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Abstract:123We describe hardware time synchronization 
instrumentation that we have developed which achieves 
time synchronization of better than one microsecond. The 
purpose of this instrumentation is for Quality of Service 
characterization of parallel and distributed computing and 
of network communications. Using this instrumentation 
we measure the accuracy achieved by the NIST Autolock 
time synchronization algorithm, built upon the well -
known Network Time Protocol (NTP) time exchange, and 
the various factors contributing to its performance for 
both local and remote computing clusters. We show that 
such software algorithms, once their parameters are tuned 
for the expected delays, can achieve accuracy close to 
single digit microseconds. 
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1 Introduction 

Systems composed of multiple computers often 
require that all the participants have a common, 
synchronized view of time. The time synchronization 
accuracy needed depends on the application. For our PC 
based computing cluster environment, our application is 
performance measurement of parallel programs. 
Performance measurement can require a wide range of 
time synchronization accuracy, depending on the event 
being measured. For example, measuring the time 
between the processes in two different nodes reaching a 
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accuracy. Measuring communication latency between 
nodes connected via a high-speed switch may require 
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execution times may require a range of accuracy from 1 
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multicomputer, a common clock is usually available. 
When one isn’ t, sometimes a common clock can be 
obtained from the internal network as demonstrated by 
Abali , et.al. [1] to achieve microsecond time synchronized 
measurements.  

                                                           
1 Contractor to NIST 
2 Visiting Scientist from U. of Maryland, UMIACS. 
3 Certain commercial items may be identified but that 
does not imply recommendation or endorsement by NIST, 
nor does it imply that those items are necessarily the best 
available for the purpose. 

We describe hardware time synchronization 
instrumentation that we have developed which achieves 
time synchronization of better than one microsecond. The 
purpose of this instrumentation is for Quality of Service 
characterization of parallel and distributed computing and 
of network communications. Using this instrumentation 
we also measure the time synchronization achieved by the 
NIST Autolock [3] algorithm, built upon the well -known 
Network Time Protocol (NTP) [Internet RFC-1305] time 
exchange, and identify the various factors contributing to 
its performance. 

2 Overview of Time Synchronization Techniques 

A number of techniques exist to synchronize the 
clocks in distributed systems, multiple computers, or 
measurement support hardware.  These differ in 
complexity, cost, precision, and the initial startup time 
required to achieve a given level of precision. 

The NTP [4], and its  alternatives [2,3], can satisfy 
clock synchronization requirements to within a 
milli second, given a number of hours or days to 
synchronize.  The original-equipment time base oscill ator 
in many computer systems is not stable enough to realize 
the full potential precision of NTP, so that a much more 
stable oscill ator may need to be employed. The NTP 
synchronization scheme requires no special hardware 
other than Internet access. 

Radio-based systems use either the NIST WWVB 
60-kilohertz low frequency (LF) signals or the Global 
Positioning System (GPS) satellit e 1500-megahertz 
(UHF) signals.  Synchronization to within a few tens of 
milli seconds after only a few minutes averaging can be 
obtained by special radio receivers tuned to the 60 kHz 
WWVB signal. A few days of averaging may improve the 
precision to a few milli seconds.  The WWVB signals are 
quite weak by the time they reach the US coastlines and 
do not penetrate metal, concrete or masonry buildings 
very well . This requires the receiving antenna must be 
placed outdoors in many instances. WWVB does not offer 
coverage outside North America, but similar services are 
available at some other countries. The WWVB radio 
approach does not rely on the Internet and thus can’ t be 
spoofed by an Internet hacker. The ultimate accuracy of 
LF radio systems is limited by the inabilit y to accurately 
predict the delay of the radio signals resulting from radio 
propagation variations. 
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Microsecond-level synchronization (or better) can 
be obtained anywhere on Earth through use of the signals 
from GPS satellit es. GPS’s UHF signals do not penetrate 
buildings nor heavy foliage. The GPS receiving antenna 
must have a reasonably unobstructed view of the sky.  
Professional GPS-based timing systems for computers are 
available at costs starting above one thousand dollars.  
These systems only claim one-microsecond accuracy, 
which is achieved after a few minutes of operation.  More 
expensive systems can achieve 100 nanoseconds or better 
accuracy after a much longer synchronization period.  The 
ultimate accuracy of GPS-based systems is on the order of 
20 nanoseconds, limited by the clock accuracy of the 
satellit es themselves. 

