the data increases, the accuracy of this approximation
improves in general. For more discussion of asymptotic proper-
ties of estimates of nonlinear WLS, see [8].

B. Computational Details
The algorithm for estimation of and has four steps.
Step 1) Compute using the Estin method [1]. (See

Appendix A.)
Step 2) Use from the Estin method as a starting value

in the nonlinear fitting algorithm that computes un-
weighted LS estimates of the model parameters. The
background parameter BG is constrained to be pos-
itive by expressing it as the squared value of the ap-
propriate parameter in the model.

Step 3) Estimate the variance function and weights based
on the “binned” squared residuals by the method of
LS. Frequency bins were determined by dividing the
entire frequency range of the resonance curve into 40
equal sections. The variance estimates were adjusted
upward by a degree of freedom factor of .
Although the variance is modeled using and

to ensure a positive variance estimate, the optimiza-
tion code searches for a solution in the unconstrained
and space. We report and .
A typical variance function is shown in Fig. 2(c).

The vertical axis displays the fractional residuals,
which are absolute residuals divided by , and the
horizontal dashed line near the bottom of the plot
represents the fractional background level, .
Fig. 2(d) displays the same data when residuals are
assigned to frequency bins and the average fractional
residual is computed for each bin.

Step 4) Use the unweighted LS parameter estimates as
starting values in the nonlinear fitting algorithm that
computes weighted LS parameter estimates. The
weights used in the nonlinear fit are derived from
the variance function estimated in step 3.

(a) (b)

(c) (d)

Fig. 2. (a) An observed and predicted (fromWLS fit) resonance curve. (b) Raw
residuals. (c) Fractional residuals (absolute residuals divided by �� ). (d) Binned
fractional rms residuals versus frequency. In (a) and (d), model predictions are
shown as solid lines.

The nonlinear fitting routine used to determine the LS and
WLS parameter estimates minimizes a general, unconstrained
objective function using the analytic gradient and Hessian of
the objective function [9].
The objective function was minimized for each of 250 ran-

domly generated initial parameter values. The final parameter
estimates are those that yield the smallest value of the objective
function. If only one set of initial parameter values is used, the
objective function may converge to a local minimum rather than
the global minimum.
The same nonlinear fitting routine used to compute LS and

WLS parameter estimates was also used to estimate the vari-
ance function parameters. Again, we experienced convergence
problems, so random initial parameter values were used.

III. EXPERIMENTAL STUDY

In our study, we employed a cylindrical cavity resonator,
shown in Fig. 3. The cavity was nominally 450 mm long
and 60 mm in diameter, and it was composed of a helically
wound cylindrical waveguide terminated by two endplates.
Both of the gold-plated endplates were optically polished. One
endplate was fixed on the top of the cylindrical cavity, while
the bottom endplate, with a slightly smaller diameter than that
of the cylindrical waveguide, traveled over a range of 25 mm
through the use of a motorized micrometer drive. Movement of
the bottom endplate allowed for tuning of the cavity resonant
frequency.
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Fig. 3. Cylindrical cavity in the “sample loaded” state.

As in [10] and [11], use of a helical waveguide attenuated
many of the undesired resonant modeswhile allowing the TE
cavity modes to propagate. Our particular helical waveguide
consisted of two copper wires embedded in epoxy surrounded
by a fiberglass cylinder. Although the helical waveguide low-
ered the quality factor of the cavity slightly, it also eliminated
many of the unwanted resonant modes. Thus, the advantages of
using the helical waveguide outweighed its associated disadvan-
tages.
Near the top of the cylindrical waveguide section were two

coupling loops, extending from two coupling holes located on
opposite sides of the cylindrical waveguide. In order to excite
a resonance in the cylindrical cavity, each coupling loop was
connected to an automatic network analyzer via a coaxial trans-
mission line. Cavity coupling was altered by changing the extent
that the coupling loops protruded into the cavity. In particular,
we kept the resonant peak amplitude below dB so that the
losses due to the coupling loops were negligible.
We operated the cylindrical cavity in two states, “air” and

