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Software developers use a variety of formal and informal methods, including testing, to
argue that their systems are suitable for building high assurance applications. In this
paper, we develop another connection between formal methods and testing by defining a
specification-based coverage metric to evaluate test sets. Formal methods in the form of a
model checker supply the necessary automation to make the metric practical. The metric
gives the software developer assurance that a given test set is sufficiently sensitive to the
structure of an application’s specification. We also develop the necessary foundation for
the metric and then illustrate the metric on an example.

1. Introduction

There is an increasing need for high quality software, particularly for high-assurance
applications such as avionics, medical, and other control systems. Developers have
responded to this need in many ways, including improving the process, increasing
the attention on early development activities, and using formal methods for describ-
ing requirements, specifications, and designs. Although all of these improvements
contribute to better software, software still requires testing, and thus precise metrics
are useful to evaluate such testing. In this paper we develop a metric based on a
mutation adequacy criterion, and we explain how the metric can be evaluated with
respect to the software’s specifications and existing test sets.

There are many approaches to generating tests.?7:16:25:29.36.37 There are also
measures of the completeness, adequacy, or coverage of tests on source code.??
However, there are few objective measures of coverage that are independent of the
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implementation.'® We have developed an innovative method that combines muta-
tion analysis and model checking, which is useful for evaluating the coverage of
system tests, comparing test generation methods, and minimizing test sets. Most
coverage metrics apply to source code, which makes them difficult to apply in cases
of conformance or behavioral testing or when developing tests before the code is
finished. Since our method measures coverage over specifications, it can be used to
evaluate test sets independent of code.

We define a typical notion of coverage criteria and coverage metrics. A test
requirement is a predicate on an artifact r and a test case t. The artifact r is
usually a program, but in our context r is a specification. As an example, one test
requirement for statement coverage on a program P is to visit the fifth line. If ¢
visits line 5 in P, the test requirement is satisfied; otherwise, it is not satisfied. A
coverage criterion C' is a predicate over a set of test requirements R for some artifact
r and some test set T'. If each test requirement in R is satisfied by at least one test
case tin T', then C is satisfied. The problems of infeasible test requirements, such as
requiring a visit to line 5 in a program in which line 5 is unreachable, have long been
recognized; see Frankl and Weyuker’s work for an in depth study in the data flow
context.'® We address infeasible test requirements in Sect. 2.1; fortunately the finite
context of the model checker renders these problems decidable. At its simplest, a
coverage metric is a measure of the degree to which a test criterion is satisfied. As
we explain in Sect. 3.3, we object to the simple metric of the ratio of satisfied test
requirements to the total number of test requirements, and present refinements to
the simple metric.

In this paper we categorize mutations of temporal logic formulae with respect
to specification coverage analysis (Sect. 2.1). We then explain reflection, in which a
state machine description is rewritten into a temporal logic (Sect. 2.2), and define
expounding, in which implicit aspects of a model checking specification are made
explicit (Sect. 2.3). We describe how to symbolically evaluate a test set for mutation
adequacy (Sect. 2.4). Using the preceding techniques as a foundation, we define the
specification coverage metric (Sect. 3). We illustrate these ideas with the Safety
Injection example®? (Sect. 4).

1.1. Background and related work

Traditional program mutation analysis'® is a code-based method for developing a
test set that is sensitive to any small syntactic change to the structure of a program.
A mutation analysis system defines a set of mutation operators. Each operator is a
pattern for a small syntactic change. A mutant program, or more simply, mutant,
is produced by applying a single mutation operator exactly once to the original
program. The rationale is that if a test set can distinguish the original program
from a mutant, the test set exercises part of the program adequately. Applying the
operators systematically generates a set of mutants. Some of these mutants may
still be equivalent to the original program. A test set is mutation adequate if at
least one test in the test set distinguishes each nonequivalent mutant. There are test
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data generation systems that, except for the ever-present undecidability problem,
attempt to automatically generate mutation adequate test inputs.'® Very little work
on mutation analysis for specifications has been reported in the literature; however,
Woodward did apply mutation analysis to algebraic specifications.3”

The example we use in this paper was originally coded using the Software Cost
Reduction (SCR) method.?* SCR uses tables to formally capture and document
the requirements of a software system. It is scalable and its semantics is easy
to understand. The scalability and semantics account for the use of the SCR
method and its derivatives in specifying practical systems.!®:23:34 Research in au-
tomated checking of SCR specifications includes consistency checking and model
checking. The NRL SCR toolkit includes the consistency checker of Heitmeyer, Jef-
fords, and Labaw.22 The checker analyzes application-independent properties such
as syntax, type mismatches, missing cases, circular dependencies and so on, but
not application-dependent properties such as safety and security. The toolkit also
includes a backend translator to the model checker SPIN.26 Atlee’s model checking
approach®%% expresses an SCR mode transition table as a logic model and the safety
properties as logic formulae and uses a model checker to determine if the formulae
hold in the model. Owre, Rushby, and Shankar3! describe how the model checker
in PVS can be used to verify safety properties in SCR mode transition tables.

The model checking approach to formal methods specifies a system with a state
transition relation and then characterizes the relation with properties stated in a
temporal logic. Model checking has been successfully applied to a wide variety of
practical problems, including hardware design, protocol analysis, operating systems,
reactive systems, fault tolerance, and security. Although model checking began as
a method for verifying hardware designs, there is growing evidence that it can be
applied with considerable automation to specifications for relatively large software
systems, such as the ‘own-aircraft’ logic for TCAS IL.!2 The increasing utility of
model checkers suggests using them in aspects of software development other than
pure analysis, which is their primary role. Mutation analysis of specifications yields
mutants from which the SMV model checker generates counterexamples. These
counterexamples can be used as test cases.® Gargantini and Heitmeyer used a model
checker to generate branch coverage tests for SCR specifications.2? Also using model
checkers, Engels, Feijs, and Mauw generated network tests,'” Ramakrishnan and
Sekar generated single host security attacks,3? and Ritchey and Ammann generated
network security attacks.3?

