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Metric Models for Random Graphs
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Abstract: Many problems entail the analysis of data that are independent and
identically distributed random graphs. Useful inference requires flexible probabil -
ity models for such random graphs; these models should have interpretable loca-
tion and scale parameters, and support the establishment of confidence regions,
maximum likelihood estimates, goodness-of-fit tests, Bayesian inference, and an
appropriate analogue of linear model theory. Banks and Carley (1994) develop a
simple probability model and sketch some analyses; this paper extends that work so
that analysts are able to choose models that reflect application-speci fic metrics on
the set of graphs. The strategy applies to graphs, directed graphs, hypergraphs, and
trees, and often extends to objects in countable metric spaces.

Keywords: Bernoulli graphs; Clustering; Gibbs distributions; Holland-Leinhardt
models; Phylogeny; Trees.

1. Introduction

There are many situations which give rise to graph-valued random
objects. The following two examples offer a partial indication of the range of
application and the different types of graph structures that may be encoun-
tered.

Constantine’s work was supported in part by a Fulbright grant.

Authors’ addresses: David Banks, Statistical Engineering Division, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, USA. Gregory M. Constantine,
Departments of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, USA.



200 D. Banks and G.M. Constantine

1. Trees with Unlabeled Interior Nodes. Molecular biologists often
build a phylogenetic tree from amino acid discrepancies in a specific
protein sampled from many species. When multiple proteins are
used, one has a random sample of descent trees, each with labelled
terminal nodes (the species) and unlabelled interior nodes. Strategies
for estimating the central descent tree and placing a confidence
region around it are given in Trang and Speed (1992) and Felsenstein
(1985). The same problem arises in cluster analysis — some practi-
tioners apply many different clustering algorithms, obtain many trees,
and then seek to estimate the central tree (cf. Fowlkes and Mallows
1983).

2. Graphs with Labelled Nodes and Undirected Edges. Social network
theorists (e.g., Krackhardt 1987, and Banks and Carley 1994) often
analyze samples of friendship graphs. Each respondent reports a
graph in which nodes represent the group members and edges indi-
cate their perception of a friendship relation between the correspond-
ing members. Since each respondent has only a noisy understanding
of the relationships, the researcher wants to estimate the central graph
and then determine a confidence region around it. This problem may
also be modelled as a graph inspection problem with random error
(cf. Constantine 1991).

These examples are indicative, but not exhaustive. Another common random
object is a graph with directed edges (cf. Holland and Leinhardt 1981).

Early methods for analyzing random graphs (not trees) were pioneered
by Moreno (1934), Festinger (1949), and Katz (1947, 1953, 1955). Statistical
investigation remains active; the usual perspective has been based on log-
linear models, following the work of Holland and Leinhardt (1981) and sub-
sequent research by Wasserman (1987), Frank and Strauss (1986), Wong
(1987), and Strauss and Ikeda (1990). Their work has focused on the study of
a single random graph, in which edges are random outcomes whose distribu-
tion depends upon features of the nodes. But Bloemena (1964), Capobianco
(1970), and Frank (1976, 1988) treat problems that specifically involve ran-
dom samples of graphs, which matches the interest of this paper.

Strauss and Freeman (1989) review stochastic models for graphs, and
Fienberg, Meyer, and Wasserman (1985) survey statistical methods in social
network analysis. In parallel, sociological literature focused on metrics for
posets (cf. Boorman and Olivier 1973). Since some posets can be represented
as binary trees, this work bears on the analysis of random trees that is central
to this paper. Barthélemy, Leclerc, and Monjardet (1986) and Day (1986)
offer general reviews of these methods.
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In contrast, our research uses a metric to define distributions on sets of
graphs, and thus automatically appropriates a well-studied arsenal of statisti-
cal techniques. This enables one to obtain maximum likelihood estimates of
central tendency and spread, perform hypothesis tests, assess fit, and even
develop an analogue of the linear model. The application of these methods is
illustrated through the analysis of data examined by Fowlkes and Mallows
(1983).

2. The Model

Let G be a finite set of graphs with elements g; depending on the appli-
cation, these might be trees, directed graphs, networks, or other similar
objects. Let R* be the nonnegative reals, and denote by d: G X G — R* an
arbitrary metric on G. Given d, we mimic Mallows’s method (1957) of set-
ting probabilities on the set of permutatlons For graphs, Mallows’s approach
yields the probability measure H(g *,1), defined by

Penlgl=clg" e ™) VeeG, (1)

where g € G is the modal or central graph, T 1s a concentration parameter,
and c(g*,7) is a normalizing constant. Thus g and T are analogous to the
mean and precision of a normal distribution, respectively, and index the fam-
ily of probability distributions {H(g",7)}. If T = 0, one has uniform measure
on G, but T >> 0 implies concentration about g*. These parameters index the
family of probability distributions {H(g*,7)}.

Other measures for random graphs have been proposed. Mathemati-
cians use three basic families (cf. Bollobds 1985, Ch. 2), but the models are
insufficiently rich for statistical apphcatlons The chief deficiency is the lack
of a location-scale interpretation; {H(g",7)} automatically avoids this limita-
tion,

One may characterize {H(g" 1)} according to entropy. In accordance
with information-theoretic practice, define

e)=- % p(@)lnp(g)

geG

as the entropy of the probability distribution that places probability p(g) on
g € G. The distribution which maximizes e(p) (the Gibbs distribution; see
Geman and Geman 1975) provides the greatest sampling diversity.