“sample loaded.” The “air” state refers to the cavity without a
sample present, while the “sample loaded” state refers to the
cavity with a dielectric sample on the bottom endplate. We ad-
justed the cylindrical cavity length to obtain a resonant fre-
quency near 10 GHz for each cavity state. For each cavity state,
30 resonance curves were collected at two different frequency
spacings . Each resonance curve was made up of 201 equally
spaced points, and we performed 512 averages on each reso-
nance curve to reduce the level of noise. For each curve, we
estimated and by various methods. Fig. 4 displays the
estimates of and for each of the 30 experimental curves
corresponding to the “sample loaded” state. The binned frac-
tional root-mean-square (rms) residuals and the estimated vari-
ance functions are shown in Fig. 5 for the 30 “sample loaded”
resonance curves.
Tables I and II display mean estimates of and and their

associated standard deviations (shown in parentheses) for the
various methods. For each curve, we estimated the ASE based
on the parameter estimates and (20). The WLS method yields
estimates with the lowest variability.
For 30 realized data sets, a 95% two-sided confidence interval

for is . Thus, the sampling error is not

(a)

(b)

Fig. 4. Estimated values of: (a)� and (b) � �� �� � ��GHz� for each
of 30 experimental curves corresponding to the “sample loaded” state where
� � ���	
�.

Fig. 5. Predicted (lines) and observed variance functions for 30 observed
resonance curves corresponding to the “sample loaded” state.
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TABLE I
STATISTICAL PROPERTIES OF � ESTIMATES COMPUTED FROM REAL DATA
INCLUDING: THE MEAN OF ��, STANDARD ERROR OF THE MEAN (SHOWN
IN PARENTHESES), AND THE STANDARD ERROR OF ��. FOR THE WLS
METHOD, WE LIST THE MEAN ESTIMATE OF � , THE ASE OF �� (20),

AND ITS ASSOCIATED STANDARD ERROR

TABLE II
STATISTICAL PROPERTIES OF � ESTIMATES COMPUTED FROM REAL DATA

INCLUDING: THE MEAN OF �� � � �� � �� GHz�, STANDARD ERROR OF
THE MEAN (SHOWN IN PARENTHESES), AND THE STANDARD ERROR OF �� . FOR
THE WLS METHOD, WE LIST THE MEAN ESTIMATE OF � , THE ASE OF ��

(20), AND ITS ASSOCIATED STANDARD ERROR

large enough to explain the discrepancy between the empirical
standard deviation of the estimates and the estimated ASE at

1000 Hz and 1500 Hz.
The asymptotic standard error of is much smaller than the

estimated standard deviation of computed from the 30 reso-
nance curves. We attribute this discrepancy to systematic drift
of the resonant frequency during the experiment. The variability
of the Estin/3-dB estimate is much larger than the variability of
the LS and WLS estimates.

IV. THEORETICAL STUDIES

A. Optimal Frequency Spacing
Based on and , we compute asymptotic standard errors
and using (14)–(21). In our first study, we equate the

resonance frequency to the model parameters of the corre-
sponding mean values computed from the observed resonance
curves (Table III). In all cases, the resonance curve is sampled
at 201 equally spaced frequencies. We define

(22)

where . In Fig. 6, we show the fractional
asymptotic standard error (ASE) of the estimates of and
as a function of . The optimal values of for estimation of
and are listed in Table IV.

TABLE III
PARAMETER VALUES USED IN THE SIMULATION � � �� GHz

(a)

(b)

Fig. 6. Fractional asymptotic standard errors of: (a) �� and (b) �� where
model parameters are equated to estimated values from real data. Values of
� are 74 081.32 and 45 888.34 for “air” and “sample loaded” cavity states,
respectively.

