
Abstract
This paper describes the creation of an environment for col-

laborative engineering in which the goal is to improve the user
interface by using haptic manipulation with synthetic environ-
ments. We have integrated a multiuser synthetic environment with
physical robotic devices to create a work environment. These
devices can move under computer control or may be manipulated
directly by the user. The work environment represents objects from
the application domain such as a building construction environ-
ment or manufacturing cell. Collaborating engineers can discuss
object interactions, such as crane planning or building placement
using this environment. A physical representation of a work envi-
ronment enables the user to perform direct, tangible manipulations
of the devices which are mirrored in the synthetic environment.
The direct physical manipulation of robotic devices offers the
users a natural and efficient method of interacting with the syn-
thetic environment.
CR Categories and Subject Descriptors: I.3.2 [Computer Graph-
ics]: Graphic Systems - Distributed/network graphics; I.3.6 [Com-
puter Graphics]: Methodology and Techniques: Interaction
techniques, standards; I.3.7 [Computer Graphics]: Three-Dimen-
sional Graphics and Realism: Virtual Reality; J.6 [Computer
Applications]: Computer Aided Engineering - Computer-aided
design (CAD).

Additional Keywords and Phrases: virtual environments, user
interfaces, device control, tangible reality, VRML

1 Introduction and Related Work
We have developed a collaborative engineering environment

based on the integration of a multi-user synthetic environment with
tangible devices. By tangible we refer to the ability to pick up and
interact with actual physical objects present in the interface. In this
work environment the objects a user can manipulate are active and
can be used both for feedback and control of elements in a syn-
thetic environment. The interface was implemented in a multi-user
environment which was created with off-the-shelf commercial
software. A Java based mediation system forms the central hub
through which object position updates and device interface com-
mands flow. The Java hub integrates the Virtual Reality Modeling
Language (VRML) synthetic environment with the robotic devices
in the actual physical environment.

The use of virtual environments (VE) for collaborative engi-
neering has been a topic of research for quite a few years. A nota-
ble set of workshops on Collaborative Virtual Environments has
been held since 1996 [3]. However most of the CVE research
focused on the collaborative and social nature of interaction as
opposed to engineering applications. Our immediate goal was to
determine the feasibility of using a tangible interface with a mul-
tiuser VRML environment as applied to collaborative engineering.
The use of VRML, the only ISO standard for 3D graphics on the
Web allows us to provide software to the public. An additional
goal was to use as much off-the-shelf software and hardware as
possible in order to facilitate transfer of the technology to the com-
mercial world. We have created a multi-user VE utilizing a com-
mercial system, the blaxxun Community Platform, along with
commercial off-the-shelf configurable robots, LEGO Mindstorms
robotics invention system, illustrated in Figure 1 [13].

There has been significant research performed on the use of
tangible devices and other relevant haptic interfaces in the litera-
ture.The concepts of Tangible Reality interfaces have been devel-
oped initially as a “graspable interface” [6] and continue to the
present day in Ishii’s Tangible Bits project [9]. Our work differs
from these systems by incorporating a multiuser system that
includes active haptic devices which can be used both as control
and for feedback. The addition of active devices enables us to cre-
ate a “mirror world” in which the actions in the virtual world are
mimiced in the real world and visa versa. The concept of a “mirror
world” that can be used for industrial applications is a modification
of Gelernter’s [7] concept of Mirror Worlds. 

Integrating Active Tangible Devices with a Synthetic 
Environment for Collaborative Engineering

Sandy Ressler   Brian Antonishek 
Qiming Wang   Afzal Godil 

{sressler | antonis | qwang | godil}@nist.gov Information Technology Laboratory
National Institute of Standards and Technology

DISCLAIMER: Mention of trade names does not imply endorsement by NIST.