Proposition 1: Distinguish an element g* of G. The probability distribution
that maximizes the entropy e(p) subject to the constraint that



202 D. Banks and G.M. Constantine

Y dg.gMp@)=v )
geG
satisfies p(g) = c(g*,1) e 92 ), where
c@g' = Y e,
geG

and 7 is the unique solution to

dln c{g*,'cg

It =V, 3

(A proof is in the Appendix.)

Proposition 1 implies that {H(g" 1)} is the maximum-entropy family
(Gibbs family) over G under statistically natural constraints. Note that the
constraint determines the dispersion of the distribution around the “‘central’’
element g*, so that specifying v is equivalent to specifying T. For example,
T =0 if and only if v is the arithmetic average of the values d(g,g"); this
gives uniform measure on G. Bernardo and Smith (1994, 207-209) discuss
data modeling through distributions that maximize entropy under moment
constraints.

Alternative characterizations are possible in two special cases impor-
tant to social network theory. Let G, be the set of graphs on m distinct nodes
with undirected (untagged, unweighted) edges and no loops. Frank and
Strauss (1986) used the Hammersley-Clifford Theorem (Hammersley and
Clifford 1971, see also Strauss 1983) to show that all probability measures on
G,, can be written in the form

Pplgl=cexp [Z ou| VgeGy, “)

Acg

where ¢ is a normalizing constant and o4 is a nonzero constant if and only if
A is a clique of the nonrandom dependence graph D. In Frank and Strauss’s
context, the vertices of D are all possible edges on the m nodes of g; a clique
in D is a subset of the vertex set of D that is either a singleton set or has the
property that all pairs of elements are connected by edges in D. The graph D
determines the dependence structure between random edges in g; if D con-
nects a specific pair of edges, then those edges in g are conditionally depen-
dent given the other edges in g. Note that the models described by (4) strictly
include those described in (1), because (1) does not allow bimodal distribu-
tions.

When the dependence graph D is edgeless, one has the Bernoulli graph
model, in which the presence or absence of each edge is an independent Ber-
noulli trial (with possibly different probabilities). Bollobds (1985, Ch. 2)
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describes the model, and it has been used by Banks and Carley (1994) to
analyze friendship networks. To show that the Bernoulli graph model is a
special case of {H(g" 1)}, let I {eij: £1.82} be an indicator function taking
the value 1 when the edge ¢; ; linking nodes i and j is present in exactly one of
the graphs g; and g,, but is otherwise zero. Thus the indicator function
notices discrepancies between the edges in the two graphs. The Frank and
Strauss representation enables the following result.

Proposition 2: A probability measure on G,, is a Bernoulli graph model if
and only if it can be written as (1) for a semimetric of the form

dp(81,82) = X, a;;I{e;;: 81,82} (5)

i<j

where the a;; 2 0. (A proofis in the Appendix.)

~As is apparent from the proof of Proposition 2, the a;; are the log odds
ratios of the edge probabilities, where the numerator of the ratio contains the
least probable outcome. When a;; = 1 for all i,j, this reduces to the Hamming
metric (1950). The assumption of independent edges that characterizes this
model is equivalent to a concept of distance based upon a weighted sum of
edge discrepancies. This concept contrasts with metrics that imply edge
dependencies, which may be more appropriate for certain datasets.

A similar result holds for the p; model proposed by Holland and
Leinhardt (1981), which extends the Bernoulli graph model to the set G,, of
loopless graphs with directed edges. The p; model imposes additional struc-
ture on the o, terms; edges in the p; model are still independent, but with
probabilities that depend on node characteristics.

Proposition 3: A probability measure on G,, is a Holland-Leinhardt P1
model if and only if it can be written as (1) for a metric of the form

dur(81,82) = X1 bjj(g1) = b;(g2) |, (6)
i<j
where the b;; are specified in the proof in the Appendix, and the sum is over
pairs of nodes.

These results provide some insight into the relationship between the
models given by (1) and models previously proposed, and show that the Ber-
noulli graph model and the p; model are maximum entropy distributions.
However, from a practical standpoint, one also wants models that are comput-
able and interpretable. The next section addresses these points.



204 D. Banks and G.M. Constantine

3. A Simple Case: Random Graphs

For arbitrary metrics d and general sets of graphs, applying the model
in (1) requires numerical methods. But some choices reduce computation,
and we use such a case to illustrate a range of inferential tools. This section
considers the Hamming metric dy on the set G,,, consisting of graphs on m
labelled nodes having undirected edges and no loops. It is a prelude to Sec-
tion 4, which treats trees.

Hamming (1950) introduced a metric that counts the number of edge
discrepancies between two graphs. It has a geometric interpretation because

the elements of G,, can be viewed as the vertices in an r = ['g ] dimensional

unit hypercube. A particular vertex with a given binary sequence indicates
the graph with edges determined by the ones in the sequence and non-edges
determined by the zeroes in the sequence. Vertices (graphs) that are adjacent
to g are a single edge change from g. The distance between graphs is just the
Hamming distance between the sequences of zeroes and ones that identify the
corresponding hypercube vertices, or the shortest path in the hypercube
between those vertices.