TABLE IV
THEORETICAL ASES (20) OF �� AND �� BASED ON DATA SIMULATED USING

TABLE III PARAMETER VALUES
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TABLE V
STATISTICAL PROPERTIES OF ESTIMATES OF � COMPUTED FROM SIMULATION
DATA INCLUDING: BIAS OF THE ESTIMATE, STANDARD ERROR OF THE
BIAS (SHOWN IN PARENTHESES), AND THE STANDARD ERROR OF THE
ESTIMATE. THE MEAN OF THE ESTIMATED VALUE OF ASE, ASE,

IS SHOWN FOR THE WLS METHOD

TABLE VI
STATISTICAL PROPERTIES OF � ESTIMATES COMPUTED FROM SIMULATION
DATA INCLUDING: BIAS OF THE ESTIMATE, STANDARD ERROR OF THE
BIAS (SHOWN IN PARENTHESES), AND THE STANDARD ERROR OF THE
ESTIMATE. THE MEAN OF THE ESTIMATED VALUE OF ASE, ASE,

IS SHOWN FOR THE WLS METHOD

B. Monte Carlo Study
We simulate data similar to observed data for both cavity

states. In Tables V and VI, we compare the performance of the
various methods for estimating and . In Table VII, we list
the statistical properties of our variance function parameter esti-
mates. For the lowest frequency spacing, the standard errors of
the estimates are lower than what is predicted by asymptotic
theory. For the other frequency spacings, the asymptotic theory
predicts the standard error of the estimate well. For all fre-
quencies, the standard error of the estimate is well predicted
by asymptotic theory.

V. SUMMARY

The frequency-dependent additive noise in measured mi-
crowave cavity resonance was characterized. The observed data
were the squared magnitude of a frequency-dependent complex
scattering parameter . Based on a parametric model for
the additive noise of the observed resonance curve, and
and other associated model parameters were estimated using
the method of WLS. Asymptotic statistical theory was used to
estimate the one-sigma uncertainty of and . We found that
the WLS method outperformed the 3-dB method and the Estin

TABLE VII
TRUE VARIANCE FUNCTION PARAMETERS IN SIMULATION STUDY AND
MEAN VALUES OF ESTIMATED VARIANCE FUNCTION PARAMETERS.

STANDARD ERRORS ARE SHOWN IN PARENTHESES

method (an example of the RCA method). For real data, the
WLS method yielded the most precise estimates. An advantage
to using the WLS method is that and estimates have less
variability than the other methods even for “noisy” resonance
curves. (“Noisy” data can occur due to inadequate signal aver-
aging and/or low coupling.) For one observed resonance curve,
the 3-dB method does not provide an associated uncertainty for
and whereas the WLS method does.
Given that the resonance curve was sampled at a fixed number

of equally spaced frequencies in the neighborhood of the reso-
nant frequency, we determined the optimal frequency spacing in
order to minimize the asymptotic standard deviation of the es-
timate of either or . For optimal estimation of , with our
experimental data, , where
is the largest frequency. For optimal estimation of , .
The fractional uncertainty of is smaller than the fractional
uncertainty of when mode interference is neglected.

APPENDIX A
ESTIN METHOD

If additive noise and background are neglected, the resonance
curve model can be written as

A good approximation for high values is

At the th frequency, define

and

Define

The values of and that minimize

are called and . The Estin estimator of is [1].
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APPENDIX B
THE 3-dB METHOD

Define

Define to be the positive value of such that
, and to be the negative value of such

that . According to the 3-dB method, we have

If there is no measurement at the frequencies corresponding to
or or is estimated

by a linear interpolation method.

APPENDIX C
VARIANCE FUNCTION DERIVATION: SPECIAL CASE

The quantity is the sum of the squared real and imagi-
nary components of the complex scattering parameter .
The measured resonance curve can be expressed as

(23)

where and . The mea-
sured real and imaginary components of are assumed
to be statistically independent realizations of the same Gaussian
process that has an expected value of 0 and variance . Thus,
at the th frequency, the expected value of is

(24)

and the variance of is

(25)

Since then

(26)
and

(27)

For this special case, (26) and (27) are consistent with (13) and
(14) as

(28)
and

(29)

where

and
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