* National Institute of Standards and Technology
100 Bureau Drive STOP 8940
Gaithersburg MD 20899-8940



2 System Overview
The overall environment is conceptually simple. For example,

two collaborating engineers in geographically separate areas wish
to manipulate and discuss a construction project. Previous work by
our team has demonstrated complex integration of a VRML in a
manufacturing environment, generated from several sources
including near real time dynamics[21]. Recent work at NIST [14]
has demonstrated that VRML can be used to represent rich con-
struction environments. However, manipulation of elements such
as a virtual excavator is awkward. Control panels with many but-
tons and sliders are functional but difficult to manipulate. We
“mirror” the physical environment with the synthetic environment
in order to present the user with a consistent view of the work envi-
ronment. We believe direct haptic manipulation can lead to more
intuitive interaction. Users move the tangible excavator and adjust
the rotatable arm and this causes the virtual equivalent to update.

Figure 1  Configuration of LEGO RCX brick

We configured the LEGO robot with left and right motors for
travel. Each motor can be addressed independently allowing it to
turn. The RCX brick had a build in speaker. We also added a light
emitter and a rotation sensor. Each sensor and emitter is indepen-
dently addressable.

The core of the system is the Java based Virtual Environment
Device Integration server, JVEDI [10], which mediates between
the virtual environment and the users and system input. The
JVEDI architecture illustrated in Figure 2, allows for a loose inte-
gration of systems via sockets, file and serial ports for the physical
devices. The server runs as a stand-alone Java application on the
host computer.

Figure 2  System Architecture
Communications between JVEDI and the LEGO robots

occurs via a serial interface to an infrared (IR) transceiver. The
vision system writes position data into a file which is read by the
JVEDI process. Audio commands are sent via a socket interface.
The VRML to blaxxun server communication is via sockets using
off-the-shelf product configurations.

The environment consists of two work surfaces, one on the
left side of the lab, and the other on the right side of the lab. We
can easily posit that these work surfaces are in different areas of
the country, ignoring of course the obvious reality of network lag.
Each work surface is populated with a single LEGO Mindstorm
robot which represents the equipment of interest in the VE. Multi-
ple robots per work surface are also possible. The VE, a multi-user
blaxxun environment [1] displays a single virtual work area con-
sisting of the sum of all objects of interest in the real work areas.
Engineers at each working area can view the VE and see the entire
collaborative area. For our testing purposes, we used a single dis-
play of the VE as the two engineers were collocated, however we
can view the VE on any system with access to the Web inside our
firewall.

Figure 3  Manipulating a robot on the work surface

color targets to track position

rotation sensor

rotatable
arm

motors for travel

LEGO

blaxxun

JVEDI

VRML
server

start/stop
task

collision
detection

EAI

Vision (x,y)
position updates

Audio 
speech cmds

record
playback
file

robots

camera

lego robot

work surface

position tracking camera

 user



Users wishing to collaborate, sit or stand as illustrated in Fig-
ure 3, in front of the worksurface and a corresponding computer
displaying the multi-user environment. Figure 4 illustrates a typi-
cal display of a two person collaborative virtual environment.

Above each work surface we place a video camera looking
down at the surface. With a computer vision program this camera
provides 2D position, and orientation data of the robot on the sur-
face to the Java server. When users move the robots on the work
surface the position is sent to the Java (JVEDI) server which relays
the information to the multi-user VE and updates the display.

 

Figure 4  Collaborative virtual environment with 
two participants.

In addition to moving the robots haptically, we provide a
modest user interface consisting of buttons and arrows in the VE.
This interface allows an engineer without access to the tangible
interface to remotely move objects, whose position is again
reflected in the VE. The VE and the real environment are kept syn-
chronized. They are mirrors of each other. Synchronization was
accomplished by always taking the position from the values
reported by the video system. When a user clicked on a forward
button in the VE, the system causes the LEGO robot to move for-
ward and the video system reports a new position. The new posi-
tion is then used in the VE. Note that if the position was directly
used to control the objects in the VE that the real world and VE
would quickly get out of sync.

3 Integration Issues
Our most challenging aspect in creating the work environ-

ment was the integration of all the processing elements. VRML
browsers only have one common method for interfacing with pro-
grams and devices in the real world, a method called the External
Authoring Interface (EAI). The EAI provides a loosely coupled
integration mechanism upon which we built functionality such as
controlling robots, reading and writing data from a position track-
ing device, and the ability to read and write data files. 