The symmetry of this hypercube geometry ensures that the normalizing
constant cannot depend on g*. In this case, the underlying binomial structure
implies:

* r
c(g*’,c)—l - Z e—Tdu(g,g ) = Z []’;] e-'tk — (1 + e—'v)r' (7)
2€G, k=0

For other metrics, it is often still possible to find representations analogous to
the hypercube geometry, so that the distance between objects is defined as the
minimum path metric associated with a graph whose vertices are the objects
and whose edges correspond to an elementary transformation between
objects. If that representation has the property that structure appears the same
from each vertex’s perspective, then the normalizing constant is independent
of g ¥,

The maximum likelihood estimate of g* based on the random sample
g1+ &n 1S

* n
g =argmingg Y dp(g.g), ®)
i=1
where the argmin function gives the value in G,, that minimizes the argu-
ment. Barthélemy and Monjardet (1988) refer to the quantity X dy(g;,g ™) as
the remoteness function, and the solutions of (8) as medians. A straightfor-
ward argument shows the maximum }ikelihood estimate, or median, is found
by majority rule; i.e., an edge is in g if and only if it is present in more than



Metric Models for Random Graphs 205

half of the sample graphs (non-uniqueness may arise when # is even). Given
g , the maximum likelihood estimate of < follows from differentiation; i.e.:
-lyn
z= —In (rn) Zz =1 dH(gl’g )* ‘ (9)
1= (rn) 27 dy(gi.8 )

Thus we have estimates of the central graph and the concentration parameter.

After estimation, one wants to assess goodness-of-fit. The discreteness
of the parameter space precludes the usual tests. Instead, we recommend a
test in two steps: the first checks that the observed number of sample graphs
at distance k from g conforms with the model, . and the second checks that
the sample is symmetrically distributed around g .

1. The k-th orbit around g" is the set of graphs that are distance k from
the central graph g*. From binomial probability, the proportion of

sample observations expected in the k-th orbit is er] (1 +e™Te*,

A binomial plot, or a goodness-of-fit test, can discover deviations
from this model. Of course, this procedure is not exact, since one
must estimate T and g * from the data,

2. Let X; be an r-component vector of zeroes and ones such that the
ones denote wh1ch edges are discrepant between g; and g *; similarly,
let s; = d(g;,g"). Then X1, ...,X, are independent, and under the
hypothesized model, the condltional distribution of X; given s; is uni-
form on the set of vectors with exactly s; non-zero components. Thus
one can simulate the null distribution of Y = X X;. If some sensible
function of this statistic, such as max; {Y;}7.q, is significantly
improbable when compared to its simulated value, this is evidence
against the adequacy of the fit. Again, this is an approximate test,
since one must estimate g * from the data.

Using two tests, each of which assesses a qualitatively different aspect of fit,
helps diagnose the kind of model failure that may occur. For example, in the
social network context, conformity pressure may appear as underdispersion in
the first test, whereas subgroups are signaled by large maxima in the second.
These two tests are complementary, in a sense analagous to the
independence of the radius and angle when describing the location of a point
in the plane. The first test summarizes the sample by its orbits; such
classification is done entirely by ‘‘radius.”” The second test classifies the
sample by “‘angle’’; here it is the direction from the central graph, not the dis-
tance, that is used. Under the null hypothesis that model (1) holds,
significance probabilities from these two tests are essentially independent (a
minor dependence introduced by estimation of g* diminishes with n). Thus
one can combine P-values from these tests into a single assessment of fit



206 D. Banks and G.M. Constantine

superior to that proposed in Banks and Carley (1994).

To set a confidence region for g*, one can use the fact that
2¥.1 dy(gig ™) has binomial distribution Bin(nr,8) with 6 = e /(1 +e™).
Then, for the maximum likelihood estimate 6 obtained from <, one finds k*
such that

1-o= fgo [';’] o (1- 6y

and sets the approximate 100(1 — o)% confidence region on §* having the
form

n
(g€ Gn: X dulgig)<k™).
i=1

One could slightly improve the accuracy of the nominal confidence level by
taking account of the uncertainty in 8, but this requires simulation. The
confidence region is not symmetric around g , as are those obtained from the
most practicable bootstrapping procedure recommended in Banks and Carley
(1994); rather, it is pulled towards the sample graphs, enabling smaller
confidence regions.

Bayesian inference is possible if one has a Jjoint prior over g and . A
natural choice is formed as the product of the uniform prior on g* and the
exponential prior on T with parameter A. Then the joint posterior is

m (g * ’C) - k(l + eat)—me—"?(x*'):ﬁxdﬂ(ghg*))
where

- o0 —MN\— U Z?ﬂd ir
kl:Zggij0(1+en)me NA+ H(gg))d,n'

The solution is clearly numerical, as is usual in modern Bayesian analysis. If
the cardinality of G,, is large, one must resort to approximations.

Last, we give an analogue of the linear model decomposition for
graph-valued data. For (G,,,dp), this might arise if one asked first graders to
report their perception of the class’s friendship network. Boys would know
best about friendship patterns among boys, and similarly for girls. The
researcher can decompose an individual’s response into a common
knowledge graph and sex-specific knowledge graph according to the follow-
ing model:

gi=E"og)®gf (10)

where gj is the graph generated by student i with sex s, g" is the common
knowledge graph, g* is the graph common to members of sex s, and ghisa
random error graph that describes how the i-th student deviates from the
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expected graph. Here @ denotes the operation of edge union, and ® denotes
the operation of addition modulo 2 on the entries of the adjacency matrices.
Thus a child’s graph is the union of the common knowledge and sex-specific
graphs, corrupted by random error. Assuming that g¢ is distributed according
to (1) with g~ the edgeless graph, then the previous discussion enables max-
imum likelihood estimation and hypothesis testing regarding g", g*, and the
dispersion of the error term g¢f.

