
Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

�

Time Synchronized Measurements in Cluster Computing Systems

Alan Mink, Robert J. Carpenter1 and Michel Courson2,

Information Technology Laboratory
National Institute of Standards and Technology (NIST)3

Gaithersburg, MD 20899, USA
{ amink@nist.gov}

Abstract:123We describe hardware time synchronization
instrumentation that we have developed which achieves
time synchronization of better than one microsecond. The
purpose of this instrumentation is for Quality of Service
characterization of parallel and distributed computing and
of network communications. Using this instrumentation
we measure the accuracy achieved by the NIST Autolock
time synchronization algorithm, built upon the well -
known Network Time Protocol (NTP) time exchange, and
the various factors contributing to its performance for
both local and remote computing clusters. We show that
such software algorithms, once their parameters are tuned
for the expected delays, can achieve accuracy close to
single digit microseconds.

Keywords: Autolock, Cluster Computing, GPS,
MultiKron, NTP, Time Synchronization

1 Introduction

Systems composed of multiple computers often
require that all the participants have a common,
synchronized view of time. The time synchronization
accuracy needed depends on the application. For our PC
based computing cluster environment, our application is
performance measurement of parallel programs.
Performance measurement can require a wide range of
time synchronization accuracy, depending on the event
being measured. For example, measuring the time
between the processes in two different nodes reaching a
�������	��
���������	�����������������������
��! #"���
��%$'&(�*)+�#
,�.-/�.�%�0"�12&(�
accuracy. Measuring communication latency between
nodes connected via a high-speed switch may require
�!�3�."�
��!�*�4��'�5���6�#
87��	
9�/:;$=<>&(�	?A@4�!�!�B"�
��.���.���C��:D�/
��/�3���E�
execution times may require a range of accuracy from 1
&(�F�G�H$=<�<I�J�	?4KL�M�.�N�O�����=P
��.�G�!7M�L���0���	�J)%�0"��.�N�!�Q�
multicomputer, a common clock is usually available.
When one isn’ t, sometimes a common clock can be
obtained from the internal network as demonstrated by
Abali , et.al. [1] to achieve microsecond time synchronized
measurements.

1 Contractor to NIST
2 Visiting Scientist from U. of Maryland, UMIACS.
3 Certain commercial items may be identified but that
does not imply recommendation or endorsement by NIST,
nor does it imply that those items are necessarily the best
available for the purpose.

We describe hardware time synchronization
instrumentation that we have developed which achieves
time synchronization of better than one microsecond. The
purpose of this instrumentation is for Quality of Service
characterization of parallel and distributed computing and
of network communications. Using this instrumentation
we also measure the time synchronization achieved by the
NIST Autolock [3] algorithm, built upon the well -known
Network Time Protocol (NTP) [Internet RFC-1305] time
exchange, and identify the various factors contributing to
its performance.

2 Overview of Time Synchronization Techniques

A number of techniques exist to synchronize the
clocks in distributed systems, multiple computers, or
measurement support hardware. These differ in
complexity, cost, precision, and the initial startup time
required to achieve a given level of precision.

The NTP [4], and its alternatives [2,3], can satisfy
clock synchronization requirements to within a
milli second, given a number of hours or days to
synchronize. The original-equipment time base oscill ator
in many computer systems is not stable enough to realize
the full potential precision of NTP, so that a much more
stable oscill ator may need to be employed. The NTP
synchronization scheme requires no special hardware
other than Internet access.

Radio-based systems use either the NIST WWVB
60-kilohertz low frequency (LF) signals or the Global
Positioning System (GPS) satellit e 1500-megahertz
(UHF) signals. Synchronization to within a few tens of
milli seconds after only a few minutes averaging can be
obtained by special radio receivers tuned to the 60 kHz
WWVB signal. A few days of averaging may improve the
precision to a few milli seconds. The WWVB signals are
quite weak by the time they reach the US coastlines and
do not penetrate metal, concrete or masonry buildings
very well . This requires the receiving antenna must be
placed outdoors in many instances. WWVB does not offer
coverage outside North America, but similar services are
available at some other countries. The WWVB radio
approach does not rely on the Internet and thus can’ t be
spoofed by an Internet hacker. The ultimate accuracy of
LF radio systems is limited by the inabilit y to accurately
predict the delay of the radio signals resulting from radio
propagation variations.

Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

 �

Microsecond-level synchronization (or better) can
be obtained anywhere on Earth through use of the signals
from GPS satellit es. GPS’s UHF signals do not penetrate
buildings nor heavy foliage. The GPS receiving antenna
must have a reasonably unobstructed view of the sky.
Professional GPS-based timing systems for computers are
available at costs starting above one thousand dollars.
These systems only claim one-microsecond accuracy,
which is achieved after a few minutes of operation. More
expensive systems can achieve 100 nanoseconds or better
accuracy after a much longer synchronization period. The
ultimate accuracy of GPS-based systems is on the order of
20 nanoseconds, limited by the clock accuracy of the
satellit es themselves.

With either of these systems, a serial interface from
the external radio-based hardware to the computer system
can introduce many milli seconds of unpredictable delay.
There are two approaches to this problem, both require
modification or development of the external hardware.
(1) The cheaper approach places a capture register in the
external hardware, and the current time is captured in this
register upon a trigger from the associated computer
system. The computer system can then read the contents
of the capture register through any convenient serial or
parallel interface at a later convenient time. (2) A more
flexible approach is to make the radio-synchronized clock
register available for low-overhead reading directly by the
computer system, usually through the computer’s
input/output bus.

3 MultiKron® Measurement Support Hardware

It is important that measurements perturb the
operation of the computer or network being measured
very littl e. NIST has developed performance
measurement support hardware called MultiKron4 [5] that
reduces the perturbation to simple “writes” to memory
mapped registers.

The critical features of the MultiKron, ill ustrated in
Figure 1, are a 56-bit timestamp counter and sixteen 32-
bit Performance Counter registers. Useful measurements
require synchronization of the timestamp counter in all
the MultiKrons in a distributed system. This means that
all the timestamps must increment at the same rate, and
they must either be initially reset to zero and then started
at the same time, or their timestamp values noted at the
same instant. The MultiKron uses the “reset and start
simultaneously” approach. The MultiKron’s timestamp
counter can accept frequencies up to 50 MHz. No known
commercial time and frequency source provides both the
RESET pulse and this range of synchronized clock
signals, which is why the MultiKron/GPS hardware was
developed.

4 MultiKron is NIST’s registered trademark for its
computer performance measurement support hardware.

Shadow
Registers

64

1
2

16

Performance
Counters

64

1
2

16

32 bits 32 bits
1

2

16

1

2

16

1

2

16

M
od

e
C

lk
 S

el
E

na
bl

e

64

64
64

Source Addr
Registers

1
2

8

Wait Cnt
Overrun Cnt

High Order bits

Timestamp Cnt

CSR
Filter

Header Timestamp DataSource
Addr

32 bits

56 bits

32 bits

16 bits

32 bits

3232

16

56

32

56 64
32

 8 56 32 64

MUX

8

8 8
8

8

FIFO

Clk/10

C
lk

 S
el

TS_Clk

MUX Ext
SW

MUX
Clk/100

Clk

M
od

e

Clk/10

C
lk

 S
el

TS_Clk

MUX Ext
SW

MUX
Clk/100

Clk

M
od

e

CPU Interface

Data Storage Interface
Data

11

ParityEOM

Figure 1. MultiKron_II Chip Functional Block Diagram.

Two access methods are provided to store the
MultiKron’s measurement data. The MultiKron Data
Storage Interface port with eight data and two control bits
allows direct storage of the measurement data in a
dedicated memory without any processor intervention.
Alternatively, the process being measured can perform
low overhead memory-mapped reads of the MultiKron
timestamp and the Shadow Register associated with the
desired Performance Counters.

The Performance Counters are individually
programmable to tally internal clock ticks or external
signals via dedicated pins on the chip. They can be used
to measure a number of parameters. A Performance
Counter can function as a stopwatch when tallying
internal clocks by enabling and disabling the Counters at
the beginning and end of events. Either the CPU or the
external signal can control the enable and disable. Such
measurements as average frequency, average pulse
duration and duty cycle can be obtained by using pairs of
Counters, one for the numerator value and the other to
tally elapsed time for the denominator.