The chief advantage of model checking over the competing approach of theorem
proving is complete automation. Human interaction is generally required in the-
orem provers to prove all but the most trivial theorems. Readily available model
checkers, such as SMV and SPIN, can explore the state spaces for finite, but real-
istic, problems without human guidance.* We use the SMV model checker. It is
freely available from Carnegie Mellon University and elsewhere.
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2. Computing a Coverage Metric With a Model Checker

Our method begins with a specification of the system and a set of tests to be
evaluated against the specification, as diagrammed in Figure 1. Although the spec-
ification need not be a complete description of the system, the more detailed the
specification, the more that can be checked. We generate many variants, or mu-
tants, of the original specification. The set of tests are converted to finite state
machines and are symbolically executed, one at a time. Some mutants are found to
be inconsistent, that is, the model checker finds a difference between the symbolic
execution of the test case and this mutant. Since we assume that the test cases
are consistent with the original specification, this indicates an inconsistency with
the original specification. If a mutant is found to be inconsistent by any of the
test cases in the test set, it is considered to be killed by the test set. The ratio of
killed mutants to total mutants is a coverage metric, similar to that of Wu et. al.,>®
but applied to specifications. The higher the ratio, the better or more completely
the test set covers the specification. The lower the number, the less complete the
covering.

mutant
™. specs
System gener-a te model Cover;‘lge
Spec outants checker Metric
Test make ‘
Set machines

Figure 1: Specification coverage flow

Generally, testing is an attempt to assess the quality of a piece of software. If
a test set inadequately exercises some part of the software, the assessment is less
accurate. Since the software should correspond with the specification, a test set with
better coverage of the specification is likely to more accurately assess the quality of
a piece of software.

Program-based mutation analysis relies on the competent programmer hypoth-
esis: programmers are likely to construct programs close to the correct program,
and hence test data that distinguish syntactic variations of a given program are, in
fact, useful. Here we assume an analogous “competent specifier hypothesis,” which
states that analysts are likely to write specifications which are close to what is de-
sired. Hence test cases which distinguish syntactic variations of a specification are,
in fact, useful.

2.1. Categories of specification mutations

A specification for model checking has two parts. One is a state machine defined
in terms of variables, initial values for the variables, and a description of conditions
under which variables may change value. The other part is temporal logic con-
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straints on valid execution paths. Conceptually, a model checker visits all reachable
states and verifies that the invariants and temporal logic constraints are satisfied.
Model checkers exploit clever ways of avoiding brute force exploration of the state
space, for example, see Burch et. al.l!

Figure 2 illustrates the difference between mutations of logic formulae and muta-
tions of program code. Code mutants are classified as either equivalent or nonequiv-
alent. An equivalent mutant is one which has exactly the same input/output relation
as the original program.®

Logic Mutants Code Mutants

Consistent Inconsistent Equivalent  Nonequivalent

Falsifiable Nonfalsifiable

Figure 2: Categories of mutants

Mutations to logic constraints in a model checking specification result in a dif-
ferent situation. Instead of being either equivalent or nonequivalent, mutants are
either consistent or inconsistent with the state machine. A consistent mutant is
simply a temporal logic formula that is true over all possible traces defined by the
state machine. Just as equivalent mutants cannot be distinguished from the original
for program-based mutation analysis,® consistent mutants cannot be found false for
model checking mutation analysis. Fortunately, consistency is decidable for these
temporal logics, and model checkers are specifically designed to efficiently determine
whether or not a temporal logic formula is consistent. So in this arena we do not
have the problem of undecidability or requiring human judgement.

For inconsistent mutants, there are two possibilities. Some temporal logic for-
mulae can be shown inconsistent with a single trace through the state machine. For
example, if the assertion “the East-West light is never green while the North-South
light is green” were inconsistent, the inconsistency could be exhibited with an ex-
ecution trace that ends in a state where both lights are green. We call mutants
that are demonstrably inconsistent falsifiable. Other temporal logic formulae may
be inconsistent with respect to the state machine, but cannot be shown inconsistent

bWe refer only to the “strong” version of program-based mutation analysis'® here. In it a test case
kills a mutant if execution reaches the mutant (the execution property35), the mutant corrupts
the internal state (the infection property), and the corrupt internal state eventually results in an
incorrect output (the propagation property). For weak mutation testing,2? only the execution and
infection properties are required.

“For strong mutation testing, equivalent mutants compute the same input output pairs as the
original program. Hence no test case can distinguish an equivalent mutant from the original
program.



6 A Specification-Based Coverage Metric to Evaluate Test Sets

with a single trace. For example, an inconsistent assertion that “eventually both
the East-South and West-North left turn lights are green simultaneously” cannot
be shown to be false with any single trace from the state machine. We call mutants
that are inconsistent but lack a counterexample nonfalsifiable.

2.2. Ezxpressing specifications in CTL

In our method, mutations are applied to temporal logic formulae. It is possible,
and indeed desirable, to take advantage of existing constraints, such as safety asser-
tions. However, such constraints may not be available, and, in any case, they are
typically relatively loose constraints on the state machine. The difficulty with loose
constraints is that mutants derived from them may be insensitive to many possible
variations of the state machine.

To overcome this problem, we mechanically derive a set of temporal logic for-
mulae for mutation. These formulae restate in temporal logic, or reflect, the state
machine’s transition relation. Although the process is conceptually straightforward,
there are subtle issues that require attention. To our knowledge, the literature does
not have a comprehensive treatment of this topic for model checkers. Atlee and
Buckley faced a similar problem and developed their own solution.?

In SMV, there are two ways to specify a state machine transition relation: either
procedurally via next statements in the ASSIGN section, or via constraints in the
TRANS section.

The interesting next statements are conditionals of the form:

next (x) := case
bl : vi;
b2 : v2;
1 : vN;
esac;

The semantics is typical of a programming language case statement. Boolean ex-
pression b1 is evaluated; if it is true, v1 is the next value for . The value v may
be a set, thereby allowing for nondeterminism. If b1 is false, b2 is evaluated. The
case often ends in a default, which is 1, or true, in SMV.

