
Software Testing: Protocol Comparison

James Yen, David Banks, P. Black, L. J. Gallagher, C. R. Hagwood, R. N. Kacker, and L.

S. Rosenthal

National Institute of Standards and Technology

Gaithersburg, MD 20899 USA

March 28, 1998

Abstract: Software testing is hard, expensive, and uncertain. Many protocols have been

suggested, especially in the area of conformance veri�cation. In order to compare the e�cacy

of these protocols, we have implemented a designed simulation experiment that examines

performance in terms of testing costs and risks. We �nd that no single method dominates

all others, and provide guidance on how to choose the best protocol for a given application.

1

Software Testing: Protocol Comparison

1 Software Testing

Many researchers have proposed protocols for testing software, inspecting software, and

deciding when to release software. Practitioners have also developed testing procedures,

which often work well but generally lack theoretical justi�cation. Our paper describes a

methodology to resolve uncertainty about the relative merits of competing protocols, and

presents results that indicate how delicate such comparisons can be.

The problem of testing software entails a tradeo� between the cost of testing and the

cost of undiscovered bugs. This balance is complicated by the di�culty in estimating the

number and severity of undiscovered bugs, and by the di�culty in creating realistic but

mathematically tractable models for bugs. Oddly enough, some of the seminal work in this

area appeared decades ago, in the context of proofreading. More recently, as software quality

became a key issue and as people acquired better empirical data on software bugs, the focus

has become more driven by applications.

In practice, conformance testers rely upon a straightforward, �xed-e�ort protocol. They

generate a (sensible) test for every speci�cation listed by the designers, then verify that the

code passes all or nearly all tests. This strategy is expensive, if the speci�cation list is long,

and often fails to �nd interactive
aws. Nonetheless, its simplicity makes it a commonly

used procedure.

A slightly di�erent procedure is used for tests made during software development. Here

one develops tests from a list of speci�cations. If the software fails few of these, then those

bugs are corrected and the software is released. But if the software fails many of the tests,

then managers meet to decide how much additional testing e�ort should be allocated. This

protocol is a form of two-stage sampling (Cochran, 1977).

A more mathematical approach is based on Starr's model for proofreading (1974). Here

one makes assumptions about the distribution of the costs of bugs, the di�culty of capturing

those bugs, and then applies dynamic programming to determine when the expected cost of

additional search exceeds the expected cost of the remaining bugs. Under Starr's assump-

2

tions, an explicit answer can be calculated; but small changes in those assumptions make

closed form solutions impossible. Although the robustness of Starr's model is a key concern

in practice, his approach opened up a new way of formulating these problems.

The most signi�cant of Starr's successors is the work of Dalal and Mallows (1988). They

dramatically weakened Starr's assumptions, but still obtained locally asymptotically mini-

max solutions. The price of this generality was an enormous increase in the mathematical

di�culty of solving the dynamic programming problem; this made their solution unappeal-

ing in practice. Also, despite their unusually direct attention to reality in weakening Starr's

assumptions, it remained unclear whether their solution had attractive small-sample prop-

erties.

Besides these main strategies, there are a number of other techniques for software testing.

Dalal and Mallows (1998) describe tests that exercise modules or functions in pairs or triples,

in the belief that most costly software errors occur as an interaction. Other workers use prior

information to focus testing e�ort on modules that are likely to contain bugs, as in Kuo and

Yang (1993, 1995). Related work, in the general context of optimal module inspection, has

been done by Easterling et al. (1991).

This paper describes a simulation experiment that enables comparisons among any set of

software testing protocols. Our simulation approach is generalizable, and has the potential

to impact larger issues in software management, such as the maintainance of old code, the

breakdown of modularity, and budgeting large projects. To illustrate the kinds of results

one can achieve, we compare Starr's protocol against �xed-e�ort protocols that approxi-

mate current conformance testing practice. In the future, we plan to extend the simulation

comparison to a more de�nitive set of protocols.

Section 2 describes Starr's procedure and the �xed-e�ort protocols that we compare.

Section 3 outlines the design of the simulation experiment. Section 4 discusses our results.

2 The Protocols

This section describes the two testing protocols compared in this paper. The �rst approxi-

mates versions of conformance testing, as currently practiced. The second is an implemen-

3

tation of Starr's optimal protocol (1974), with small adaptations to accomodate estimation

issues not treated in the original paper. We chose these protocols to compare because the

�rst is simple to simulate and informs practical application, while the second represents the

most mathematically sophisticated of the practicable protocols. If the latter does not o�er

much improvement over the former, then formal optimality properties are an unreliable guide

to software validation.