4. A Harder Case: Random Trees

One would like to use the methods of Section 3 for trees, rather than the
set G, and to employ more realistic metrics than dy. Let G, denote the set
of binary (or phylogenetic) trees with m distinct terminal nodes. A graph is a
binary tree if it is a tree, has m labeled terminal nodes, one labeled root, and
all interior nodes are unlabeled with degree 3 (some authors call these
“‘binary trees’’). When there is a label-preserving isomorphism between two
trees, they are considered identical; thus if two terminal nodes are dependent
from the same internal node, it does not matter which is on the left and which
is on the right, .

To analyze a random sample of trees g1, ...,g, from G,,, assume a
model of the form (1), with a suitably chosen metric d. Using
c(g®n) = [Z, exp(-1d(g,g *WI!, one finds the log-likelihood function as

L D=-nin[ Y e & -13 d(g.g"). (11)
geé,,, i=1

We seek the value (g *,%) that maximizes (11). Qualitatively, the behavior of
this function depends upon the value of 7.

For large values of 1 (the typical application, with substantial concen-
tration of probability around g*) the second term in (11) is dominant. Thus
an approx1mate method of moments estimator for g is the sample median
g , where

n
g = argmingg, 3 dgi.g),
i=1
but this can be difficult to calculate. One could examine elements in G that
are near to g , and it is unlikely that one need search far to find the global
maximum,

For small 1, there is limited applicability to the methods pursued in this
paper. As T— 0, the data become less relevant to the problem, and (11)
reflects this fact in that the first term dominates the second. Examination of
the term —n In [Z, exp (- td(g,g 1)1 shows that it tends to select an estimate
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kK

g™ of g* that makes the sum of the distances d(g,g™*") as large as possible.
Any search for a good initial guess of g*** should exploit the asymmetries in
the metric space, as indicated by a matrix of inter-tree distances.

Solving (11) shows that the maximum likelihood estimates must
satisfy:

A¥ 2 a*
3 TeeG,d(g,g e W&E)

1 n
= , — , 12
ng d(g:8 ) BT (12)

A* ) * ~ i
where g = argming g nln Y, e He@e) 4 7 3 dgi.gh.
¢€G,, i=1

Solution of (12) requires enumeration of the elements of ém In view of the
following result, solution is difficult for even moderate m.

Proposition 4. (Schroder, 1870.) There are (1)(3)(5)- - - 2m—3) distinct
trees in G, where m 2 3. (A proof is in the Appendix.)

_ Realistically, solution of (12) cannot attempt the sum over all elements
of G,. This problem can be avoided by truncating the sum (whose terms
rapidly become small as d(g,g ") increases) at some convenient point on any
interim evaluation, and letting the truncation point grow as one converges
toward the solution.

Also, because (11) is the sum of # unimodal log-likelihoods, all having
the same form, then the number of local maxima in the likelihood surface
cannot be greater than n. Following the logic outlined in an analogous calcu-
lation by Reeds (1985) for the estimation of the location parameter with an
ii.d. Cauchy sample, each local maximum must occur near at least one of the
observations. This fact suggests a maximization strategy that starts n steepest
ascent searches, each taking a sample point as the initial guess at the central
tree. One would alternate estimation between the location and dispersion
parameters, first treating the current estimate of T as fixed in order to estimate
g, and then treating the current estimate of g * as fixed in order to estimate 7.

In practice one always wants to assess the fit of the model. A simple
method for the {H (g*,t)} model uses the Pearson chi-squared test. But the
parameter space G, is discrete, and thus conventional asymptotic theory is
unworkable — Fienberg, Meyer, and Wasserman (1985) identify this problem
as a key area for research. This discreteness prevented Frank and Strauss
(1986) from examining the fit of their Markov graph model, and for the p
model’s fit, Holland and Leinhardt (1981) had to rely upon an ad hoc test
based on triad counts (which found their example data had very bad fit).
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The chi-squared test bins the data, then finds the expected counts in
each bin under the {H(g",7)} model with maximum likelihood estimates for
g" and T. Banks and Carley (1994) give details for the case in the previous
section, and the method extends directly, but with greater computation, to
more complex cases. Banks and Carley recommend referring the test statistic
to a chi-squared distribution with two fewer degrees of freedom than the
number of bins. This subtraction accounts for constraints imposed by the
estimation of T and the fact that probabilities must sum to one, but is conser-
vative in that it does not reduce the degrees of freedom for estimation of the
problematic discrete parameter g ",

To set confidence regions, we recommend the use of the bootstrap.
Details for the case in the previous section are laid out by Banks and Carley
(1994); the approach generalizes to harder cases. The next section demon-
strates this extension for tree-valued data using regions of the form
{g € G,,: d(g,g ) <38}, where § is determined by bootstrap resampling and
the desired coverage probability. Also, the duality between confidence
regions and hypothesis tests enables bootstrap methodology to address testing
problems. Fisher and Hall (1990) describe the appropriate strategy for invert-
ing bootstrap confidence regions in order to perform statistical tests. Con-
stantine (1991) shows that the choice of metric can strongly affect the power
function.