To express the first case in CTL, we write a formula such as:
SPEC AG(b1 -> AX(x = v1))
This says that in all states (AG), if b1 is true, all possible next states (AX) have
x = wvl. If vl is a set, we write:
SPEC AG(b1l -> AX(x in v1))
For b2, the situation is slightly more complicated. The preceding conditions, b1 in
this case, need to be subtracted out:
SPEC AG('b1l & b2 -> AX(x = v2))
There are more subtle aspects to the process of determining the guards that we
address in Sect. 2.3 below.
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2.2.1. FEzxpressing next clauses

In the ASSIGN section, SMV allows the use of the next modifier for variable refer-
ences; it evaluates the variable in the destination state instead of the current state.
Unfortunately, the next modifier is not allowed in SPEC clauses. There are two
routes out of this: create “shadow” variables that track the values from the previous
state (this is the solution adopted in Atlee and Buckley®), or access the variable
after the X (next state) operator in CTL.

The first approach is simple, but it increases the number of variables, thereby
potentially exploding the size of the state space. The second approach leads to a flat
structure with potentially a large number of SPEC clauses. Consider the following
next clause:

next (x) := case
x=2 & next(y)=3 : 5;

esac;

Using the second approach, we refer to the value of y in the next state.
SPEC AG(x=2 -> AX(y=3 -> x=5))

The potential for explosion arises when guards reference both current and next
values of a variable.
next (x) := case

x=2 & y=next(y) : vi;

esac;
Using the second approach, we must explicitly enumerate the possible values for

the variable, and test both before and after the X operator.

SPEC AG(x=2 & y=1 -> AX(y=1 -> x=v1))

SPEC AG(x=2 & y=2 -> AX(y=2 -> x=v1))

If we use the first approach instead, we add a new variable, prevy, which keeps
the previous value. The specification refers to previous values in future states.

next (prevy) := y;

SPEC AG(x=2 -> AX(prevy=y -> x=v1))

2.2.2. Ezxpressing TRANS clauses

For transition relations specified with the TRANS construct, reflection is simpler,
since the TRANS constructs already are in CTL. Prefixing the predicate with the AG
operator makes it a SPEC clause. The only issue is the use of the next operator,
which can be handled in the same way as before, either with explicit “previous”
values or judicious use of the X operator.
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2.2.3. Ezxpressing processes

SMV also supports a process construct, whereby changes to groups of variables
are gathered into modules. The process semantics is that one process is chosen
at a time. The process construct conveniently mirrors the notion of an operation
or transaction in traditional programming, including the notion of atomicity. The
SPEC clauses of the temporal logic do not have an analogous structure associated
with them. We suggest identifying explicitly the different processes and using the
identifiers to write tight SPEC clauses for the reflection. So, changes to variables
in process pl would be captured in the following template for a SPEC clause:
SPEC AG(... -> AX(processID=pl -> ...))

2.3. Expounding

As previously noted, the structure of guards must be elaborated when reflecting
from the transition relations, since case statements have an implicit semantics
based on syntactic order, whereas SPEC clauses are unordered. It turns out that
for the purpose of mutation testing, more care is needed. In particular, it is easy to
overspecify a SPEC clause. An overspecified clause yields a set of mutants that is
not as sensitive as it could be. We call the process of elaborating guards ezpounding.

An example may clarify the matter. Consider the following statement from the
Safety Injection problem:

next (Overridden) := case
Pressure=TooLow: case
! (Pressure=next (Pressure) ) : 0;
! (Reset=0n) & next(Reset)=0n : 0;
Block=0ff & next(Block)=0n & Reset=0ff : 1; -- Third case
1 : Overridden;
esac;
-- cases for Permitted and High

esac;

The third case, marked above, says that if Block is off in the current state but
is on in the next state and Reset is off in the current state, Quverridden is set to 1
(true) in the next state. Subtracting out the first two cases and simplifying writes
the condition of the third case as:

Pressure=next(Pressure) & Reset=0ff & next(Reset)=0ff
& Block=0ff & next(Block)=0n : 1;

Notice that explicit consideration has been made for Pressure not changing, due to
the first guard in the case statement, and Reset not changing, due to the second
guard. The case where Pressure = TooLow may be reflected in CTL as:

SPEC -- Long version
AG(Pressure=TooLow & Reset=0ff & Block=0ff ->
AX(Pressure=TooLow & Reset=0ff & Block=0n -> Overridden))
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The following SPEC clause is also consistent because other parts of the specifi-
cation constrain the way in which variables may change.?

SPEC -- Short version
AG(Pressure=TooLow & Block=0ff & Reset=0ff
—> AX (Block=0n -> Overridden))

Shortening specifications increases the precision of a mutation analysis coverage
metric because a test set that kills all of the mutants generated from the long
version does not necessarily kill all of the mutants generated from the short version.
Consider what happens if a mutant operator changes the first occurrence of the
predicate Pressure = TooLow to Pressure = Permitted. The two resulting SPEC
clauses are as follows:

-- Mutation of long version
SPEC AG(Pressure=Permitted & Block=0ff & Reset=0ff ->
AX(Pressure=TooLow & Reset=0ff & Block=0n -> Overridden))

—- Mutation of short version
SPEC AG(Pressure=Permitted & Block=0ff & Reset=0ff
-> AX (Block=0n -> Overridden))

The mutation of the long version is still consistent with respect to the state
machine, because it is not possible for both Pressure and Block to change on the
same transition. Therefore, no valid test case can kill it. However, the short version
mutation is both inconsistent and falsifiable.

How does one get enough redundancy to express the semantics of nonoverlapping
alternatives of case statements, without adding redundancy that reduces the num-
ber of falsifiable mutants? Procedurally, it is straightforward: systematically drop
predicates from the long version and run the model checker on the result. If the
result is still consistent, the dropped predicate is redundant and can be omitted
during mutation analysis.

An alternate strategy is to use the boolean derivative.! Consider a predicate P
that contains a boolean condition z. If dP/dx evaluates to false, this implies that
P does not depend on z, and z can safely be dropped from P.

As a procedural aside, we found it helpful to use Karnaugh maps to simplify
the expressions resulting from expounding. We have used SMV’s BDD facility to
partially automate this aspect of specification preparation. Also, we have found
it to be relatively straightforward using the model checker to examine the manual
simplifications.

2.4. Symbolic execution of test cases

Conceptually, a test case is a single trace through the state machine. We can express
the test case as a constrained finite state machine, or CFSM, by adding a special

dFor details, look at the TRANS specification of the complete example in the appendix. The
relevant constraint is that only one of Pressure, Reset, and Block may change on any one transition.
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variable, State, which controls the machine. Each original variable gets a new value
depending solely on State. Otherwise it is unchanged.