2.1 Conformance Testing

In conformance testing one exercises the prescribed functionality of the software code by

executing a series of tests. Usually this is done as black-box testing, where the tester has no

knowledge of nor access to the actual code (cf. Beizer, 1995). Black-box testing is common in

procurement, when a purchaser or third-party must verify that proprietary software satis�es

performance speci�cations. At the other extreme is white-box conformance testing, as is

often done in-house by the software developer; here the testers have complete access to the

code. In between these extremes is gray-box testing, where some of the code is available or

there is knowledge of the organization and functions of the modules (cf. Banks et al., 1998).

All three kinds of conformance testing rely heavily on problem-speci�c information. This

dependence on context is di�cult to micro-model, and thus, as a �rst pass, we approximate

conformance testing by a �xed-e�ort random testing protocol. The testing e�ort may be

heavily concentrated in speci�c modules (or functions) that the tester believes to be prob-

lematic, but within modules, each probe is independent of the others. From discussions

with people at NIST who perform such tests (especially in the black-box scenario), there is

broad agreement that the outcome from one test is roughly independent of the outcome of

another. Thus the basic protocol consists of a �xed number of tests, the outcomes of which

are approximately independent.

We examine six kinds of �xed-e�ort random testing protocols, corresponding to di�erent

levels of e�ort. The number of probes or tests is J , which takes the values 10, 50, 100,

500, 1000, and 5000. This range was chosen to bracket typical practice in small, non-critical

software validation. For larger projects, or ones in which software failure has catastrophic

consequences, one usually �nds that testing is either managed independently for di�erent

4

modules, or that a more complex multi-stage inspection protocol is used. Both extensions

will be addressed in subsequent work.

2.2 Starr's Protocol

Starr (1974) gave an explicit solution for the problem of deciding when to stop proofreading

a document, assuming that each undiscovered typographical error entails a random cost and

that the proofreader is paid by the hour. For this situation, it is obvious that after a certain

point, it becomes unpro�table to continue proofreading. However, �nding that point entails

the solution of a nontrivial dynamic programming problem.

In this paper, we develop an implementation of Starr's protocol that applies to soft-

ware. The key extensions are methods to estimate the number of undiscovered bugs and the

distribution of their costs, as discussed below.

Consider a set with a large (in�nite) number of objects, of which N are distinguished.

The problem is to identify as many as possible of the group of N objects, where there is a

cost for searching and a reward for �nding. The objects could be typographic errors, software

bugs, or even prey. Starr assumed that the times to capture of the distinguished objects

were exponentially distributed with rate � (and mean 1=�), meaning that the cumulative

distribution function of the capture time X of an individual prey has the form

P [X < x] = 1� e��x; x > 0 (1)

and the probability density of X is

f(x) = �e��x; x > 0: (2)

The value, or payo�, of the bugs upon capture are independent random variables independent

of the capture times with common mean a|thus the fact that bug is hard to catch implies

nothing about its payo�. Starr assumes that N; �, and a are all known.

Although the above assumptions may seem unrealistic, they are for the most part present

in the Jelinski-Moranda (J-M) model (1972), which is the most commonly used theory for

analyzing software failure data. In the J-M model, the capture times for the software bugs

have the same distributional form as in Starr's model. However, N and � are not assumed

5

to be known, and often the payo� values are assumed to be constant. Note that the capture

model implies that once a bug is \captured," it is instantaneously repaired without intro-

ducing new defects. Dalal and Mallows (1988) work with probabilistic models of software

testing that are much more general and thus have the capacity to be more realistic.

Starr's analysis produced a stopping rule that is asymptotically optimal given certain

assumptions. Let b be the unit cost of searching, and kt be the number and vt be the total

value of the bugs found by time t. Starr's stopping rule maximizes expected net payo�,

where the net payo� is vt � bt, the total payo� of the bugs captured minus the search cost,

which is b times the length of the search.

The solution maximizes the expected total payo� over all possible stopping schemes that

depend only upon the present and past (thus, for example, one can't use a rule that says

\Stop when the undiscovered bugs have total value less than d" because one doesn't know

the value of future bugs). Starr's optimal procedure is the one that stops searching at the

�rst time at which

kt � N � b=(a�): (3)

This optimal scheme says that one should continue searching until the number of bugs

remaining in the code is no more than b=(a�), the expected cost of capture for a single bug.