A fully configured version of the environment requires up to
six separate computers. Each of the two working areas requires a
computer for the video processing and one for the VE. A fifth
computer is used for the JVEDI processing. Finally a sixth com-
puter is used to provide an overview of the combined VE. Of
course, we could combine the video processing and the VE display
for a workstation onto a single computer with a corresponding
impact on performance. The overview VE computer is also not
strictly necessary as each of the VE displays for the work surfaces
is equivalent. Running each of these processing elements on sepa-
rate computers illustrates our design goal to increase the scalable
and distributed nature of the architecture.

Communications between each of the computers was per-
formed via the existing laboratory ethernet. Communications to the
robot devices is via serial ports to the infrared devices which per-
form the low level communication to the RCX bricks. This system
of loosely connected computers and serial port devices is fairly
fragile. The distributed nature of the system is robust in that it is
easy to replace any component.

4 Major Components
The major components: Java-based device interfacing; vision

processing; LEGO device interfacing, and multi-user VRML, are
described below. 

4.1The JVEDI Java Hub
The Java hub which provides the interface between system

components has been packaged up as a software package we call
JVEDI (Java based Virtual Environment Device Integration).
JVEDI had its origin in some earlier work [20] at NIST where we
used similar but less robust Java code to integrate a Sony remote
control camera and a 6 degree of freedom position tracker with
VRML worlds. Integration of these devices with the new code
would require relatively minor changes primarily concerning the
specific device protocols.

We created a set of Java classes which function as interfaces
between the three primary processes, the clients which request and
consume services (such as position information), the server
(JVEDI) which manages interactions, and the service processors
which talk at a low level to the specific devices (LEGO, serial
ports, files). The Java classes are as follows:
• LegoBase.java: Contains all the commands shared by both 

the client and server.
• LegoClient.java: (subclass of LegoBase) The client-side 

class of the LEGO controller program. Client applications 
create a LegoClient instance in order to control or monitor the 
LEGO RCX.

• LegoRequestProcessor.java: (subclass of LegoBase) Keeps 
a socket open to the requesting client. It acts upon a client’s 
command or inquiry, and returns information to the client. 

• LegoServer.java: The server-side class of the LEGO control-
ler program. It receives a client connection and creates a 
LegoRequestProcessor thread to handle the new client’s 
requests.

• LegoCommandSet.java: Contains all the byte-code com-
mands that the LEGO RCX understands. 

• LegoRCX.java: (subclass of LegoCommandSet) Contains 
the higher-level Java routines used for communicating with 
the LEGO RCX.



• SerialIO.java: Contains all serial port I/O related procedures.

As an example here is the order of execution for the action of
a pushing a position button in the multiuser VRML world, causing
the LEGO to move. 
• Initialization: The LegoServer process starts. It checks to see 

how many LegoRCX instances are running. If there are no 
LegoRCX instances running an error is reported, indicating 
that the physical LEGO RCX is most likely not turned on. 
(Note: The vision system is started or is already running but is 
separate from these Java processes.) A LegoClient process 
starts when the multiuser VRML world is started. When a 
new client starts it connects to the LegoServer process via a 
socket. The LegoServer forks off a new LegoRequestProces-
sor instance. 

• Step 1: The LegoRequestProcessor reads the client’s com-
mand and sends the LegoRCX instance a new command 
which it, in turn, sends as a low level command to the physi-
cal LEGO via the IR interface. The LEGO RCX moves.

• Step 2: At this point the vision system, which is constantly 
updating a file with the x,y position and orientation of the 
LEGO, is used. The LegoRequestProcessor examines the x,y 
file for position and orientation changes. Upon detecting a 
change it returns the new position to the requesting client. 

• Step 3: The VRML LEGO’s position is now updated. Note 
that the position of the VRML LEGO is updated according to 
the change in position of the physical LEGO. This ensures 
that the physical and virtual LEGOs remain synchronized. It 
does however introduce a slight delay for the user in the 
update speed of the VRML LEGO’s position. Steps 1-3 are 
repeated for each press of the position button.

• Shutdown: When the client closes the connection to the 
LegoRequestProcessor it, the LegoRequestProcessor exits. 
The client connection generally remains open for as long as 
the user has selected the LEGO for control. 