5. Example: Consensus Among Binary Trees

Tree problems are more difficult than the random graphs considered in
Section 3 because there is no reasonable metric that imposes a neighborhood
structure which is the same for all trees. Previously, the hypercube represen-
tation ensured that the number of graphs a fixed distance from the central
graph did not depend upon the central graph, but this fails for trees. Conse-
quently, the normalizing constant is a function of both the central parameter
and the dispersion, making analytical maximization of the likelihood function
intractable. .

The large size of G,, poses enumerational difficulties, but there are
theoretical and computational devices that extend the range of practical solu-
tions beyond that possible from direct enumeration. To illustrate these, we
examine a sample of nine binary trees built from various clustering algo-
rithms using letter frequency/authorship data reported in Fowlkes and Mal-
lows (1983). We chose this dataset because (a) it was used in the major pre-
vious work on consensus for binary trees in the statistics literature, (b) the
consensus problem is pertinent to both phylogeny and cluster analysis, and
(c) results from slightly different metrics point up an interesting contrast
between these two application domains.
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Table 1
Books and Authors Used to Produce the Random Binary Trees

1. The Three Daughters of Madame Liang Pearl S. Buck
2. The Drifters James Michener
3. The Lost Worlds of 2001 Arthur C. Clarke
4. East Wind, West Wind Pear] S. Buck
5. A Farewell to Arms Ernest Hemmingway
6. The Sound and the Fury (Part I) Willam Faulkner
7. The Sound and the Fury (Part II) William Faulkner
8. Profiles of the Future Arthur C. Clarke
9. Islands in the Stream Ernest Hemmingway
10. Bride of Pendorric (Part I) Victoria Holt
11. The Voice of Asia James Michener
12. Bride of Pendorric (Part II) Victoria Holt

In our example, the raw data consist of the frequencies with which each
letter of the English alphabet is used in 12 different novels (see Table 3 in
Fowlkes and Mallows (1983) for the data). Thus there arc 12 vectors in R,
corresponding to the authors and novels in Table 1. The natural speculation
is that books by the same author tend to cluster together. A more tenuous
speculation is that authors with similar styles will also cluster together. To
facilitate comparisons we have retained Fowlkes and Mallows’s numbering
system for the cases, which is why the order in Table 1 appears haphazard.

We applied nine different clustering algorithms to the data, trying each
of the linkage options available in SAS (those considered by Fowlkes and
Mallows (1985), as well as all other SAS procedures except density linkage
and two-stage density linkage, which require substantial domain-specific
judgment). The algorithms used were average linkage (AVE), centroid
method (CEN), complete linkage (COM), estimated maximum likelihood
method (EML), flexible-beta method (FLE), McQuitty’s similarity analysis
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Figure 1. The nine binary trees produced by the application of different SAS algorithms for
agglomerative clustering to the cases described in Table 1, using data given in Fowlkes and
Mallows (1983).

(MCQ), median method (MED), single linkage (SIN), and Ward’s minimum
variance method (WAR). Details and references on these algorithms appear
in Chapter 18 of SAS/STAT User’s Guide, (1990).

In producing the nine trees shown in Figure 1, we used SAS program
defaults throughout, varying only the specification of the linkage algorithm.
'The representations do not show the root nodes, which may be imagined as
appended to the top of each tree.
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Our analysis ignores information on the ‘‘height’’ of the tree when a
particular split occurs, focusing instead on the topology of the tree. This
simplification emphasizes the more stable features of the sample trees, and
corresponds to practical usage. An alternative analysis that captures height
information is possible, and work of this kind has been undertaken by Hendy
and Penny (1993).

One approach to analyzing this data is to try to micromodel both letter
frequency dependencies and the effects of the clustering algorithms. Since
this level of detail is impractically difficult, we propose a simpler analysis that
regards the outcomes of the different algorithms as a random sample from a
distribution of the form in (1) on G1,. This formulation treats the data as
fixed and the algorithms as random, which is unusual in statistics; the motiva-
tion is more natural in consensus theory (cf. Margush and Neumann 1983),
where one often combines information from different trees built from a com-
mon dataset. Our approach is equivalent to assuming that if the data contain
‘true central structure, then the observed trees consist of the central tree cor-
rupted by errors capturing independent differences in the mechanics of the
clustering algorithms. And the Gibbs distribution is especially appropriate
here because the clustering algorithms, either by original design or evolution-
ary selection, are not trivially duplicative, and thus tend to increase the
dispersion in the data.

Our objective is to estimate the central binary tree and to place a
confidence region around it. Note that there are three identical trees: FLE,
EML, and WAR. These should lie at or close to the center of our procedure’s
confidence region.

Choosing the Metric

Two broad strategies exist for defining a suitable metric: one strategy
counts and weights the number of elementary operations needed to transform
one tree into another, whereas the other strategy maps the trees into alterna-
tive mathematical structures for which natural metrics already exist. We
describe two metrics for building probability models according to (1): an
extension of the Hamming metric, and the Robinson crossover metric (1971).
Related work on metrics for trees is described in Boorman and Oliver (1973),
Margush (1982), and Barthélemy and Guénoche (1991).