3.1 Measurement Without a MultiKron

One may not need MultiKron hardware if all one
needs is reasonably precise time-trace measurement
without the detailed information provided by the
MultiKron Performance Counters. This approach only
provides a time-trace with none of the functionality of the
Performance Counters. Most microprocessor chip sets
contain a high-resolution cycle counter that is
incremented at a multiple of the rate of an external
oscill ator, which is often 14.31818 MHz. This counter
can be read with low overhead. A somewhat similar
approach of using an external oscill ator was reported by
Mill s [4]. Exactly the same frequency needs to be
supplied to every processor in the distributed system. In
order to initially correlate the time at the various points in

Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

 �

the system, the contents of each cycle counter must be
read upon receipt of a synchronization pulse, which must
occur simultaneously everywhere in the system. These
synchronization requirements are very similar to those of
the MultiKron.

4 Meeting Synchronization Requirements

As stated above, synchronization of MultiKron
chips, or the internal counters of some microprocessors,
requires synchronized frequency sources for incrementing
timestamp (and other) counters and a means to
simultaneously generate a synchronizing (RESET) pulse
at every location, which may be widely separated. We
determined that no known commercial time source
provided the signals required to time synchronize the
geographically-distributed MultiKrons. We also decided
that the complexity of adapting these commercial GPS-
based sources to our needs was similar to building our
own stand-alone device. Thus we developed a system that
is based on time from GPS satellit es. Known commercial
moderate-priced GPS-synchronized frequency sources
create only 1.0 or 10 MHz, not the 50, 40, 30, 20, 15,
12.5, and 10 MHz signals required for the NIST
MultiKron timestamp. Thus an external frequency
synthesizer would be required even though a commercial
frequency source was used.

The MultiKron RESET pulse is unique. It must be a
few tens of microseconds in duration, and terminate at
exactly the “synchronization” instant at all of the
MultiKron units. This is trivial in a localized wired
system, but no commercial device exists that provides
such a signal for a wide-area system. GPS time sources
generally provide a one pulse per second (1PPS) signal
with a precise leading edge. Using the 1PPS output from
a commercial unit and generating a single MultiKron-
compatible RESET pulse which terminates at the correct
one PPS pulse would require most of the hardware and
firmware that we have used in our custom system
described below.

A block diagram of the NIST GPS-based time
synchronization system, MultiKron/GPS, is shown in
figure 2. Operationally one MultiKron/GPS unit is used at
each local site (e.g., machines in a single room). Its
outputs, a stable frequency and a precision reset pulse, are
distributed to each MultiKron installed in a computing
node. The MultiKron/GPS contains a stable crystal
oscill ator to generate the signal required by the MultiKron
time stamp counter. The oscill ator frequency is divided
down to produce one pulse per second (PPS) which is
phase locked to the one PPS pulse available from a GPS
receiver. The phase lock loop (PLL) corrects the
frequency of the local crystal oscill ator to keep the local
and GPS one PPS signals synchronized to within a
fraction of a microsecond. This results in excellent long-
term frequency stabilit y since the total number of locally

generated cycles over a long period must equal those of
the GPS satellit e’s clock, otherwise the one PPS signals
would drift apart. However, there are short-term
variations of tens or hundreds of nanoseconds in the GPS
1PPS signals due to receiver noise, Selective Availabilit y
modification of the GPS signal, and multipath
propagation effects. The long-term average of the GPS
1PPS pulses is extremely accurate. As is common in
GPS-based frequency or time sources, the local high-
quality quartz crystal oscill ator is relied upon for
frequency and time stabilit y over short time periods. The
frequency of the signal produced by this oscill ator is
slowly corrected by the PLL. The slow correction of the
local oscill ator averages out the short-term variations in
the GPS 1PPS signal to the extent possible given the
stabilit y of the MultiKron/GPS’s crystal oscill ator. GPS
time, and thus MultiKron/GPS output, is synchronized
with UT1 (Universal Time 1).

Local
Osc

GPS Rcvr MultiKron

Computer

Network

Freq
Adj

Cntr

 ΦΦ
Detect

87C51 PLL
Processor

Pulse Reset

Stable Frequency

Add/Sub Cycles

1PPS

GPS Satellites

1Hz

Diff

RS-232 Controller
Connection

To More
MultiKrons

MultiKron/GPS

..
Local
Osc

GPS Rcvr MultiKron

Computer

Network

Freq
Adj

Cntr

 ΦΦ
Detect

87C51 PLL
Processor

Pulse Reset

Stable Frequency

Add/Sub Cycles

1PPS

GPS Satellites

1Hz

Diff

RS-232 Controller
Connection

To More
MultiKrons

MultiKron/GPS

..