 

4.2Vision Processing, Speech Input
The position and orientation of the LEGO robots are com-

puted in real time using a computer vision method based on color
tracking. The vision program uses an inexpensive camera and can
track multiple robots at 10 frames/sec. Position data is sent to the
JVEDI server and then to the VRML world which updates the vir-
tual LEGO, also in real time. 

Computer vision algorithms that are used for real time track-
ing must be fast and efficient. Many methods for computer vision
exist [2][12][18][8][15] and are computationally expensive. We
decided to use a fast, simple method based on color tracking [5].
To reduce noise in the data we used a Kalman filter [11] smoothing
method. 

To track the LEGO robots, we pasted two colored circular
cards with different colors on the robot. The computer vision pro-
gram is calibrated with these colors and uses color probability dis-
tribution to find the center of the two squares. The position is the
mean of the two centers of the squares. The orientation is calcu-
lated using the arctangent of the difference of the centers. The
equations used are illustrated in Figure 5.

Figure 5  Centroid and orientation calculations
The processing system views the robot and displays (for

debugging purposes) red and green marks over the colored targets
on the video display. In addition, the centroid is marked with a
small crosshair shown in Figure 6.

A. Calculate the zeroth moment for the two probability
distributions (only one is shown).

B. Calculate the first moment.

M 1

00
I

1
x y( , ) color1 red=( )

y
∑

x
∑=

M 1

10
xI

1
x y( , )

y
∑

x
∑=

M 1

01
yI

1
x y( , )

y
∑

x
∑=

C. Compute the center of the red square

The centroid xc, yc, is the average of the positions for
each color.

D. The orientation is calculated as:

Where I1(x,y) is the probability of the first square color
(red in this example) and I2(x,y) is the probability of
the second square color (blue in this example). 

x1

M 1
10

M 1
00

-----------= y1

M 1

01

M 1

00

-----------=

θ
y2 y1–
x2 x1–
---------------- 

 atan=

color1
x1, y1

xc, yc

x2,y2

color2Diagrammatic view of
robot from above.

red

blue



Figure 6  Video camera view after position pro-
cessing, note centroid position

A user who is moving robots cannot easily access a keyboard.
Also, during development, it was often necessary to move robots
on different surfaces simultaneously, which is difficult. This
prompted us to implement a simple speech system to allow the
user to select different virtual geometries while remaining with the
work surface and robot. We implemented a crude speech user
interface utilizing the Microsoft speech SDK [16]. The speech pro-
cessing system consists of a Java applet which recognizes several
commands. The user can speak excavator, truck, lego and robot to
change geometry. The brick can be selected and moved by speak-
ing the commands “select_red”, “select_blue”, “left”, “right”, “for-
ward”, “backward”. The voice commands were translated into the
commands used by the VRML control panel interface and were
sent through JVEDI for execution. 

4.3LEGO Interfacing
Adding control for the LEGO RCX robots was very similar to

the JVEDI remote control of a camera [20]. We needed to send
commands to move the robot in any direction and get feedback
from the robot about sensor values and robot status.

The communications was achieved using the LEGO Infrared
(IR) tower pictured in Figure 7, which comes with the LEGO
Mindstorms Robotics Invention System [13]. 

Figure 7  LEGO infrared tower

The IR tower attaches to a computer's serial port and is treated
as just another serial port device in JVEDI. The IR tower sends/
receives commands to/from the RCX brick.

The position of the RCX brick in the real world is obtained
using the vision tracking system described in an earlier section.
The RCX's current position data is passed to the JVEDI server
which then gives the data to any JVEDI clients requesting position
data. The current work environment version uses data files to
transfer the information from the vision system to the JVEDI
server but will be upgraded to use network sockets to increase per-
formance by eliminating disk I/O lag time.

Addition of the RCX control and monitor commands to the
JVEDI server required specific command bytes to be sent and
received between the IR tower and the RCX brick. We had a good
starting point with the Java RCX Tanks demonstration that was
given at a Java One conference [4]. That code proved an effective
way of accomplishing the initial communication between Java and
the LEGO RCX bricks. There are also some excellent sources on
the web for getting detailed information about the RCX internals
and the codes that are used for communications [19][17].