Expressing a test case as a CFSM allows the model checker to symbolically
execute the test case and check specifications for consistency. Consider the following
simplified test case, which essentially turns Reset on then off again.

Reset = 0ff; Block = 0ff; Pressure = TooLow;
STEP; Reset = On; STEP; Reset = 0ff; STEP;

ASSIGN statements that execute this test case are the following. Since Block and
Pressure do not change during the test, their next-state specifications are trivial.
The value of Reset is driven solely by the State.

VAR

State : 0..2;
ASSIGN

init (Reset) := 0ff;
init (Block) := 0ff;

init (Pressure) := TooLow;
init(State) :=0;

next (Block) := case 1 : Block; esac;
next (Pressure) := case 1 : Pressure; esac;
next (Reset) := case State=0 : On;
State=1 : 0ff; 1 : Reset; esac;
next(State) := case State < 2: State + 1;
1 : State; esac;

In a reactive system, such as Safety Injection, freezing the state at the end of the
test is acceptable. However, consider systems that have no quiescent state, such as
a free-running counter. Consistent specifications may indicate that the state always
changes. The specification is inconsistent with a CFSM generated as described,
since the state freezes, but conceptually the specification is not wrong.

One may elaborate the CFSM with a special variable, Check, and set it false
when the test ends. All the specifications may be automatically rewritten to include
Check and evaluate to true when Check is false. This rewriting is detailed in
Ammann, Black, and Majurski.?

3. A Specification Coverage Metric

The specification coverage metric for a test set, T', over a specification, r (for “re-
quirements”), is conceptually simple. It is similar to the test data adequacy of Wu
et. al.,*® but must be applied to specifications, not programs. Given a method, M,
for creating a set of mutants, the score, S, is the number of mutants killed by the
test set, k, divided by the total number of mutants, N, produced by M on r.

SMT) = & )
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When the method, specification, and test set parameters are understood, we omit
them, thus S = k/N. We usually express the score as a percentage. The lowest, or
worst, score is 0% when no mutants are killed. The highest, or best possible, score
is 100% when all mutants are killed.

3.1. Preparing the specification

The method M for creating a set of mutants has three parts:
1. preparing the specification,
2. generating mutants, and
3. winnowing the mutants.

We use reflection, which is described in Sect. 2.2, to produce a fully explicit tem-
poral logic description of the state machine’s transition relation and any TRANS
constraints. A fully explicit specification yields a more precise mutation analysis.
We then shorten the resulting clauses as described in Sect. 2.3.

As pointed out there, a test set may kill all falsifiable mutants from overly-
specified, long clauses, but still not kill all falsifiable mutants of the shorter versions.
Let M, be a mutation process that shortens clauses before producing mutants, and
M, be a mutation process that uses the longer, overly-specified clauses. Suppose
a test set, 77, kills all mutants from M;, but not all those from M, and another
test set, 75, kills all mutants from both. The scores using M show the difference
between the two test sets, while using M; does not:

S(MIJT;TI) :S(MI,T,TQ)
S(MsalraTl) < S(MS,T,TQ)

We can see that mutation analysis on the shortened clauses, M in this case, is a
more precise metric.

3.2. Mutation operators

The heart of mutation analysis is generating mutants. Completely unconstrained
changes would yield mostly syntactically incorrect mutants which are entirely mean-
ingless, so a set of mutation operators is used. Each operator specifies a small syn-
tactic change that is likely to be meaningful. For example, the “wrong variable”
operator replaces a single occurrence of a variable with another variable of compat-
ible type. The specification a A b might yield ¢ Ab. The “wrong relational operator”
mutation operator replaces any of <,<,=,#,>, or > with one of the other five
possibilities. The specification (a < b) A ¢ might yield (a = b) A ¢ by replacing <
with =.

Kuhn showed that some operators subsume others.?® That is, any test set that
kills all mutants of a subsuming operator also kills all mutants of the subsumed
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operator. Thus if we use a subsuming operator, we do not need to use the subsumed
operator. This lets us get the same precision with fewer mutants.

We could get maximum precision by using every conceivable operator that is
not subsumed by another operator. However, Black, Okun, and Yesha show that a
carefully chosen set of mutation operators yield a fraction of the mutants, but still
give excellent precision.!®

3.3. Winnowing mutants

Mutation operators may produce useless or duplicate mutants. To increase the pre-
cision and accuracy of the metric, we include a step to discard undesirable mutants.
We call this step winnowing. There are three distinct types of mutants which one
may wish to discard.

1. “Equivalent” mutants, i.e., mutants that are consistent,
2. Trivial mutants, i.e., mutants that are false for all traces, and
3. Duplicate mutants, i.e., different instances of semantically identical mutants.

Each type has a different effect on the score and needs a different approach to
eliminate.

The first type of mutants to winnow are those which are consistent with the
specification. For instance, here is a clause from an automobile cruise control spec-
ification that says if the cruise control mode is Override and the ignition is turned
off, the cruise control goes off:

AG (CMode=0verride -> AX(prevIgnited & !Ignited -> CMode=0ff))

A “replace constant” mutation operator may change the conditioning mode to
Cruise, as below, but that is still consistent since turning the ignition off in Cruise
mode should turn the cruise control off.

AG (CMode=Cruise -> AX(prevIgnited & !Ignited -> CMode=0ff))

Since consistent mutants are impossible to kill, leaving them prevents any test
set from scoring 100%. If the number of consistent mutants is some fraction, «, of
the number of inconsistent mutants, the score is linearly reduced by 1/(1 + «).