Figure 2. Block Diagram of MultiKron/GPS Time
 Synchronization Instrument.

An 87C51 microcomputer in MultiKron/GPS is part

of the oscill ator correction second-order phase lock loop
(PLL) system. It also monitors the serial time data stream
from the GPS receiver and commands from the attached
computer. Based on the GPS signals, and the commands
received for the attached measurement computer, it causes
a synchronizing RESET pulse. This pulse occurs
simultaneously at all the widely distributed
MultiKron/GPS units and resets the MultiKron time
stamp counter (clock) to zero at all sites. One should
recognize that systems using a much higher quality and
more expensive oscill ator on the MultiKron/GPS could
achieve better time stabilit y and accuracy.

The synchronizing RESET pulse terminates at each
site exactly when a local one PPS pulse occurs. The
selection of which one PPS pulse to use is governed by
the following protocol. Each MultiKron/GPS has a
special connection to one of the machines at the local site.
We designate that machine the controller. One controller
notifies all the other MultiKron/GPS controllers in the
distributed system via a communication network such as
the Internet, in advance, of the even-numbered minute to

Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

 �

signal its MultiKron/GPS that a RESET is requested.
Each controller monitors the low bandwidth time data
stream from its GPS, and activates its MultiKron/GPS
anytime within that even-numbered minute. Activation
during an odd-numbered minute is ignored. The choice of
a minute long activation window and a minimum of two
minutes between consecutive resets are somewhat
arbitrary, but was selected both for convenience and to be
long enough to avoid any race conditions. Once
activated, all the MultiKron/GPS units cause a RESET
exactly at the 30th second of the next odd-numbered
minute.

5 Network-Based Synchronization Algorithm Accuracy

The previous sections of this paper describe our
measurement system and its time synchronization. It
provides us with the means to evaluate software time
synchronization algorithms. The accuracy of algorithms
for time synchronization over communications networks
is limited by the variation in the communication delays
between two nodes, not the magnitude of the delays.
These algorithms identify network delay and oscill ator
inaccuracies as limiting factors. We have identified
computer system overhead as a third factor. We have
developed a revised network time protocol, ill ustrated in
figure 3, to eliminate the effect of computer system
overhead. The standard time exchange protocol gets a
local time stamp, t1, at the application level and places it
in a message. The message is sent down through the
operating system protocol stack to the network, after
traversing the network it is then received on the
destination computer and again passed up through the
protocol stack to the application where another local time
stamp, t2, is acquired. The computer system overhead
occurs while the message traverses the protocol stack.
Our revised protocol, see figure 3, modifies the operating
system code and overwrites the time stamp in the message
with a more current time stamp, t’1, just before the
message is transferred to the network interface card and
the interrupts are disabled. Similarly on the receive side,
when a message arrives and the interrupts are disabled,
the receive time stamp, t’2, is acquired and passed to the
application along with the message. Thus the time interval
t’2 - t’1 is an accurate measurement of the network delay
without the additional overhead of the protocol stack
included in t2-t1.

Using the MultiKron/GPS hardware described
earlier, we conducted a number of experiments to
measure the communication delay variation and the
accuracy of software time synchronization algorithms
over typical networks that would be expect to be
encountered with computing clusters. The variation in
communication delay provides an indication of the
expected accuracy that time synchronization algorithms
can achieve. We also measured the contribution of the
limiting factors. We used the NIST Autolock time

synchronization algorithm. The Autolock and NTP
algorithms use the same NTP protocol to exchange clock
information and determine the communication delays.
These algorithms differ in the statistical analysis methods
they use to determine the variation and how they correct
for the oscill ator drift. However both methods yield
comparable reported accuracies.

Device Driver
Packet

Protocol Stack

Application

TS'1

Device Driver
Packet

Protocol Stack

Application

TS'2

Msg
TS1

Msg
TS'1

TS'2

TS'2

Network

Packet
Packet

TS2

TS'1

TS1

TS'1

Figure 3. Revised Time Exchange Protocol.