With either of these systems, a serial interface from 
the external radio-based hardware to the computer system 
can introduce many milli seconds of unpredictable delay.  
There are two approaches to this problem, both require 
modification or development of the external hardware.  
(1) The cheaper approach places a capture register in the 
external hardware, and the current time is captured in this 
register upon a trigger from the associated computer 
system.  The computer system can then read the contents 
of the capture register through any convenient serial or 
parallel interface at a later convenient time.  (2) A more 
flexible approach is to make the radio-synchronized clock 
register available for low-overhead reading directly by the 
computer system, usually through the computer’s 
input/output bus. 

3 MultiKron®  Measurement Support Hardware 

It is important that measurements perturb the 
operation of the computer or network being measured 
very littl e. NIST has developed performance 
measurement support hardware called MultiKron4 [5] that 
reduces the perturbation to simple “writes” to memory 
mapped registers. 

The critical features of the MultiKron, ill ustrated in 
Figure 1, are a 56-bit timestamp counter and sixteen 32-
bit Performance Counter registers. Useful measurements 
require synchronization of the timestamp counter in all 
the MultiKrons in a distributed system. This means that 
all the timestamps must increment at the same rate, and 
they must either be initially reset to zero and then started 
at the same time, or their timestamp values noted at the 
same instant.  The MultiKron uses the “reset and start 
simultaneously” approach. The MultiKron’s timestamp 
counter can accept frequencies up to 50 MHz.  No known 
commercial time and frequency source provides both the 
RESET pulse and this range of synchronized clock 
signals, which is why the MultiKron/GPS hardware was 
developed. 

                                                           
4 MultiKron is NIST’s registered trademark for its 
computer performance measurement support hardware.  
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Figure 1. MultiKron_II Chip Functional Block Diagram. 
 

Two access methods are provided to store the 
MultiKron’s measurement data. The MultiKron Data 
Storage Interface port with eight data and two control bits 
allows direct storage of the measurement data in a 
dedicated memory without any processor intervention. 
Alternatively, the process being measured can perform 
low overhead memory-mapped reads of the MultiKron 
timestamp and the Shadow Register associated with the 
desired Performance Counters. 

The Performance Counters are individually 
programmable to tally internal clock ticks or external 
signals via dedicated pins on the chip. They can be used 
to measure a number of parameters. A Performance 
Counter can function as a stopwatch when tallying 
internal clocks by enabling and disabling the Counters at 
the beginning and end of events. Either the CPU or the 
external signal can control the enable and disable. Such 
measurements as average frequency, average pulse 
duration and duty cycle can be obtained by using pairs of 
Counters, one for the numerator value and the other to 
tally elapsed time for the denominator. 

3.1 Measurement Without a MultiKron 

One may not need MultiKron hardware if all one 
needs is reasonably precise time-trace measurement 
without the detailed information provided by the 
MultiKron Performance Counters. This approach only 
provides a time-trace with none of the functionality of the 
Performance Counters. Most microprocessor chip sets 
contain a high-resolution cycle counter that is 
incremented at a multiple of the rate of an external 
oscill ator, which is often 14.31818 MHz.  This counter 
can be read with low overhead. A somewhat similar 
approach of using an external oscill ator was reported by 
Mill s [4]. Exactly the same frequency needs to be 
supplied to every processor in the distributed system. In 
order to initially correlate the time at the various points in 
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the system, the contents of each cycle counter must be 
read upon receipt of a synchronization pulse, which must 
occur simultaneously everywhere in the system. These 
synchronization requirements are very similar to those of 
the MultiKron. 