Of course, when one starts to debug software one does not know N , the actual number of

bugs present, or even the rate � or the average payo� a of the bugs. Therefore our attempt

to automate Starr's procedure in a conformance testing context involves producing estimates

N̂ ; �̂; and â after each capture, and plugging them into (1). Thus we would stop searching

at the �rst time that the following inequality holds:

kt � N̂ � b=(â�̂): (4)

This approximation to Starr's rule is asymptotically valid, and its small sample properties

should be very similar to those of Starr's theory.

We need now to discuss parameter estimation procedures that use only the real-time

incoming data from the current software project. The obvious estimator of the average value

a of the bugs is simply the arithmetic mean of the individual payo�s. But the accuracy of

this estimate depends strongly upon the assumption of independence between payo� and the

6

length of time to catch the bug. If this is suspect, one should consider Bayesian methods, as

described in section 3.

The simultaneous estimation of N and � is problematic and has produced considerable

work in the literature, most of which features maximum likelihood methods in censored or

truncated situations. For example, Deemer and Votaw (1955) produce a maximum likelihood

estimate of � by considering the capture times until a time T to be observations from an

exponential distribution truncated at T . However, this maximum likelihood estimator often

turns out to be 0, which is impractical in our application. Similarly, in a paper on estimating

population size, Blumenthal and Marcus (1975) show that the maximum likelihood estimator

of N is often in�nite. They attempt to alleviate that problem through a Bayesian analysis.

Joe and Reid (1985) produce di�erent modi�cations of the maximum likelihood methods

that utilize interval estimates and harmonic means. These are the adjusted estimates in our

implementation of Starr's method.

In the following discussion, we follow closely the approach of Joe and Reid (1985). Sup-

pose that the N capture times T1; : : : ; TN are independent and identically distributed ac-

cording to an exponential distribution with rate �. Let t(1); : : : ; t(kt) be the �rst kt ordered

capture times. Set w =
Pkt

i=1 t(i)=t. Assume that kt � 1; then Joe and Reid state that

the maximum likelihood estimator of � as a function of N is kt=t(w + N � kt), so that the

maximum likelihood estimator N̂ is the value of N that maximizes

g(N jw; kt) =
ktY

i=1

N � i + 1

N + w � kt
; N = kt; kt + 1; : : : (5)

Joe and Reid then divide the resulting values of the maximum likelihood estimator N̂ into

three cases:

Case 1: If w � kt=
Pkt

i=1(1=i), then N̂ = kt:

Case 2: If kt � 2; and w � (kt + 1)=2 then N̂ =1.

Case 3: If kt � 2 and

kt=
ktX

i=1

(1=i) < w < (kt + 1)=2; (6)

7

then the maximum likelihood estimator is the value of k satisfying m
k;kt � w � m

k+1;kt,

where

mk;r = [1� f(k � r)=kg1=r]�1 � k + r; (7)

for positive integers r < k.

Cases 1 and 2 are known as the degenerate cases. There is special trouble in Case 2,

where the estimate N̂ =1 is useless for implementation of Starr's procedure, as it leads to

the estimate �̂ = 0: Joe and Reid produce modi�ed estimators of N that circumvent this

di�culty. These estimates are based on their proposed interval estimates (N1; N2) of N ,

where

N1(c) = inf[N � kt : g(N jw; kt) � cg(N̂ jw; kt)] (8)

and

N2(c) = sup[N � kt : g(N jw; kt) � cg(N̂ jw; kt)] (9)

for a given c between 0 and 1. Joe and Reid advocate combining the interval endpoints

N1; N2 in a harmonic mean to produce an estimate of N of the form

~N = [1
2
(N�1

1 +N�1
2)]�1: (10)

For Case 1, N1 = kt, so that ~N = [1
2
(kt

�1 + N�1
2)]�1: and for Case 2, N2 = 1; leading to

~N = 2N1.

In our implementation of Starr's procedure, we use this harmonic mean estimator ~N as

our estimator N̂ for the degenerate cases but use the maximum likelihood estimator in the

nondegenerate case. Then, N̂ is used to produce an estimate �̂ of � by substituting N̂ for

N in the maximum likelihood formula N = kt=t(w +N � kt). Simulations show that these

estimates are quite good when kt is large and is a substantial proportion of N . As would be

expected, the performances of these estimators are greatly diminished when kt is smaller in

number and when it is a smaller proportion of N .