Commands (IR signals) are transmitted to the RCX for the
desired actions (left, right, etc.). The program running on each of
the RCXs receive and interpret these signals. Each of the RCX
programs has unique signals for their actions, this way an individ-
ual RCX can be controlled while the others are unaffected. Note
that communication to the bricks goes to all bricks at the same time
because of the broadcast nature of the IR tower.

Internally, the LEGO RCX bricks were programmed so that
each individual sensor or effector responded to a unique code. This
allows us to control or read data from specific bricks. Each control
command, such as moving the left wheel of the red brick, was pref-
aced with the specific code number for that effector. Internally the
bricks each were programmed to recognize and respond only to the
codes for itself. Other control mechanisms are, of course possible.
However, the primary constraint is the broadcast nature of the
commands to the bricks which requires some method of directing
commands to the correct brick and effector/sensor.

4.4Multiuser VRML
The multiuser aspect of our VRML world was accomplished

using off-the-shelf commercially available software, blaxxun
Community. The VRML world consists of two parts. The first is
the virtual world which includes two LEGO bricks (red and blue),
the floor, and one cylinder object. (See Figure 4.) The second part
is the control panel, illustrated in Figure 8. Each LEGO has its own
control panel which allows the user to control the operation of the
virtual LEGO and the real LEGO.

The control panel has several buttons. First, the on/off button
to turn on or off the connection between the real LEGO brick and
the virtual LEGO brick. When it is on, four arrows appear. A user
can click the arrows to cause the real LEGO brick to move for-
ward, backward, left, or right. When the LEGO control is off, the
arrows disappear.

centroid

red and green markers



Figure 8  VRML button panel for robot control
Next on the control panel are square buttons connected to a

VRML switch for selecting the different virtual device geometries.
Finally the four buttons on the right are used for recording the real
LEGO positions to a file and playing back the recorded sequence
from the file.

The virtual LEGO communicates with the real LEGO through
the EAI and JVEDI. The EAI Java class “legotrack” generates
LEGO clients which talk to the JVEDI server. Movement of the
virtual LEGO is only controlled by the real LEGO's motion. When
a user turns on a LEGO from the control panel, “legotrack” creates
a Java Thread for the selected LEGO and runs the Thread. The
Thread polls the real position information from JVEDI approxi-
mately every 10 milliseconds. When it finds the current position is
not the same as the previous position, it sends the position data to
the VRML world and the virtual LEGO will move to that position.
If the user clicks the arrow buttons in the control panel, the com-
mands to move forward, backward, left, or right, will be send to
the JVEDI server, and the server will instruct the real LEGO to
move.

The geometry and scripts needed to interface the VRML
objects with the serial port has been encapsulated into a LEGO
Proto. The interface to this EXTERNPROTO is as follows:

EXTERNPROTO LEGO [
    field SFVec3f translation
    field SFRotation orientation
    field SFVec3f scale
    field SFColor color
    eventOut SFBool lego_getpos
    eventIn SFVec3f lego_pos
    eventIn SFRotation lego_rot
    eventIn SFBool getpos_isActive
    eventOut SFString legocommand
    eventIn SFBool forward_isActive
    eventIn SFBool backward_isActive
    eventIn SFBool left_isActive
    eventIn SFBool right_isActive
    eventIn SFVec3f tankpos
    eventOut SFRotation tankrot
] “proto.wrl#LEGO”
The Script node inside of the LEGO PROTO serves as the

interface between the “legotrack” EAI Java applet, the VRML
geometry and the user interface. The “legotrack” applet communi-
cates with the serial port. The user interface is encapsulated in the
DASH PROTO which is visually instantiated as illustrated in Fig-
ure 8.

The VRML world runs under the blaxxun multiuser environ-
ment. Several events must be shared. First, the motion of the vir-
tual devices are shared so all participants in the multiuser world
can see devices move. We defined the position of the virtual
device as a shared event in the blaxxun environment. Second, we

want all users to be able to control the device if it is not controlled
by another user. This means that when one device is controlled by
someone, other users can not control it until the first user gives up
his control. We use the Lock shared event in the blaxxun environ-
ment to implement this. The shared event with Lock access type,
means that as soon as someone sends this event, it cannot be modi-
fied by other users until the locking client releases the lock or
leaves the place which automatically releases the lock. In our vir-
tual world, the control button's on/off event was set to be a Locked
shared event, and a related Script Node was programmed. When a
user first turns on the device control, an avatarname is assigned
and four arrow buttons show up in his control panel. This user now
has the right to click the arrow buttons to control the motion of the
real device. At this time, other users should see the button is red,
and there are no arrow buttons on their control panel. As soon as
the first user turns off the control, the control button of other users
become green, and they are allowed to gain control.