We used our experimental PC based computing

cluster interconnected via a 100 Mbits/s Fast Ethernet
switch as a typical cluster environment [6]. For a remote
cluster environment we used two separate clusters, about
a half a kilometer apart, interconnected via a corporate
intranet consisting of multiple LANs interconnected via a
combination of switches and routers. These LANs consist
of both 10 Mbits/s and 100 Mbits/s segments. By remote
cluster we mean the dynamic integration of individual
clusters over an intranet or Internet to act as a single
temporary cluster. For both local and remote clusters, we
instrumented two nodes with our MultiKron/GPS
instrumentation. One node acted as the time reference,
while the other node acted as a client trying to
synchronize its local clock to the reference node time. The
reference node distributed the MultiKron/GPS
synchronized time. This results in a stable target time. A
standard local oscill ator, not the MultiKron/GPS
instrumentation, drives the local clock of the software
time synchronization algorithm client. The
MultiKron/GPS instrumentation in the client node is used
only for measurement purposes.

5.1 Cluster Measurements of the Autolock Protocol

The Autolock time synchronization algorithm
requires about 12 to 24 hours to stabili ze. The
measurements presented below represent a small sample
of traff ic taken after the algorithm has reached steady
state. The accuracy of these measurements is better than 1
µs. The total communication delay for each NTP protocol
exchange is shown by the bar chart of figure 4(a). Each
bar is divided to show the contributions of the network
delay (bottom bar), the computer system send overhead
(middle bar) and the receive overhead (top bar) for a quiet
local computing cluster. Autolock periodically issues 5

Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

 �

consecutive NTP protocol exchanges. The standard
deviation of the delay for each group of 5 is computed as
the variance plotted in figure 4(b), which indicates the
expected time synchronization accuracy. The upper set of
points represents the communications variation, about 9
µs, based on the standard NTP exchange protocol. The
lower set of points represents the communication
variation, about 2 µs, based on our revised NTP exchange
protocol. Because our revised protocol eliminates the
variation of the send and receive it yields a lower
variation and thus better time synchronization accuracy.
We notice that the delay of the first of each group of 5
Autolock protocol time exchanges is higher than the
subsequent four. This is due to caching of the code and
can be eliminated if the measurement for the first
exchange is discarded. If this is done, the variation results
of the standard and revised protocol are similar.

We repeated this same experiment on the same
system, but this time with the nodes busy running
applications vs. being quiet. The communication delay
plotted in figure 5(a) and the corresponding
communication variation plotted in figure 5(b) show that
delays and the variation are much larger in busy systems
than in quiet ones. The expected time synchronization
accuracy from the standard protocol is about 50 µs, while
the revised protocol yields about 25 µs. Since the busy
communication variation is larger than the quiet system,
the effect on synchronization accuracy from caching is
negligible.

 We repeated this experiment on the remote
cluster system, under both quiet and busy conditions. The
communication delay is plotted in figure 6(a) and 7(a), for
quiet and busy system respectively. The corresponding
communication variation is plotted in figure 6(b) and
7(b), for quiet and busy system respectively. Due to the
additional complexities of the intranet, the delays and
variations of the remote cluster are higher than for the
local cluster and thus also are the expected time
synchronization accuracy. The expected time
synchronization accuracy from the standard protocol is
about 300 µs and 30000 µs, for quiet and busy system
respectively. The expected time synchronization accuracy
from the revised protocol is about 300 µs and 15000 µs,
for quiet and busy system respectively.

The plot of figure 8 shows the error in the measured
time synchronization of the quiet local cluster using the
standard protocol during a 60-hour steady state period.
These error measurements are taken every 20 s and are
the difference between the MultiKron/GPS clock and the
Autolock synchronized clock. Figure 8 indicates a time
synchronization error of about 70 µs compared to the
expected value of about 9 µs. The plot of figure 9 shows
the error in the measured time synchronization of the
quiet remote cluster using the standard protocol during a
35-hour steady state period. This represents a time

synchronization error of about 1500 µs compared to the
expected values of about 300 µs. The difference in these
measured values and expected values is due to the default
settings of the algorithm parameters that are tuned for 1
ms time accuracy.