These methods for estimating the unknown parameters needed to generate Starr's stop-

ping rule are not entirely satisfactory. Although testers do not know the exact values of N; �;

and a, they often have considerable prior information about these parameters from similar

software projects that have been completed in the past. Also, experienced programmers have

8

a good feel for the approximate rate of bugs present and their relative costs. These consid-

erations indicate a sequential Bayesian approach for updating prior information as data on

the current software project become available. In particular, use of prior information in esti-

mating a, the average value of the bugs, is especially important. One may have many minor

bugs but a few important bugs. If, at the beginning, the discovered bugs are all minor, then

a procedure that estimates a without using prior information tends to underestimate the

average payo�. This error leads Starr's procedure to premature and potentially disastrous

termination. In addition, it may be di�cult to assess the value of each bug as it is found;

in contrast, the estimation of N and � requires only the tabulation of the bugs caught and

their capture times. Starr's procedure should bene�t from a Bayesian estimate of a.

Starr's research was in
uential, leading Dalal and Mallows (1988) to generalize the re-

sults in ways that were more faithful to the conformance testing paradigm. In particular,

they allowed the costs of the bugs to be time dependent, they dropped the distributional

assumptions on the length of time needed to �nd the bugs, and they obtained asymptotic

results suggesting that the method applies when code is of inhomogeneous quality. However,

it remains unclear whether their asymptotic results enable testers to achieve signi�cant cost

reductions in the �nite-horizon reality of standard software testing.

3 Simulation

We need to assess competing protocols for software testing. Previous discussion has ref-

erenced the most promising strategies available in the literature. Here, we concentrate on

comparing Starr's protocol with several versions of �xed-e�ort random testing.

Ideally, one wants an empirical comparison. By applying each testing protocol across the

same set of real software with known bugs and comparing the results, a de�nitive evaluation

becomes easy. But this approach is too expensive. Thus we replace empirical evaluation with

simulation. The plan is to simulate di�erent kinds and intensities of bugs in code, then apply

each protocol and compare their success. The parameters that govern bug characteristics

are chosen to match the available empirical data and expert opinion.

We emphasize that the simulation does not produce pseudocode that might actually

9

compile; rather, it creates lists of mathematical objects that are abstract representations

of bugs and their characteristics, together with enough contextual information that the

protocols can operate. Speci�cally, the simulation creates a list of records, each of which

represents a single bug. The attributes of the record indicate various characteristics of that

bug. The characteristics used in our simulation are:

Module: This indicates in which module or modules the bug occurs. (We may seek to

simulate design structures among the modules as well, e.g. linear, tree, or parallel, but

this aspect is secondary.)

Capture Status: A 1 if the bug has been captured and 0 otherwise.

Catchability: This is a score that measures how hard the bug is to discover.

Payo�: This indicates the reward for �nding and repairing that particular bug or the cost

to the producer or tester if the bug is not found.

In future work additional �elds will be added, such as the probability that correction intro-

duces a new bug and pointers to other bugs in the same cluster, so that if one bug is found,

others in its clusters can have their Catchability scores revised.

A debugging process is simulated using the above quantities and each of the inspection

protocols. All the capture times in this simulation take the form of the number of discrete

search passes that have been performed on the bug list. To conduct a single search pass

through a particular module, one selects one of the bugs in the module at random. If that

bug has not been captured (found and �xed), then a uniform random number is generated.

If that random number is less than the catchability score C for that bug, then that bug is

considered to have been discovered; otherwise, that search step fails.

The complete �delity of the simulation to a real debugging procedure may be less impor-

tant than the generation of simulation data that is su�ciently accurate that one can assess

the relative performances of di�erent search protocols. Often qualitative di�erences emerge

even from relatively simplistic simulations. For example, it is important for practitioners to

develop a feel for the number of passes J that are needed for successful conformance testing

on di�erent qualities of software. Similarly, those who implement some version of Starr's

10

protocol need to understand its robustness to failure in the underlying assumptions. Neither

of these gains depends strongly on the details of the simulation.