The geometry alternatives in the current world are LEGO
brick, excavator, dumptruck, and LEGO brick with an arm. The
user can select one of them in the control panel. The tank with an
arm and excavator are of particular interest. The actual LEGO
bricks are configured with a rotation sensor attached to the arm.
When the real arm is rotated, the virtual excavator arm moves.
This is a particularly fast and effective way of positioning and con-
trolling the virtual excavator which, in an actual application, can
perform a digging task.

5 Auxiliary Processing
In addition to the position tracking and updating of events in

the VE, other types of calculations are easily implemented. We
created three types of processing: collision detection, specific task
commands and position recording/playback.

5.1Collision Detection
Suppose the robot on one work surface virtually collides with

the robot on the other work surface. In addition, to visually seeing
a collision in the VE we can cause the robot to beep and flash a
light. This is quite useful when pushing the robot around on the
work surface. The collision detection computations, a simple
bounding box algorithm, is performed in the VE (the VRML
world). We could have performed the calculations in the JVEDI
server, however we also wanted to detect collisions between the
robot and other virtual objects unknown to the JVEDI server. For
example we place a blue cylinder, representing a construction
crane, in the VE and the robot beeped when it collided with the vir-
tual object. Knowledge of this additional object exists only in the
VE. It may prove useful to build a mirror, a kind of world model,
of the entire VE in the JVEDI server itself to use for these auxiliary
processing functions.

5.2Task Commands
We also created small programmatic tasks that could be exe-

cuted by the robot. In the blaxxun multiuser environment, we cre-
ated a LEGO Agent and programmed a script for it. The script can
read the text command in the chat area typed by the user, and send
specific events to the virtual world. For example, if we type the
command “red_square”, the red robot executes a preloaded pro-
gram to run around the work surface along a square path. The
robots would autonomously perform these tasks once given the



starting command because they were preloaded with control pro-
grams. If we wanted to increase the repetoire of tasks we could
simply load the programs dynamically from the JVEDI server,
although we have not implemented this capability to date.

5.3  Recording/Playback
We implemented the ability to record and playback the posi-

tion of the robots for use in future usability experiments and to
increase the utility of the work environment. Several buttons on
the control panel illustrated in Figure 8 allow recordings of robot
positions. At a later time, such as during analysis of an experiment,
we can playback the sequence by reading from the position file.
Two types of recordings were enabled, the position of the robot
and user clicks on the directional arrows of the control panel. Note
that the architecture illustration in Figure 2 is slightly inaccurate as
the record/playback capability is currently implemented using a
separate Java process and is not part of the JVEDI program, but is
planned as a minor upgrade.

6 Summary and Future Work
We have described how we integrated a haptic active device,

the LEGO MindStorms robot for use in a collaborative engineering
environment. The prototype system contains two work surfaces
connected by a local area network. The JVEDI code is available on
our project Web site at: http://ovrt.nist.gov/jvedi/ and the source
code is in the public domain. 

A number of enhancements are needed to improve the usabil-
ity and utility of the work environment. More robust, less light sen-
sitive color tracking, dynamic loading of LEGO RCX brick
programs. More flexible position recording and playback file
manipulation is also necessary for the conduct of realistic usability
experiments. There is also a need to define specific tasks with met-
rics to meaningfully conduct evaluations of the system to measure
effectiveness.

The tangible nature of the project has yet to be fully
exploited. The existing configuration allows for only 2D detection
and position tracking. The addition of a second camera perpendic-
ular to the first would allow us to detect the position of items of
interest in 3D.

The use of off-the-shelf components and the public availabil-
ity of the source code makes duplication of the environment rela-
tively straightforward and low cost. The actual arrangement of the
camera and the work surface is somewhat awkward and needs to
be refined for more robust and simple deployment. It is our intent
to work with other engineering projects at NIST such as instru-
mented construction sites [23] and advanced IT for manufacturing
[22].