Formally, the more accurate score, that is, computed with only inconsistent
mutants is S = k/N, by Eq. (1). The new score computed with both consistent and
inconsistent mutants, S’, has the total number of mutants increased by the number
of consistent mutants, N.. If N, is some fraction of the number of inconsistent
mutants, in other words, N, = aN, we have

_ k _ k 1 E_ 1
" N+N, N+aN 14aN 1+4a

SI

For mutation analysis we find a to be about 50%, so scores would be reduced
by about one third in the context of a model checker. Consistent mutants are easily
detected by comparing them with the complete state machine specification in a
single run of the model checker.
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The next type of mutants to winnow is trivial mutants, that is, mutants which
evaluate to false in all conditions. For instance, a “replace variable” mutation op-
erator might replace a variable, p, with another variable, ¢, which is the semantic
negation of p. The resulting mutant, say, AG (p <-> q), is always false or inconsis-
tent, and therefore is satisfied by any test. Leaving such mutants inflates the score.
If the number of trivial mutants is some fraction, 3, of the number of inconsistent
mutants, the score is increased by %(1 —S), where S is the score without trivial
mutants. Formally, the new score, S, has both the number of mutants killed and
the total number of mutants increased by the number of trivial mutants, Ny. If
N; = BN, then by Eq. (1)

k+N, k+BN _ k+BN +Bk—pBk

§ = N+N, N+BN  (1+B8)N
_ (+Ak+AN-K) _ (+Bk SN K
T+ AN (+HN T A+ BN
k. B N-k_k B k
B AR Y A S A T L
_ P
= S+1550-9)

Trivial mutants may be detected by comparing all mutants and their negations
with the original state machine specification in a single run of the model checker.
Suppose a mutant AG (P) is always false. The negation, AG (!P), is always true.
Thus a pair where AG (P) is inconsistent and AG (!P) is consistent indicates that
AG (P) is false. We found S to be about 7%, so a score of 80% is increased to 81%.
Since the number of trivial mutants is low, we do not winnow them.

Winnowing duplicate mutants

Finally, we may winnow semantic duplicates, that is, mutants that evaluate to the
same value for all possible tests.® For instance, suppose the mutation operators
“negate expression” and “replace operator” are applied to AG (P<Q) and produce
AG (! P<Q) and AG (P>=Q) respectively. These are exactly the same: any test
either kills both or neither. Leaving duplicate mutants, instead of removing all but
one copy, adds more weight to the duplicates. In the extreme, suppose we generate
100 semantically distinct mutants, but one of those mutants occurs 201 times. A test
set that kills the 99 unduplicated mutants but does not kill the duplicated mutant
gets a score of 99/300 = 33%. However, a test set that only kills the duplicated
mutant gets a much higher score of 201/300 = 67%!

We use the approach of Hagwood and Yen?! to explore the effect of duplicates
on the score by examining how the measured score, S’, differs from the score if there
were no duplicates, S. We begin by defining the vector ry,72,...,7N as the number

¢€The semantics of mutants is interpreted over the original state machine, not over all possible
interpretations. Thus mutants which differ only on infeasible conditions are still considered to be
the same semantically.



14 A Specification-Based Coverage Metric to Evaluate Test Sets

of mutants with each semantics, where N is the total number of semantically distinct
mutants. That is, r; = 1 means mutant ¢ occurs once (no duplicate), r; = 2 means
mutant ¢ occurs twice, etc. For i =1,2,..., N, let

1 if the i** mutant is killed by the test set
X; = .
0 otherwise

We assume that the X; are independent and all have the same probability of being
killed, p = Pr[X; = 1]. Note that the expected values of the scores are E[S] =
E[S'] = p which are the same! How then can we tell if some distribution of duplicates
significantly distorts the score?

Let the total number of mutants be n = Efil r;. The total number of mutants
killed is Zf;l r; X;. Given these and Eq. (1), the scores may be written as

X;

s
I
-

W
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™
i 2
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A measure of the difference between the estimated score and the observed score is
p(S,S") = E[(S — S")?] where E is the expected value. Evaluating this gives

N 1 N r
p(8,8) = Bl 5Xi=3_ X

N 1 T 2
= E[(Z(ﬁ - ;)Xi) ]
z_t\, 1 r 1y
= Varly (5 - DX+ (ED_(5 - X))’
=1 i=1
N 1 Ti\o
) e

= p(1-p)D(p,r)

where D(u,r) is the Euclidean distance between the discrete uniform vector yu =
{1/N,...,1/N} and the probability vector r = {ry/n,r2/n,...,rn/n}.

Many combinations of values of {ry,rs,...,7n} give the same value of D(u,r).
Therefore it makes sense to talk about D(u,r) as a distribution of values that give
rise to a specific value of D(u,r). To a good approximation

N~ 1
X =Ty
=1

has a chi-squared distribution with NV —1 degrees of freedom. Using the chi-squared
test one can say that r = {ry/n,ra/n,...,rn/n} is significantly different from
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{1/N,...,1/N} i

1o 1
— =2 > —x(N,1- 2
>l V> ki =a )
where x(N,1 — «) is the 1 — a quantile of the chi-squared distribution with N
degrees of freedom. That is the scores are statistically different, and thus the
distribution of duplicates is significantly nonuniform, if Eq. (2) holds. Individually,
iffori=1,...,N

1
-7 < NX(N’I —a)

n

~

then the scores are statistically equivalent, and duplicates will not significantly
change the score.

Duplicate mutants may be detected by essentially comparing every mutant
against every other mutant. For instance, if we have mutants AG m1, AG m2 and AG
m3, check the following.

AG (ml1 <-> m2)

AG (ml1 <-> m3)

AG (m2 <-> m3)

Only duplicates are consistent. In practise, we can reduce the number of compar-
isons by running a few checks to quickly determine mutants that are not duplicates,
then comparing possibly-duplicate mutants with each other. We have not charac-
terized the number or distribution of duplicate mutants.

4. Case Study

We applied our method to the Safety Injection problem. See App. 1 for the complete
SMYV specification. Table 1 is a higher-level specification with three tables. Each line
in the mode transition table specifies one condition when the mode changes. If the
mode matches the guard in the leftmost column and the condition in the middle,
event column becomes true, the new mode will be that given in the rightmost
column. Otherwise the mode stays the same. The next two tables give the guard,
or mode, for each row. If an event occurs or a condition holds, the variable takes
the value given at the bottom of the column. Otherwise the variable is unchanged.

We used three progressively more elaborate preparation methods: the reflected
specification, the reflected specification with expounding, and the reflected specifi-
cation with expounding and TRANS clauses. The expounded clauses were short-
ened. The appendix shows the specification resulting from the third, most elaborate
method. The specification resulting from the first method may be obtained from
that in the appendix by dropping all the SPEC clauses tagged with an “e” or re-
flected from the TRANS relation.