Our approach is inexpensive and extremely
exible|it can address other problems in

software management than just inspection. If a user feels that the instantiation of the

technique is unrealistic, it is simple to add new parameters and rerun the experiment. Other

attributes can be included to make the modeling more realistic. For example, one could

categorize the type of error (typographic, logical, or an interaction between modules), or

model bug clusters and �x failures. The simulation we report is an instructive pilot, based

upon a discrete analog of the J-M model.

The simulation experiments were run for the simple case of a single module. Future

tests are planned for multiple modules, each with di�ering characteristics, and incorporating

some simple structures for module connectivity. Represented in the simulation are the cases

where there are 10, 20, 50, and 150 bugs. These cases are meant to represent a small range

of programs from short, clean code to that which is relatively long and buggy. For these

experiments, we used b = 0:005 as the unit cost of searching; the absolute value of this

quantity is unimportant|what matters is its ratio to bug payo�s.

The Catchability score takes values in the unit interval. The lower the score, the less

likely it is that a bug will be found. Here they are randomly generated from a Beta(p; q)

distribution with three di�erent pairs for (p; q):

1. (p; q) = (0:5; 0:5), giving a symmetric U-shaped distribution

2. (p; q) = (1; 1), giving the uniform (rectangular) distribution

3. (p; q) = (10; 1), giving an asymmetric distribution with most of the weight concentrated

near 0.

These values span a range of plausible scenarios. The �rst is a reasonable representation of

code that is tested during manufacture, since many easily found bugs will be present; it also

applies to conformance testing, when a vendor has failed to implement some functionality.

The last distribution speci�cally models third-party conformance testing, where the easy

bugs have largely been found and removed in-house before inspection.

11

As to the payo� values, these need to be positive numbers that can take very large

values (representing critically important bugs). Here they are randomly generated from an

exponential distribution with unit mean. Thus the typical ratio of a bug payo� to a unit of

inspection time is 200; our domain experts consider this a reasonable starting point.

Of course, all of the above parameters, including the number of modules and bugs, can

be adjusted to accomodate a very wide range of possible scenarios. In practice, a smart

software company might run a preliminary simulation tailored to their circumstance in order

to cost out the appropriate amount and kind of inspection need for a particular piece of code.

The number and characteristics of modules, the structure of the modules, and the number

of bugs in each module can be �xed or randomly generated (from a Poisson distribution, for

instance). Similarly, the various catchability and cost indices do not have to be randomly

generated, but can be �xed by the user to ensure that the protocol choice will be sensitive

to, for example, the presence of elusive, expensive bugs.

4 Results

The simulation was replicated 10 times for each protocol and each combination of Catchabil-

ity level and bug count. Thus there were 10 experiments in which 150 bugs were generated

with random catchabilities drawn from a Beta(0.5, 0.5) distribution, along with independent

random payo�s from an Exponential(1) distribution. Similarly, there were 10 experiments

for each of the other bug counts and catchability distributions. The same catchabilities and

payo�s were then used for each of the seven protocols (Starr's protocol and six levels of

�xed-e�ort random search). This reuse of the random values across protocols is a variance

reduction technique that allows more powerful inference on contrasts among the protocols.

For each replication, we measured four quantities on the performance of the protocol.

The �rst is the net payo�, which is the payo� of the bugs captured minus the cost of the

search. The second is the total cost of the bugs left uncaptured by the search. To combine

the previous information, we calculated a penalized net score, which is the total payo� minus

the cost of undiscovered bugs|this represents the best composite measure for most practical

applications. Finally, we recorded that total search time; for the �xed-e�ort protocols, this

12

equals J , but there is large variation in search time for Starr's protocol.

These four numbers were averaged across the ten replicates to produce the numbers in

the following tables. Table 1 shows the results from the experiment in which there are 10

bugs, with catchability scores drawn from the Beta(0.5, 0.5) distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� -13.86 3.85 7.07 7.63 6.54 4.72 -15.16

Omitted 1.98 6.12 2.70 1.90 0.98 0.31 0.18

Penal. Net -15.84 -2.27 4.37 5.73 5.56 4.41 -15.34

Avg. Time 4380.3 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 1: Average performance criteria for 10 bugs with Beta(0.5, 0.5)

catchability distribution.

To read Table 1, the �rst row shows the net payo� for each of the seven protocols.

Note that Starr's protocol performed rather poorly, but that the �xed-e�ort protocols with

J = 100; 500 did rather well. The second row shows the average cost of undiscovered bugs.