One way to extend the Hamming metric strategy on graphs to a metric
on binary trees is based on hypergraphs. The hypergraph generalizes tradi-
tional graphs by admitting edges that link more than two nodes (cf. Berge
1989). Our concern is hypergraphs that correspond to binary trees (an edge of
this hypergraph is a cluster of cardinality greater than one in the hierarchy
associated with the binary tree). To illustrate the correspondence, Figure 2
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i1 4 5 9 10 12 2 11 6 7 3 8

{1.4} (10,12} {2.11} {6.7} (3.8}
{9,10,12}

{5.9,10,12} (2,11,6,7}
{1.4,5,9,10,12}
{1,4,5,9,10,12,2,11,8,7}
{1.4,5,9,10,12,2,11,6,7,3,8}

Figure 2. This figure illustrates the hypergraph representation of a binary tree. Sets in the
lower square that contain r elements correspond to r-edges in the hypergraph, and the ele-
ments of the sets indicate which nodes are joined by the r-edge.

shows a binary tree and its equivalent hypergraph representation. We refer to
an edge that connects r nodes as an r-edge. The binary tree in Figure 2 has
five 2-edges, one 3-edge, two 4-edges, one 6-edge, one 10-edge, and one 12-
edge.

In this framework, the extension of the Hamming strategy is to count

and weight the number of discrepancies in each type of edge. Specifically,
set
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m
dn(g1,82) = %Zoc, | {discrepant r—edges between g and g,} |, (13)
r=2
where | - | denotes the cardinality of the argument set. The weights o, must
be positive, but may be chosen to reflect the practitioner’s sense of an
appropriate distance for a specific problem. In most cases it seems reasonable
that o, should increase with r, in order to impose a small penalty upon
discrepancies in the twigs (r-edges with small r), but greater penalties for
discrepancies among the branches (r-edges with large r).

The other metric we use was introduced by Robinson (1971); it counts
the number of ‘crossover’ operations needed to convert one tree into another.
To define the crossover operation, let e be any interior edge in a given tree
g € G,; i.e., e links two nonterminal nodes, say v and w. Then e divides g
into four subtrees; suppose A and B are the subtrees joined at v, and C and D
are the subtrees that join at w. By exchanging subtrees, one can create two
new trees g and g, which are also in G,,; g1 joins A and C at v, while g,
joins A and D at v. In either case, the remaining subtrees connect at w. Fig-
ure 3 shows the two trees that arise from this crossover operation.

Robinson shows that any tree g; € G,, can be converted into any other
tree g, € G,, through a sequence of crossover operations. Define the metric

dr(g1.82) = mkin{k:gl can be transformed to g, in k crossover operations} .

To see that dg defines a metric on G,,, construct the graph S whose node set
consists of the elements of G,, and whose edges link nodes that are one cross-
over operation away. Because S is connected, there is a shortest path
between any pair of nodes. This shortest path is necessarily a metric on the
node set, and it exactly agrees with dg.

The Analysis

For the nine trees in our sample, we employed the metric dj, in (13).
Because edges in the hypergraph representation define elements in the nested
partitions of the terminal nodes defined by the tree, the Hamming hypergraph
metric may be viewed as a particular partition metric (cf. Boorman and Oliver
1973).

In using dj,, one must specify the {o,} that weight discrepancies
according to the number of nodes linked by the r-edge. In phylogeny, one
imagines that discrepancies corresponding to large values of r are more
significant than discrepancies corresponding to small values. For example,
disagreements at the level of family or class are more serious than disagree-
ments at the level of genus or species. In cluster analysis, the situation is less
clear; for our data, the natural presumption is that books cluster according to
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Figure 3. This figure illustrates the Robinson crossover; each interior edge determines two
possible neighbor trees. In this case, the interior edge between V and W generates the lefthand
neighbor tree by interchanging subtrees B and C, and generates the righthand neighbor tree by
interchanging subtrees B and D.

author, and thus discrepancies for small values of r are most interesting. We
examined three versions of dj,, with o, = r (appropriate for phylogeny),
o, =r! (appropriate for the data reported in Fowlkes and Mallows (1983)),
and o, =1 (appropriate when all discrepancies are equally important). For
our dataset, all variants of dj, showed essential agreement; this consensus
reflects the fact that our sample of trees shows little dispersion.

There is a tension between the easy calculation of distances between
two arbitrary trees and the easy determination of the neighbors of a specified
tree. In our case, the Hamming hypergraph metric accomplishes the first goal
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but encounters difficulty with the second. For the Robinson metric, the situa-
tion is reversed. This point is crucial, because maximizing the likelihood
function requires both capabilities. Rapid calculation of the distances
between arbitrary graphs is necessary when finding the sum of the distances
between a candidate central tree and sample trees in (12). But to find a new
candidate central tree that may achieve a larger likelihood, one wants to
search the near neighbors of the current candidate.

To resolve this problem, our inference uses d,, to make calculation of
distances easy, but the algorithm searches for new candidate maxima among
the Robinson neighborhood rather than the dj, neighborhood. To see that the
Robinson neighborhood is a close approximation to the dj neighborhood,
note that the Robinson crossover preserves partitions below crossover points,
and thus the number of r-edge discrepancies tends to be small, especially for
small values of . Also, we used progressively less truncated summation and
multiple ascent searches started at the sample trees, as suggested in Section 4.

Specifically, the likelihood search went as follows:

1. At initialization, designate a sample observation as §;, the candidate
central tree.

2. Conditional on g, being the central tree, do numerical search to esti-
mate T according to the first equation in (12) (truncated summation is
used to estimate the ratio). For this maximizing estimate of <, calcu-
late the loglikelihood.