Using the method in Ammann, Black, and Majurski® we automatically gener-
ated test sets from all three versions of the specification. For comparison, we also
manually produced a minimal test set that covered the tables expressed in Table 1.
We explain the notion of “table coverage” below.
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Table 1: Safety injection tables

Current Mode Event New Mode
TooLow QT (W aterPres > Low) Permitted
Permitted QT (WaterPres > Permit) High
Permitted QT (WaterPres < Low) TooLow
High QT (WaterPres < Permit) | Permitted

Initial State : Mode = TooLow, WaterPres < Low
Mode transition table for Pressure.

Mode Events
High False QT (Inmode)
TooLow QT (Block = On) QT (Inmode) OR
Permitted WHEN (Reset = Off) | QT'(Reset = On)
[ Overridden | True [ False |

Event table for Overridden.

Mode Conditions
High, Permitted True [ False
TooLow Overridden | NOT Owverridden
[ Safety Injection | Off [ On |

Condition table for Safety Injection.

4.1. Mutation generation

We used Vadim Okun’s mutation engine with the following operators. We illustrate
each operator with a mutant it generates from the following clause. Changes are
emphasized by underlining.

AG (Pressure = Toolow & Reset = 0ff ->
AX (Reset = On -> !'Overridden))

1. replace_constant: replace one constant with another, for example,

AG (Pressure = High & Reset = 0ff ->
AX (Reset = On -> !0Overridden))

2. replace_oper: replace one operator with another operator, for example, replace
“and” with “or”

AG (Pressure = ToolLow | Reset = Off ->

AX (Reset = On -> !0Overridden))
3. replace_vars: replace a variable with another variable, for example,

AG (Pressure = Toolow & Block = 0ff ->
AX (Reset = On -> !'Overridden))

4. remove_expr: remove a simple expression from conjunctions, disjunctions, and
implications, for example,

AG (Pressure = Toolow __ ->
AX (Reset = On -> !Overridden))
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Table 2: Mutations before and after expounding

Expound Expound
No Expound | no TRANS | with TRANS
Mutant SPEC clauses 188 611 1131
Inconsistent SPEC mutants” 121 388 824
Test cases 16 27 36
Test cases after minimizing 10 16 18

The only winnowing we do is to exclude consistent mutants. Table 2 shows the
results of applying mutation generation before expounding, after expounding with-
out reflecting the TRANS clause, and after expounding and reflecting the TRANS
clause. The table also shows the number of test cases automatically generated by
the method in Ammann, Black, and Majurski® for each version.

We can use our mutation analysis method to minimize test sets. We analyzed
the mutants killed by different test cases and found a smaller set which has the same
coverage. The bottom row of the table shows the number of test cases after this
minimization. Interestingly, even though the number of mutants grows enormously
with expounding and consideration of the TRANS clause, the number of test cases
grows relatively modestly.

4.2. Ewvaluation of separately developed test sets

Consider the SCR tables, shown in Table 1, that gave rise to the SMV model.
These tables are reproduced from Bharadwaj and Heitmeyer.? For comparison, let
us construct a test set that satisfies the following criteria: each row in a mode
transition table is covered by one or more test cases. In addition, for each mode,
the possibility of remaining in that mode is covered by one or more test cases. In
an event table, the conditions that cause each event are forced to be true and to be
false, if possible, on one or more test cases each. Finally, in a condition table, each
condition is forced to be true and to be false, if possible, on at least one test case
each. We call this metric table coverage. We define any test set that satisfies these
criteria to be table adequate.

We produced a test set that satisfied the criteria for table coverage.y We build
a table adequate test set by picking a subset of the test cases generated for the un-
expounded version of the safety injection problem. This turned out to be sufficient;
otherwise, we could have produced additional tests. The result was four test cases.

Table 3 shows the result of evaluating the table adequate test set and the
three automatically generated test sets against the table coverage metric and also

fWe found that for this example, all inconsistent mutants are falsifiable.

9We used SMV to check for table adequacy as follows. For each event in the transition table, a
SPEC clause was written stating that the desired transition did not happen when the specified
event occurred. SMV then generated a counterexample showing that the desired transition did
happen if the event occurred. A similar strategy was applied to the event and condition tables.
The result was eight SPEC clauses for the mode transition table (two for each row), six for the
event table (two for each event except False), and two for the condition table (all values for
Overridden in mode TooLow), for a total of 16 SPEC clauses. That is, a table adequate test set
for the tables in Table 1 must satisfy these 16 elements.
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Table 3: Test set coverage scores with different criteria

Expound Expound
table coverage | No Expound no TRANS with TRANS
tests 16 elements 121 mutants 388 mutants 824 mutants
table adequate 4 100% (16) 89% (108) 77% (301) 70% (577)
No Expound 16 100% (16) 100% (121) 81% (317) 76% (629)
Expound
no TRANS 27 100%t 100%t 100% (388) 93% (767)
Expound
with TRANS 36 100%t 100%t 100%% 100% (824)

against our metric with mutant generation with no expounding, expounding with-
out TRANS, and expounding with TRANS. The scores marked with { are derived
rather than measured. We justify the derived scores because the mutants that de-
fine adequacy for the second test set are a subset of those that define the third,
and the mutants that define adequacy for the third test set are a subset of those
that define the fourth. The 16 tests generated from No Expound scored 317/388 or
81% on mutants from Expound, but no reflection of TRANS clauses. Similarly, the
27 tests generated from Expound, No TRANS scored 767/824 or 93% on mutants
from Expound with TRANS. Therefore, the additional mutants from reflection of
the TRANS clause and expounding result in a more precise metric.

Although we would not expect table coverage testing of the SCR table to be
as thorough as the mutation scheme used in this paper, it is still instructive to
evaluate such tests with respect to mutation adequacy. It also demonstrates how
our method can be used to evaluate test sets developed by other means. This is
important because most existing software systems have large regression test sets
associated with them, and it is very useful to analyze such test sets for gaps and
redundancy. In the former case, additional tests can be added. In the latter case,
redundant tests can be analyzed for removal.

All the test sets generated from mutation analysis turn out to be table cov-
erage adequate. However, we note that a significant number of mutants are not
necessarily detected by the table coverage adequate test set. This suggests that our
specification-based mutation adequacy coverage metric has practical utility.