Here Starr's protocol is more competitive, but protocols with J = 1000; 5000 do even better.

The third row combines the information; the J = 500 protocol wins on this criterion. And the

fourth row shows that, on average, Starr's protocol had di�culty in stopping early enough.

The other 11 tables are shown in the appendix and provide a more nuanced description.

In particular, it is notable that Starr's apparently poor performance diminishes as the number

of bugs increases and the di�culty of catching the bugs decreases. These results should be

interpreted provisionally, but it sounds a clearly cautionary note in selecting the inspection

protocol.

The performance of the Starr procedure as implemented as compared to random testing

is mixed. The advantage of Starr's is that it provides a stopping time. Fixed-e�ort testing

can be better than Starr's procedure in terms of net payo� if one knows the \right" value

of J , the number of probes. The more bugs there are and the harder they are to �nd, the

larger J should be. However, it is di�cult to know an appropriate value of J a priori; if

one chooses a bad value of J , then it is easy to do poorly, either by searching much too long

13

or not long enough. Starr's stopping rule as implemented does not choose the ideal search

time, but it is usually close to the correct magnitude of J .

More generally, our interpretation is that the mathematical optimality results obtained

by Starr do not transfer reliably into practical bene�t (of course, this may partly re
ect

our choice of estimates used in implementing the protocol). Similarly, there is no value of

J for �xed-e�ort testing that is universally superior. This is unsurprising|in problems of

this complexity, no method can be expected to dominate all the competitors. Rather, some

protocols are better for certain situations, while others excel in di�erent situations. The

value of the simulation study is that it enables practitioners to understand the factors that

distinguish the situations, thereby supporting intelligent choice of the protocol for a speci�c

application.

For the future, we shall experiment with more realistic situations across a broader range

of protocols. These protocols will include versions of Dalal and Mallows' rule (1988), as well

as two-stage protocols that undertake a preliminary set of probes in order to determine how

many probes to allocate in the second stage. We also plan to modify the methods of clinical

trials, used for approving drug release, to support inspection decisions about whether to

release software.

5 Appendix: Simulation Tables

The following tables display the results from a 7�3�4 simulation experiment that compares

seven inspection protocols across three levels of catchability distribution and four levels of

bug counts. Results are expressed as averages of ten replicates, for four di�erent criteria.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 8.65 3.66 11.40 13.60 15.34 13.26 -6.07

Omitted 10.35 15.85 7.91 5.46 1.72 1.30 0.64

Penal. Net -1.69 -12.20 3.48 8.14 13.62 11.95 -6.71

Avg. Time 112.1 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 2: Average performance criteria for 20 bugs with Beta(0.5, 0.5)

catchability distribution.

14

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 34.68 4.57 18.55 28.24 40.31 40.04 23.45

Omitted 13.01 45.06 30.89 20.94 6.88 4.64 1.23

Penal. Net 21.68 -40.49 -12.34 7.30 33.43 35.40 22.22

Avg. Time 399.0 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 3: Average performance criteria for 50 bugs with Beta(0.5, 0.5)

catchability distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 113.60 4.38 20.11 35.69 96.19 110.50 111.83

Omitted 32.97 148.36 132.43 116.60 54.10 37.28 15.96

Penal. Net 80.63 -143.98 -112.32 -80.92 42.08 73.22 95.87

Avg. Time 1242.4 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 4: Average performance criteria for 150 bugs with Beta(0.5, 0.5)

catchability distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� -41.55 5.92 9.87 9.88 8.73 6.17 -13.74

Omitted 1.63 5.29 1.14 0.88 0.03 0.09 0.00

Penal. Net -43.18 0.63 8.73 9.00 8.70 6.07 -13.74

Avg. Time 10237.6 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 5: Average performance criteria for 10 bugs with Beta(1.0, 1.0)

catchability distribution.