4 Meeting Synchronization Requirements 

As stated above, synchronization of MultiKron 
chips, or the internal counters of some microprocessors, 
requires synchronized frequency sources for incrementing 
timestamp (and other) counters and a means to 
simultaneously generate a synchronizing (RESET) pulse 
at every location, which may be widely separated. We 
determined that no known commercial time source 
provided the signals required to time synchronize the 
geographically-distributed MultiKrons. We also decided 
that the complexity of adapting these commercial GPS-
based sources to our needs was similar to building our 
own stand-alone device. Thus we developed a system that 
is based on time from GPS satellit es. Known commercial 
moderate-priced GPS-synchronized frequency sources 
create only 1.0 or 10 MHz, not the 50, 40, 30, 20, 15, 
12.5, and 10 MHz signals required for the NIST 
MultiKron timestamp.  Thus an external frequency 
synthesizer would be required even though a commercial 
frequency source was used. 

The MultiKron RESET pulse is unique.  It must be a 
few tens of microseconds in duration, and terminate at 
exactly the “synchronization” instant at all of the 
MultiKron units.  This is trivial in a localized wired 
system, but no commercial device exists that provides 
such a signal for a wide-area system.  GPS time sources 
generally provide a one pulse per second (1PPS) signal 
with a precise leading edge.  Using the 1PPS output from 
a commercial unit and generating a single MultiKron-
compatible RESET pulse which terminates at the correct 
one PPS pulse would require most of the hardware and 
firmware that we have used in our custom system 
described below. 

A block diagram of the NIST GPS-based time 
synchronization system, MultiKron/GPS, is shown in 
figure 2. Operationally one MultiKron/GPS unit is used at 
each local site (e.g., machines in a single room). Its 
outputs, a stable frequency and a precision reset pulse, are 
distributed to each MultiKron installed in a computing 
node. The MultiKron/GPS contains a stable crystal 
oscill ator to generate the signal required by the MultiKron 
time stamp counter. The oscill ator frequency is divided 
down to produce one pulse per second (PPS) which is 
phase locked to the one PPS pulse available from a GPS 
receiver. The phase lock loop (PLL) corrects the 
frequency of the local crystal oscill ator to keep the local 
and GPS one PPS signals synchronized to within a 
fraction of a microsecond.  This results in excellent long-
term frequency stabilit y since the total number of locally 

generated cycles over a long period must equal those of 
the GPS satellit e’s clock, otherwise the one PPS signals 
would drift apart. However, there are short-term 
variations of tens or hundreds of nanoseconds in the GPS 
1PPS signals due to receiver noise, Selective Availabilit y 
modification of the GPS signal, and multipath 
propagation effects.  The long-term average of the GPS 
1PPS pulses is extremely accurate.  As is common in 
GPS-based frequency or time sources, the local high-
quality quartz crystal oscill ator is relied upon for 
frequency and time stabilit y over short time periods.  The 
frequency of the signal produced by this oscill ator is 
slowly corrected by the PLL. The slow correction of the 
local oscill ator averages out the short-term variations in 
the GPS 1PPS signal to the extent possible given the 
stabilit y of the MultiKron/GPS’s crystal oscill ator. GPS 
time, and thus MultiKron/GPS output, is synchronized 
with UT1 (Universal Time 1). 
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Figure 2. Block Diagram of MultiKron/GPS Time 
   Synchronization Instrument. 