3. Generate a random element g from the Robinson neighborhood of g,

4. Conditional on g being the central tree, do numerical search as before
to estimate T and calculate the loglikelihood.

5. If the new loglikelihood is greater than the old, set g,+1 = g and go to
Step 3. If the new loglikelihood is less than the old, go to Step 3. If
the new loglikelihood is equal to the old and the number of consecu-
tlve changes in which equality has occurred is less than 100, set
gl+1 = g and go to Step 3. If the new loglikelihood is equal to the old
and the number of consecutive changes in which equality has
occurred equals 100, or if there have been 200 returns to Step 3
without finding an improving candidate, return to Step 1, and select a
new sample observation as the starting point. If all observations have
been tried, end the program and report the candidate tree and the
associated estimate of T that gave the largest likelihood over all »
searches.

This algorithm changes the candidate tree whenever it finds an increase in the
likelihood, rather than searching the entire neighborhood to find the change
that offers the largest increase. Thus it is an ascent search, but not steepest
ascent.
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For data with sufficiently small dispersion, the likelihood function is
unimodal on Gy X R*. The performance of our algorithm indicates unimo-
dality in this application because each restart at a sample graph led to the
same answer.

To find confidence regions, we used the nonparametric bootstrap,
repeated 200 times, and reran the search to find a 95% confidence region on
the central tree. The entire program (estimation and bootstrapping) took
approximately three hours to run using unoptimized code and IMSL routines
on a Hewlett-Packard Apollo workstation, model 715/75.

For our dataset, all three dj, metrics identified the same tree as the cen-
tral tree. That tree appears three times in the sample; it is generated by the
EML, FLE, and WAR clustering algorithms. Moreover, the sample trees are
all close to the estimated central tree, because the estimated values of T were
so large they produced underflow during the Monte Carlo evaluation of the
ratio in (12), despite use of double precision. From that standpoint, we can
only say that the best estimate of 7 is larger than 9.4. For this application,
imprecision in 7 is not problematic; its role in the likelihood function is
influential only when data are dispersed, implying that 7 is small and hence
computable. ‘

Naturally, the confidence regions generated by the three versions of d,
are different. When using o, = r, the bootstrap 95% confidence region con-
sists of all binary trees that are within distance 17.50 of the estimated central
tree. When using o, = 1, the 95% confidence region includes all trees within
distance 3.00, and for o, = r~!, the 95% confidence region includes all trees
within distance 42. Thus, for the last case, the confidence region includes the
EML, FLE, WAR, and, just barely, MCQ trees from the sample (there are
other trees, not in the sample, that are also within the confidence region).
This result strongly supports the view that books by the same author cluster
together, and corroborates the conclusions reached by Fowlkes and Mallows
(1983). In contrast, for the version of the metric more appropriate to phylo-
geny, the confidence region contains all of the sample trees except CEN and
SIN, and would offer less support for the traditional interpretation of this data.

6. Conclusions

This paper presents a unified strategy for handling graph-valued ran-
dom objects. For simple kinds of graphs with simple metrics, much can be
worked out analytically, and there are interesting relationships between social
network models and maximum-entropy models. Many of the standard tools
of conventional statistics, such as Bayesian inference, hypothesis testing, and
the linear model, are available in this unconventional setting. For more com-
plex situations, the analysis is computer-intensive, but this obstacle is not ins-
uperable.
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The example with Fowlkes and Mallows’s data shows how the method
can be applied to a difficult problem arising in both cluster analysis and phy-
logeny. It demonstrates the importance of the choice of metric, and shows
that a reasonable choice finds, for the cluster analysis of letter-frequency data,
that authors show surprisingly similar profiles across books. Moreover, the
confidence region obtained on those data is relatively small,

However, the metric used for cluster analysis is not as appropriate in
phylogentic inference, underscoring the need for the involvement of domain
experts in selecting metrics used in these problems. Also, the volume of the
confidence region is sensitive to the metric employed, which is another rea-
son for care in determining this aspect of the model.

More generally, the example points out computational difficulties that
arise in analyzing general graph-valued random variables. These difficulties
are solvable, and this paper gives computational methods and search heuris-
tics that enable practical solutions.

7. Appendix
Proof of Proposition 1.

We can write

e)-0-tw=-Y p)Inp) -6 p(g) -1ty dg.g Q)

8eG geG geG
1 —ed(ge”
= (g)In( e $7)
ety
<3 p@)-1+ —— e esD)

=—1+ 3 e 0"

g2eG
The inequality reflects the geometric fact that the graph of 1n x lies below its
tangent line at the point x = 1; i.e,, Inx <x —1 for all x > 0, with equality if
and onlyifx = 1.

Equality in the previous calculation therefore occurs if and only if

p(g) = e 92 ). This choice of p(g) maximizes the entropy. Since
¥, p(g) = 1, substituting these values of p(g) yields

c@')=e®= [y PRt

geG

Similarly, the constraint X, ¢ d(g.g ") p(g) = v yields
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de(g” 1)1 « 1
==VC ,T y
Tt &0
dinc(g* 1

dt
a unique solution for 7 in the last equation.

implying = v. Monotonicity of the function ¢ (g *,7) in T ensures

Proof of Proposition 2.

Assume the model in (1) holds. As dp is clearly a semimetric, we
proceed to show that the dependence graph D is edgeless, implying the Ber-
noulli graph model.