5. Summary and Conclusion

Testing, particularly system testing, consumes a significant portion of the budget for
software development projects. Formal methods, typically used in the specification
and analysis phases of software development, offer an opportunity not only to reduce
the cost of testing, but also to increase confidence in the software through formal
metrics for test thoroughness. We pursued this path by applying model checking
and mutation analysis to the problem of test set coverage. The resulting coverage
metric can be used independently of source code, and is appropriate for “black box”
testing.

From an assurance perspective, we would like to say that a test set guarantees
some property for the software, but, with some exceptions, this goal is beyond the
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limits of what testing can show. Instead, test metrics are developed to capture de-
sirable properties of a test set. Most of the testing metrics available in the literature
are defined at the unit or source code level. We balance this by offering a metric at
the software system level.

In this paper, we developed a metric for evaluating test sets against state tran-
sition specifications in the context of model checking. The metric is based on muta-
tion analysis. Mutation adequate test sets are sensitive to the precise structure of
the artifact from which the mutations are generated, which in this case is a model
checking specification. We developed the necessary foundation for defining the mu-
tation metric, including the roles of reflection, expounding, mutation operators, and
winnowing procedures. We showed how to take a set of externally developed test
cases, turn each test case into a constrained finite state machine, and score the set
against the metric.

Scalability is a concern for all realistic software engineering techniques. The
scalability of our technique depends in part on how well model checkers handle large
specifications. The successes of SPIN?¢ and SMV!? suggest that a specification-
based test coverage metric may apply to a broad variety of software systems.

To evaluate scalability, we plan to apply this technique to a much larger and
richer specification, namely the generic Flight Guidance System developed by Rock-
well Collins for the academic community and available in a variety of forms.?¢ We
also plan to explore starting with higher level specifications, say UML or state
charts, and automatically generating model checker specifications. Additionally, we
will devise other mutation operators and determine which set of mutation opera-
tors give the best coverage with the smallest set of tests. At the same time, we will
theoretically and experimentally investigate the impact of duplicate mutants on our
metric.
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Appendix A

Safety Injection Problem

The specification given below is a modification of one supplied by the Navy Re-
search Laboratory. The specification corresponds to Table 1. See Bharadwaj and
Heitmeyer® for a closely related specification in all of SCR, SPIN, and SMV.

The numerical comments to the right of case statement branches below pro-

vide a cross reference between the transition relation and the reflection into SPEC
clauses. Branches marked with an “e” require expounding prior to reflection. After
expounding, it is often convenient to use multiple SPEC clauses for reflection; hence
the multiple SPEC clauses for each of the “e” branches. In this example, only the
default cases require expounding.
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MODULE main

VAR

Reset : {0On, O0ff};

Overridden : {0,1}; --boolean

Block : {0n, Off};

WaterPres : 0..200;

Pressure : {TooLow, Permitted, High};

DEFINE
Low := 90;
Permit := 100;

SafetyInjection:= case
Pressure = Permitted: 0ff;
Pressure High:0ff;
Pressure TooLow: case

Overridden:0ff;
! Overridden :On;
esac;

esac;

ASSIGN

init(Block) := Off;
init(Reset):= (On;
init(WaterPres):= 2;
init(Overridden):= 0;
init (Pressure):= TooLow;

next(Block):= {0n, 0ff};
next (Reset) := {0On, 0ff};
next (WaterPres):= 0..200;

next (Overridden) := case
Pressure = TooLow: case

! (Pressure = next(Pressure) ) :0; -1
!(Reset = On) & next(Reset) = On :0; - 2
! (Block = On) & next(Block) = On & Reset = 0ff:1; - 3
1:0verridden; -— 4e
esac;
Pressure = Permitted: case
! (Pressure = next(Pressure) ) :0; -- 5
!(Reset = On) & next(Reset) = On :0; - 6
! (Block = On) & next(Block) = On & Reset = 0ff:1; -7
1:0verridden; -- 8e
esac;
Pressure = High: case
! (Pressure = next(Pressure) ) :0; - 9
1:0verridden; -- 10e
esac;
esac;
next (Pressure) := case
Pressure = TooLow: case
' (( WaterPres >= Low )) & ( next(WaterPres) >= Low ) :Permitted; -- 11
1:Pressure; -- 12e
esac;
Pressure = Permitted: case
'(( WaterPres < Low )) & ( next(WaterPres) < Low ) :TooLow; -- 13
'(( WaterPres >= Permit )) & ( next(WaterPres) >= Permit ) :High; -- 14
1:Pressure; -- 1be
esac;
Pressure = High: case
! (WaterPres < Permit) & ( next(WaterPres) < Permit ) :Permitted; -- 16
1:Pressure; -- 17e
esac;
esac;
TRANS

(!(next (Reset)=Reset) & next(Block)=Block & next(WaterPres)=WaterPres) |
(!(next(Block)=Block) & next(Reset)=Reset & next(WaterPres)—WaterPres) |

(! (next(WaterPres)=WaterPres) & (next(WaterPres) - WaterPres) <=
(WaterPres - next(WaterPres)) <= 3 & next(Reset)=Reset & next(Block)-Block)

-- The following SPEC clauses reflect the logic of the transition
-- relation expressed above.
SPEC -- 1

AG(Pressure=TooLow -> AX(!(Pressure=TooLow) -> !Overridden))
SPEC -- 2

AG(Pressure=TooLow & Reset=0ff -> AX(Reset=0n -> !Overridden))
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SPEC -- 3
AG(Pressure=TooLow & Block=0ff & Reset=0ff -> AX(Block=0n -> Overridden))
SPEC -- 4e:1
AG(Pressure=TooLow & Reset=0n & Overridden -> AX(Pressure=TooLow =->
Overridden))

SPEC -- 4e:2
AG(Pressure=TooLow & Reset=0n & !Overridden -> AX(Pressure=TooLow ->
10verridden))
SPEC -- 4e:3

AG(Pressure=TooLow & Block=0n & Overridden -> AX(Pressure=TooLow &
Reset=0ff -> Overridden))
SPEC -- 4e:4

AG(Pressure=TooLow & Block=0n & !Overridden -> AX(Pressure=TooLow &
Reset=0ff -> !Overridden))
SPEC -- 4e:5