 
An 87C51 microcomputer in MultiKron/GPS is part 

of the oscill ator correction second-order phase lock loop 
(PLL) system.  It also monitors the serial time data stream 
from the GPS receiver and commands from the attached 
computer.  Based on the GPS signals, and the commands 
received for the attached measurement computer, it causes 
a synchronizing RESET pulse. This pulse occurs 
simultaneously at all the widely distributed 
MultiKron/GPS units and resets the MultiKron time 
stamp counter (clock) to zero at all sites. One should 
recognize that systems using a much higher quality and 
more expensive oscill ator on the MultiKron/GPS could 
achieve better time stabilit y and accuracy.  

The synchronizing RESET pulse terminates at each 
site exactly when a local one PPS pulse occurs.  The 
selection of which one PPS pulse to use is governed by 
the following protocol.  Each MultiKron/GPS has a 
special connection to one of the machines at the local site. 
We designate that machine the controller. One controller 
notifies all the other MultiKron/GPS controllers in the 
distributed system via a communication network such as 
the Internet, in advance, of the even-numbered minute to 
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signal its MultiKron/GPS that a RESET is requested. 
Each controller monitors the low bandwidth time data 
stream from its GPS, and activates its MultiKron/GPS 
anytime within that even-numbered minute. Activation 
during an odd-numbered minute is ignored. The choice of 
a minute long activation window and a minimum of two 
minutes between consecutive resets are somewhat 
arbitrary, but was selected both for convenience and to be 
long enough to avoid any race conditions.  Once 
activated, all the MultiKron/GPS units cause a RESET 
exactly at the 30th second of the next odd-numbered 
minute. 

5 Network-Based Synchronization Algorithm Accuracy 

The previous sections of this paper describe our 
measurement system and its time synchronization. It 
provides us with the means to evaluate software time 
synchronization algorithms. The accuracy of algorithms 
for time synchronization over communications networks 
is limited by the variation in the communication delays 
between two nodes, not the magnitude of the delays. 
These algorithms identify network delay and oscill ator 
inaccuracies as limiting factors. We have identified 
computer system overhead as a third factor. We have 
developed a revised network time protocol, ill ustrated in 
figure 3, to eliminate the effect of computer system 
overhead. The standard time exchange protocol gets a 
local time stamp, t1, at the application level and places it 
in a message. The message is sent down through the 
operating system protocol stack to the network, after 
traversing the network it is then received on the 
destination computer and again passed up through the 
protocol stack to the application where another local time 
stamp, t2, is acquired. The computer system overhead 
occurs while the message traverses the protocol stack. 
Our revised protocol, see figure 3, modifies the operating 
system code and overwrites the time stamp in the message 
with a more current time stamp, t’1, just before the 
message is transferred to the network interface card and 
the interrupts are disabled. Similarly on the receive side, 
when a message arrives and the interrupts are disabled, 
the receive time stamp, t’2, is acquired and passed to the 
application along with the message. Thus the time interval 
t’2 - t’1 is an accurate measurement of the network delay 
without the additional overhead of the protocol stack 
included in t2-t1. 

Using the MultiKron/GPS hardware described 
earlier, we conducted a number of experiments to 
measure the communication delay variation and the 
accuracy of software time synchronization algorithms 
over typical networks that would be expect to be 
encountered with computing clusters. The variation in 
communication delay provides an indication of the 
expected accuracy that time synchronization algorithms 
can achieve. We also measured the contribution of the 
limiting factors. We used the NIST Autolock time 

synchronization algorithm. The Autolock and NTP 
algorithms use the same NTP protocol to exchange clock 
information and determine the communication delays. 
These algorithms differ in the statistical analysis methods 
they use to determine the variation and how they correct 
for the oscill ator drift. However both methods yield 
comparable reported accuracies. 
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Figure 3. Revised Time Exchange Protocol. 