15

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� -6.71 3.29 11.06 12.82 14.60 12.81 -6.89

Omitted 4.05 14.78 6.80 4.79 1.01 0.31 0.00

Penal. Net -10.76 -11.49 4.26 8.03 13.59 12.50 -6.89

Avg. Time 4155.9 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 6: Average performance criteria for 20 bugs with Beta(1.0, 1.0)

catchability distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 25.96 4.47 17.22 27.51 43.81 43.08 27.65

Omitted 25.78 48.69 35.73 25.19 6.89 5.12 0.55

Penal. Net 0.18 -44.22 -18.51 2.32 36.93 37.97 27.10

Avg. Time 290.4 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 7: Average performance criteria for 50 bugs with Beta(1.0, 1.0)

catchability distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 94.67 4.79 18.25 35.19 99.03 114.05 112.75

Omitted 41.89 137.29 123.64 106.45 40.61 23.09 4.38

Penal. Net 52.78 -132.50 -105.39 -71.26 58.42 90.96 108.37

Avg. Time 1116.3 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 8: Average performance criteria for 150 bugs with Beta(1.0, 1.0)

catchability distribution.

16

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� -6.78 0.49 2.53 3.99 5.09 2.94 -16.42

Omitted 1.77 8.05 5.80 4.09 0.99 0.65 0.00

Penal. Net -8.55 -7.56 -3.26 -0.10 4.10 2.29 -16.42

Avg. Time 2717.3 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 9: Average performance criteria for 10 bugs with Beta(10.0, 1.0)

catchability distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 8.40 1.80 3.59 5.37 13.53 13.46 -4.66

Omitted 10.62 20.18 18.19 16.16 6.00 3.57 1.69

Penal. Net -2.23 -18.39 -14.59 -10.79 7.54 9.89 -6.35

Avg. Time 601.2 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 10: Average performance criteria for 20 bugs with Beta(10.0, 1.0)

catchability distribution.

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 29.65 0.64 4.43 7.57 25.46 31.86 22.95

Omitted 15.80 51.90 47.91 44.52 24.63 15.73 4.64

Penal. Net 13.85 -51.27 -43.47 -36.94 0.84 16.13 18.31

Avg. Time 1428.6 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 11: Average performance criteria for 50 bugs with Beta(10.0, 1.0)

catchability distribution.

17

Starr J = 10 J = 50 J = 100 J = 500 J = 1000 J = 5000

Net Payo� 74.46 1.01 4.32 5.79 33.31 50.95 86.93

Omitted 53.87 144.89 141.38 139.66 110.15 90.00 34.03

Penal. Net 20.60 -143.88 -137.05 -133.87 -76.84 -39.06 52.90

Avg. Time 3524.3 10.0 50.0 100.0 500.0 1000.0 5000.0

Table 12: Average performance criteria for 150 bugs with Beta(10.0, 1.0)

catchability distribution.

References

[1] Banks, D., Dashiell, W., Gallagher, L., Hagwood, C., Kakcer, R., and Rosenthal, L.

(1998). Software testing by statistical methods. NISTIR-6129. National Institute of

Standards and Technology, Gaithersburg, MD.

[2] Beizer, B. (1995). Black-Box Testing Techniques for Functional Testing of Software and

Systems. Wiley, New York, NY.

[3] Blumenthal, S. and Marcus, R. (1975) Estimating population size with exponential

failure. Journal of the American Statistical Association, 70,913-922.

[4] Cochran, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York, NY.

[5] Dalal, S. R., and Mallows, C. L. (1988). When should one stop testing software? Journal

of the American Statistical Association, 83, 872-879.

[6] Dalal, S. R., and Mallows, C. L. (1998). Covering designs for testing software. Submitted

for publication.

[7] Deemer, W. and Votaw, D. (1955) Estimation of parameters of truncated or censored

exponential distributions. Annals of Mathematical Statistics, 26, 498-504.

18

[8] Easterling, R. G., Spencer, F. W., Mazumdar, M., Diegert, K. V. (1991). System-based

component-test plans and operating characteristics: Binomial data. Technometrics, 33,

287-298.

[9] Jelinski, Z. and Moranda, P. (1972) Software Reliability Research, in Statistical Com-

puter Performance Evaluation, W. Freiberger, ed. London: Academic Press, 465-484.

[10] Joe, H. and Reid, N. (1985). Estimating the number of faults in a system. Journal of

the American Statistical Association, 80, 222-226.

[11] Kuo, L., and Yang, T. (1993). A sampling-based approach to software reliability. Pro-

ceedings of the American Statistical Association Section on Statistical Computing, 165-

170.

[12] Kuo, L., and Yang, T. (1995). Bayesian computation of software reliability. Journal of

Computational and Graphical Statistics, 4, 65-82.

[13] Starr, N. (1974). Optimal and adaptive stopping based on capture times. Journal of

Applied Probability, 11, 294-301.

19