Let e, and ey, be distinct edges, possibly sharing a common node. Let
I {e:g} be an indicator function taking the value 1 if and only if edge e is in
g- Conditional on all the other edges and nonedges in a random graph g, the
probability of both ey, and ¢, in g is

exp["' ast(l - I{est:g *}) - auv(l - I{euv:g*}) - C]
expl— ag — ayy —c1 + expl—ay, — ¢] + exp[- a,,— c] + exp[-c] ’

(14)

where c is a constant reflecting all of the edges and nonedges upon which we
condition. Similarly, the probability of e, conditional on all edges/nonedges
except e, is
expl— ay(1 ~ I{ey:g ")) — ¢l + expl-aql{ey:g "} = a,, — ]
expl—ag ~ ayy — €] + exp[- a, — c] + expl-a,, ~ ] + exp[-c] ’

(15)

and the analogous expression holds for the conditional probability of e,, .
Multiplication of (15) with its analogue produces (14), so e, and e, are con-
ditionally independent, D is edgeless, and the Bernoulli graph model holds.

Going the other way, assume the Bernoulli graph model holds. If p; ; 18
the probability of an edge linking nodes i and j, then

Iey: 1-I(ey:
Plgl = 1Py (1 - i)' . (16)
i<j
For the model in (1), the case when g = g* shows that the normalizing con-
stant is
c(g",0) = Plg"] = [] max {p;;, 1 -py} .
i<j

Letting
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1 Dij
Dij
1, 1-p;

Dij

ifp; <.5
aij =

lfplj > .5,

the Bernoulli graph model in (16) can be rewritten as

DPij
Plg] = [Imax{p;,1 -p;} x T1 1—p
i<j e;ing,notg* —Pij
_pij * —tay
x J1 =c(g,Ox JI e
e;ing ", notg ij e;ing,notg”

i ~tdy(g,g"
X H e_'mv — c(g*,‘c)e 5(8,87) ,
e;ing ", notg

which has the form of (1). Notice that T is not identifiable; it can be sub-
sumed by defining new edge probabilities p;j = (p,~j)1/T /
((ip)"* + (1= p;)""). Thus we take T = 1, so that the a;; are interpretable in
terms of odds ratios.

Proof of Proposition 3

Under the Holland-Leinhardt p; model, and letting 7,j index the node
set, it is straightforward to write the probability of a graph g as the product of
the probabilities of each type of dyadic relationship between all possible pairs
of nodes. Thus P[g] = ]'[i<j pijlhij(g)] for

1 ifno edges link node i to node jin g
B (g) = 2 ifi,j are linked by a single edge fromitojing
&)= 13 if i,j are linked by a single edge from j toiin g
4 if edges link nodes i and j in both directions in g
and
pijll} == 1/k;;

pijl2] = exp [0 + o + B;1/k;;
pij[31 =exp [0 + a; + B;1/k;;
pijl4] =exp [p + 20 + 0; + o; + B; + B;1/k;; an

where
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0+o,+p; 0+0,+P; +28+0;+0+,+8;
ki=1+e B’+e ’B+ep oy +Be

and the o, 3, 6, and p terms in (17) are as in Holland and Leinhardt (1981).
* * *
Define p;; = max{p;[1], . .. .pij[4]}. Then Plg’] = Hi<j Dij» and so

« ijLhij
Plg] = Plg") x T 28N

i<j  Pij
= P[g "] x [Texp{- (np}; —In p;;[h;(g)1)}
i<j
= Plg"1 xexp{~ ¥ (npj; —Inp;;lhy())}
i<j
= P[g I xexp{-d(g.g")}. (18)

Since P[g 1= c(g *,T), it remains to show that d is a metric. The concentra-
tion parameter 7 is not an issue, since metricity is preserved under multiplica-
tion by a positive constant.

Consider dij(gl’g?.) = lnp,J[h,](gl)] - lllplj[hu(gz)] |. This is clearly
a semimetric on G,";, since the absolute value function is a metric on R (non-
identical graphs may have d;; distance zero if they disagree on edges other
than those between nodes i and j, so d;; is only a semimetric). Defining
dyr(81,82) = Zig; d;i(g1,82) ensures that dyy; is a semimetric, since sums of
semimetrics are semimetrics. More strongly, it is clear that d is in fact a
metric, since d(g1,g,) = Oif and only if g, = g5.

This definition of dy; satisfies the requirements for d in (18), and thus
the Holland-Leinhardt model can be written in the form of (1). Thus, in Pro-
position 3, one has b;;(g) =In Dijlhi;(g)]. We note that this proof took no
account of the special structure on the pij(D), ... ,p;j(4), and thus the more
general models for directed graphs that are discussed in Holland and
Leinhardt (1981), which require only independence, are also maximum-
entropy distributions. e

Proof of Proposition 4

Consider a tree g € G,,-; having one root and m — 1 labelled terminal
nodes. Then there are 2m — 3 edges in g, and a new terminal node, labelled
“‘m’’ may be inserted on any of these to create a tree in G,,. The insertion
places an unlabelled interior node on the chosen edge, and depends node m
from that. _ _

Each tree in G,, is created in this way from exactly one tree in G,,_y;

insertion on different edges produces different trees. So if G,,.1 has
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cardinality c,,_1, then ém has cardinality 2m - 3)c,,_;. The result follows by
noting thatc3 = 3. e
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