AG(Pressure=TooLow & Overridden -> AX(Pressure=TooLow & Block=0ff &
Reset=0ff -> Overridden))
SPEC -- 4e:6

AG(Pressure=TooLow & !Overridden -> AX(Pressure=TooLow & Block=0ff &
Reset=0ff -> !Overridden))
SPEC -- 5

AG(Pressure=Permitted -> AX(!(Pressure=Permitted) -> !Overridden))
SPEC -- 6
AG(Pressure=Permitted & Reset=0ff -> AX(Reset=0n -> !Overridden))
SPEC -- 7
AG(Pressure=Permitted & Block=0ff & Reset=0ff -> AX(Block=(n ->
Overridden))
SPEC -- 8e:1

AG(Pressure=Permitted & Reset=0n & Overridden -> AX(Pressure=Permitted ->
Overridden))

SPEC -- 8e:2
AG(Pressure=Permitted & Reset=0n & !Overridden -> AX(Pressure=Permitted ->
!0Overridden
SPEC -- 8e:3

AG(Pressure=Permitted & Block=0n & Overridden -> AX(Pressure=Permitted &
Reset=0ff -> Overridden))
SPEC -- 8e:4

AG(Pressure=Permitted & Block=0n & !Overridden =-> AX(Pressure=Permitted &
Reset=0ff -> !Overridden))
SPEC -- 8e:b

AG(Pressure=Permitted & Overridden -> AX(Pressure=Permitted & Block=0ff &
Reset=0ff -> Overridden))
SPEC -- 8e:6

AG(Pressure=Permitted & !Overridden -> AX(Pressure=Permitted & Block=0ff &
Reset=0ff -> !Overridden))

SPEC -- 9
AG(Pressure—ngh -> AX(!(Pressure=High) -> !Overridden))
SPEC -- 10Qe:

AG(Pressure—ngh & Overridden -> AX(Pressure=High -> Overridden))
SPEC -- 10e:2
AG(Pressure-ngh & !Overridden -> AX(Pressure=High -> !Overridden))
SPEC -- 11
AG((Pressure=TooLow) & !(WaterPres >= Low) -> AX((WaterPres >= Low) ->
Pressure=Permitted))
SPEC -- 12e:1

AG((Pressure=TooLow) & (WaterPres >= Low) =-> AX(Pressure=TooLow))
SPEC -- 12e:2
S Ag((Prigsure=TooLow) => AX(!(WaterPres >= Low) =-> Pressure=TooLow))
PEC --
AG((Pressure=Permitted) & !(WaterPres < Low) -> AX((WaterPres < Low) =->
Pressure=TooLow))
SPEC -- 14

AG((Pressure=Permitted) & !(WaterPres >= Permit) =->
AX((WaterPres >= Permit) -> Pressure=High))
SPEC -- 15e:1

AG((Pressure=Permitted) -> AX(!(WaterPres < Low) & WaterPres < Permit ->
Pressure=Permitted))
SPEC -- 16

AG((Pressure=High) & !(WaterPres < Permit) -> AX((WaterPres < Permit) ->
Pressure=Permitted))
SPEC -- 17e:1
AG((Pressure= =High) & (WaterPres < Permit) -> AX(Pressure=High))
SPEC -- 17e:2
AG((Pressure—ngh) -> AX(!(WaterPres < Permit) -> Pressure=High))

-- The following SPEC clauses reflect (an abstraction of) the TRANS section

SPEC AG(Reset = 0ff & Block = (On -> AX(Reset = On =-> Block = (On))
SPEC AG(Reset = Qff & Block = Qff -> AX(Reset = On -> Block = 0ff))
SPEC AG(Reset = 0ff & Pressure = TooLow -> AX(Reset = On =->

Pressure = TooLow))
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SPEC

SPEC
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SPEC

Metric to Evaluate Test Sets

AG(Reset = 0ff & Pressure = Permit -> AX(Reset = (On
Pressure
AG(Reset = Off & Pressure = High -> AX(Reset = On
Pressure
AG(Reset = On & Block = On -> AX(Reset = 0Off
AG(Reset = On & Block = Off -> AX(Reset = Off
AG(Reset = On & Pressure = TooLow -> AX(Reset = Off
Pressure
AG(Reset = On & Pressure = Permit -> AX(Reset = Off
Pressure
AG(Reset = On & Pressure = High -> AX(Reset = Off
Pressure
AG(Block = 0ff & Reset = On -> AX(Block = On
AG(Block = 0ff & Reset = Off -> AX(Block = 0On
AG(Block = 0ff & Pressure = TooLow -> AX(Block = On
Pressure
AG(Block = 0ff & Pressure = Permit -> AX(Block = On
Pressure
AG(Block = Off & Pressure = High -> AX(Block = On
Pressure
AG(Block = On & Reset = On -> AX(Block = 0Off
AG(Block = On & Reset = Off -> AX(Block = Off
AG(Block = On & Pressure = TooLow =-> AX(Block = Off
Pressure
AG(Block = On & Pressure = Permit -> AX(Block = Off
Pressure
AG(Block = On & Pressure = High -> AX(Block = Off
Pressure

AG(Pressure=TooLow
AG(Pressure=TooLow
AG(Pressure=TooLow
AG(Pressure=TooLow

AG(Pressure=Permit
AG(Pressure=Permit
AG(Pressure=Permit
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AX (! (Pressure=TooLow)
AX(! (Pressure=TooLow)
AX(! (Pressure=TooLow)
AX (! (Pressure=TooLow)

AX (! (Pressure=Permit)
AX(!(Pressure=Permit)
AX(!(Pressure=Permit)
AX (! (Pressure=Permit)

AX(!(Pressure=High
AX(!(Pressure=High
AX (! (Pressure=High
AX(!(Pressure=High

)
)
)
)

Permit))
High))

Block
Block

0n))
0ff))

TooLow))
Permit))
High))

Reset

0n))
Reset 0£ff))

TooLow))
Permit))
High))

Reset
Reset

On))
0ff))

TooLow))
Permit))
High))

->
->
->
=->

Reset=0n ))
Reset=0ff))
Block=0n ))
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=->
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Reset=0n ))
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