 
We used our experimental PC based computing 

cluster interconnected via a 100 Mbits/s Fast Ethernet 
switch as a typical cluster environment [6]. For a remote 
cluster environment we used two separate clusters, about 
a half a kilometer apart, interconnected via a corporate 
intranet consisting of multiple LANs interconnected via a 
combination of switches and routers. These LANs consist 
of both 10 Mbits/s and 100 Mbits/s segments. By remote 
cluster we mean the dynamic integration of individual 
clusters over an intranet or Internet to act as a single 
temporary cluster. For both local and remote clusters, we 
instrumented two nodes with our MultiKron/GPS 
instrumentation. One node acted as the time reference, 
while the other node acted as a client trying to 
synchronize its local clock to the reference node time. The 
reference node distributed the MultiKron/GPS 
synchronized time. This results in a stable target time. A 
standard local oscill ator, not the MultiKron/GPS 
instrumentation, drives the local clock of the software 
time synchronization algorithm client.  The 
MultiKron/GPS instrumentation in the client node is used 
only for measurement purposes.  

5.1  Cluster Measurements of the Autolock Protocol 

The Autolock time synchronization algorithm 
requires about 12 to 24 hours to stabili ze. The 
measurements presented below represent a small sample 
of traff ic taken after the algorithm has reached steady 
state. The accuracy of these measurements is better than 1 
µs. The total communication delay for each NTP protocol 
exchange is shown by the bar chart of figure 4(a). Each 
bar is divided to show the contributions of the network 
delay (bottom bar), the computer system send overhead 
(middle bar) and the receive overhead (top bar) for a quiet 
local computing cluster. Autolock periodically issues 5 
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consecutive NTP protocol exchanges. The standard 
deviation of the delay for each group of 5 is computed as 
the variance plotted in figure 4(b), which indicates the 
expected time synchronization accuracy. The upper set of 
points represents the communications variation, about 9 
µs, based on the standard NTP exchange protocol. The 
lower set of points represents the communication 
variation, about 2 µs, based on our revised NTP exchange 
protocol. Because our revised protocol eliminates the 
variation of the send and receive it yields a lower 
variation and thus better time synchronization accuracy. 
We notice that the delay of the first of each group of 5 
Autolock protocol time exchanges is higher than the 
subsequent four. This is due to caching of the code and 
can be eliminated if the measurement for the first 
exchange is discarded. If this is done, the variation results 
of the standard and revised protocol are similar. 

We repeated this same experiment on the same 
system, but this time with the nodes busy running 
applications vs. being quiet. The communication delay 
plotted in figure 5(a) and the corresponding 
communication variation plotted in figure 5(b) show that 
delays and the variation are much larger in busy systems 
than in quiet ones. The expected time synchronization 
accuracy from the standard protocol is about 50 µs, while 
the revised protocol yields about 25 µs. Since the busy 
communication variation is larger than the quiet system, 
the effect on synchronization accuracy from caching is 
negligible.  

 We repeated this experiment on the remote 
cluster system, under both quiet and busy conditions. The 
communication delay is plotted in figure 6(a) and 7(a), for 
quiet and busy system respectively. The corresponding 
communication variation is plotted in figure 6(b) and 
7(b), for quiet and busy system respectively. Due to the 
additional complexities of the intranet, the delays and 
variations of the remote cluster are higher than for the 
local cluster and thus also are the expected time 
synchronization accuracy. The expected time 
synchronization accuracy from the standard protocol is 
about 300 µs and 30000 µs, for quiet and busy system 
respectively. The expected time synchronization accuracy 
from the revised protocol is about 300 µs and 15000 µs, 
for quiet and busy system respectively. 

The plot of figure 8 shows the error in the measured 
time synchronization of the quiet local cluster using the 
standard protocol during a 60-hour steady state period. 
These error measurements are taken every 20 s and are 
the difference between the MultiKron/GPS clock and the 
Autolock synchronized clock. Figure 8 indicates a time 
synchronization error of about 70 µs compared to the 
expected value of about 9 µs. The plot of figure 9 shows 
the error in the measured time synchronization of the 
quiet remote cluster using the standard protocol during a 
35-hour steady state period. This represents a time 

synchronization error of about 1500 µs compared to the 
expected values of about 300 µs. The difference in these 
measured values and expected values is due to the default 
settings of the algorithm parameters that are tuned for 1 
ms time accuracy.    