7 ACKNOWLEDGEMENTS
Thanks to Bob Lipman for allowing us to use his excavator

and dumptruck VRML models. We would like to thank the con-
tinuing sponsorship of the NIST Systems Integration for Manufac-
turing Applications (SIMA) program for supporting this work.

References
[1]  blaxxun Interactive http://www.blaxxun.com

[2] Cheriet M., Yang Y. H., "Vision Interfaces, real world applica-
tions of computer vision". 1999, ISBN 981-02-4109-7 

[3] Collaborative Virtual Environments (CVE) Conference reports
and updates, http://www.fxpal.xerox.com/ConferencesWork-
shops/cve/index.html

[4] Michael Deleo, A Demonstration of JiniTM Technology and the
K Virtual Machine Java Tanks demo, http://developer.ja-
va.sun.com/developer/technicalArticles/jini/JavaTanks/Java-
tanks.html

[5]  P. Fieguth and D. Terzopoulos, "Color-based tracking of heads
and other mobile objects at video frame rates," In Proceedings
of IEEE CVPR, pp. 21-27, 1997. 

[6]  Fitzmaurice, G., Ishii, H., Buxton, B., Bricks: Laying the Foun-
dations for Graspable User Interfaces, Proceedings of CHI’95
May 7-11, 1995, pages 442-449.

[7] Gelernter, D. Mirror Worlds: Or the Day Software Puts the Uni-
verse in a Shoebox, 1992.

[8]  M. Isard, A. Blake, "Contour tracking by stochastic propagation
of conditional density," Proceedings of  4th European Confer-
ence On Computer Vision, Cambridge, UK, April 1996 

[9]  Ishii, H., Ullmer, B. Tangible Bits: Towards Seamless Interfac-
es between People, Bits and Atoms, Proceedings of CHI’97
March 22-27, 1997, pages 234-241. 

[10] JVEDI, Java Virtual Environment Device Interfaces, http://
ovrt.nist.gov/jvedi/

[11] Kalman filter, http://www.innovatia.com/software/papers/kal-
man.htm

[12] M. Kass, A. Witkin D.Terzopoulos, "Snakes: Active contour
Models," International  Journal  of Computer Vision (1) #4, pp.
321-331, 1988.

[13] LEGO Mindstorms. http://www.legomindstorms.com/

[14] R. Lipman, K. Reed. Using VRML In Construction Industry
Applications Proceedings Web3D-VRML 2000 Fifth  Sympo-
sium on the Virtual Reality Modeling Language, Monterey,
California, pages 119-124, 2000.

[15] T. Maurer, and C. von der Malsburg, "Tracking and learning
graphs and pose on image sequence of faces," Proceedings Of
the Second International  Conference On Automatic Face and
Gesture Recognition, pp. 176-181, 1996. 

[16] Microsoft Speech SDK 4.0 http://www.microsoft.com/speech/

[17] 'Not Quite C' language, http://www.enteract.com/~dbaum/nqc/
index.html



[18] A. Pentland, B. Moghaddam, T. Starner, "View-based and
Modular Eigenspaces for face recognition," CVPR’94, pp. 84-
91, 1994.

[19] RCX Internals, http://graphics.stanford.edu/~kekoa/rcx/

[20]  S. Ressler, B. Antonishek, Q. Wang, A. Godil, K. Stouffer.
When Worlds Collide - Interactions between the Virtual and
the Real. Proceedings Twente Workshop on Language Tech-
nology TWLT15 Interactions in Virtual Worlds, Enschede, The
Netherlands, May 19-21 1999, pages 165-170.

[21] S. Ressler, A. Godil, Q. Wang, G. Seidman. A VRML Integra-
tion Methodology for Manufacturing Applications Proceeding
VRML99 Fourth Symposium on the Virtual Reality Modeling
Language, Paderborn Germany, pages 167-172, 1999.

[22]  Systems Integration for Manufacturing Applications (SIMA)
Program http://www.nist.gov/sima

[23] VRML for Construction Site Activities, http://cic.nist.gov/
vrml/