Autolock is configured to use three parameters to 
describe the user's requirements for speed, accuracy and 
network traff ic. "Sigma" defines the requested level of 
time accuracy. "Tconf" is the time constant for the phase-
lock-loop; a smaller value speeds up the locking process 
but makes the system more sensitive to noise and 
therefore worsens its short-term stabilit y. A time range, 
“Tmin” & “Tmax” , defines the interval between requests 
to the server. Our initial focus targeted sigma for 
accuracy.  As shown in Figure 10, we consistently 
achieved accuracy under 10µs with network traff ic of five 
68-byte messages every 15 minutes, except for isolated 
glitches that we are currently investigating. These glitches 
are not due to interrupts and occur in 1 measurement but 
not in the measurement 20 s earlier and 20 s later.  

6 Conclusions 

We determined that standard software time 
synchronization algorithms, which synchronize to an 
external timeserver via the Internet, provided insuff icient 
accuracy for performance measurement of local and 
remote computing clusters. To provide the microsecond 
accuracy required, we developed hardware 
instrumentation, called MultiKron/GPS. We based this 
design on GPS technology, since GPS was the only 
widely deployed technology that could deliver 
microsecond accuracy at the dispersed locations. The 
output of MultiKron/GPS provides a GPS trained 
frequency in the range of 10 MHz to 50 MHz along with a 
precision pulse reset signal to synchronize our MultiKron 
performance measurement instrumentation installed in 
each cluster node. These signals can be relied upon to 
provide considerably better that one microsecond time 
precision over any time interval, at least when all units are 
receiving the same GPS satellit es. 

We conducted experiments to determine the 
accuracy of the NIST Autolock time synchronization 
algorithm. We enhanced the accuracy of the Autolock 
algorithm by developing a revised time exchange protocol 
that eliminates the variance contribution of the operating 
system and the protocol stack. For both local and remote 
clusters busy running applications, the revised protocol 
was effective in increasing expected time synchronization 
accuracy. For quiet (quiescent, not running applications) 
remote clusters the revised protocol had littl e effect on 
expected accuracy, since the variation of the network 
delay far exceeds that of the operating system variation. 
For quiet local clusters, the revised protocol was effective 
in increasing expected accuracy, mainly compensating for 
caching effects. 
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Figure 4. (a) Local Cluster Communication Delay and (b) Variation for a Quiet System.
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Figure 5. (a) Local Cluster Communication Delay and (b) Variation for a Busy System.
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Figure 6. (a) Remote Cluster Communication Delay and (b) Variation for a Quiet System.
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Figure 7. (a) Remote Cluster Communication Delay and (b) Variation for a Busy System.
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Figure 8. Measured Time Synchronization Error 
for the Quiet Local Cluster Using the Standard 
Protocol. 
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Figure 9. Measured Time Synchronization Error 
for the Quiet Remote Cluster Using the 
Standard Protocol. 
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Figure 10. Measured Time Synchronization Error for the 
Quiet Local Cluster Using the Standard Protocol with 
Autolock parameters tuned for 10 microsecond accuracy. 

 
We also determined that the measured time 

synchronization did not achieve its expected value. This 
was mainly due to the default internal parameters of the 
algorithm that were tuned for the more common 
milli second range, rather than our targeted microsecond 
range. Once these parameters were adjusted, the 
anticipated accuracy was achieved. Our measurements 
further suggest that these algorithms can achieve 10 us, or 
better, for local cluster systems that have low variance in 
their network delays. This implies that hardware support 
may not be necessary for each node within a cluster, but 
only one node to act as the reference time server using 
software algorithms, with the revised time exchange 
protocol, to synchronize the other nodes. 
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