Autolock is configured to use three parameters to
describe the user's requirements for speed, accuracy and
network traff ic. "Sigma" defines the requested level of
time accuracy. "Tconf" is the time constant for the phase-
lock-loop; a smaller value speeds up the locking process
but makes the system more sensitive to noise and
therefore worsens its short-term stabilit y. A time range,
“Tmin” & “Tmax” , defines the interval between requests
to the server. Our initial focus targeted sigma for
accuracy. As shown in Figure 10, we consistently
achieved accuracy under 10µs with network traff ic of five
68-byte messages every 15 minutes, except for isolated
glitches that we are currently investigating. These glitches
are not due to interrupts and occur in 1 measurement but
not in the measurement 20 s earlier and 20 s later.

6 Conclusions

We determined that standard software time
synchronization algorithms, which synchronize to an
external timeserver via the Internet, provided insuff icient
accuracy for performance measurement of local and
remote computing clusters. To provide the microsecond
accuracy required, we developed hardware
instrumentation, called MultiKron/GPS. We based this
design on GPS technology, since GPS was the only
widely deployed technology that could deliver
microsecond accuracy at the dispersed locations. The
output of MultiKron/GPS provides a GPS trained
frequency in the range of 10 MHz to 50 MHz along with a
precision pulse reset signal to synchronize our MultiKron
performance measurement instrumentation installed in
each cluster node. These signals can be relied upon to
provide considerably better that one microsecond time
precision over any time interval, at least when all units are
receiving the same GPS satellit es.

We conducted experiments to determine the
accuracy of the NIST Autolock time synchronization
algorithm. We enhanced the accuracy of the Autolock
algorithm by developing a revised time exchange protocol
that eliminates the variance contribution of the operating
system and the protocol stack. For both local and remote
clusters busy running applications, the revised protocol
was effective in increasing expected time synchronization
accuracy. For quiet (quiescent, not running applications)
remote clusters the revised protocol had littl e effect on
expected accuracy, since the variation of the network
delay far exceeds that of the operating system variation.
For quiet local clusters, the revised protocol was effective
in increasing expected accuracy, mainly compensating for
caching effects.

Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

 �

0

20

40

60

80

100

120

140

160

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Packet Sequence number

D
e

la
y

 (
u

s)
Receive Stack

Send Stack

Network

-1

1

3

5

7

9

11

0 50 100 150 200 250 300 350

T im e (s)

V
a

ri
a

n
c

e
 (

u
s

)

� Standard Protocol
• Revised Protocol

Figure 4. (a) Local Cluster Communication Delay and (b) Variation for a Quiet System.

0

100

200

300

400

500

600

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Packet Sequence num ber

D
e

la
y

 (
u

s
)

Receive Stack

Send Stack

Network

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

Tim e (s)

V
a

ri
a

n
c

e
 (

u
s

)

� Standard Protocol
• Revised Protocol

Figure 5. (a) Local Cluster Communication Delay and (b) Variation for a Busy System.

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

P a c k e t S e q u e n c e n u m b e r

D
e

la
y

 (
u

s
)

R e c e iv e S ta c k

S e nd S ta c k

Ne tw o rk

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

Tim e

V
a

ri
a

n
c

e
 (

u
s

)

� Standard Protocol
• Revised Protocol

Figure 6. (a) Remote Cluster Communication Delay and (b) Variation for a Quiet System.

0

5000

1000 0

1500 0

2000 0

2500 0

3000 0

3500 0

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Pac ke t S eque nce num be r

D
e

la
y

 (
u

s
)

R ec eive S tack

Send S tac k

Network

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350 400

Time (s)

V
a

ri
a

n
c

e
 (

u
s)

�
 Standard Protocol

• Revised Protocol

Figure 7. (a) Remote Cluster Communication Delay and (b) Variation for a Busy System.

Presented at the 13th International Conference on Parallel and Distributed Computing: PDSC2000, Aug. 8-10, 2000, Las Vegas, NV

-150

-100

-50

0

50

10 0

15 0

10 20 30 40 50 60 70

T im e (h o u rs)

T
im

e
 E

rr
o

r
(u

s
)

Figure 8. Measured Time Synchronization Error
for the Quiet Local Cluster Using the Standard
Protocol.

-3000

-2000

-1000

0

1000

2000

3000

0 5 10 15 20 25 30 35

T im e (hours)

T
im

e
 E

rr
o

r
(u

s
)

Figure 9. Measured Time Synchronization Error
for the Quiet Remote Cluster Using the
Standard Protocol.

- 4 0

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

4 5 5 5 6 5 7 5 8 5 9 5

T i m e (h o u r s)

T
im

e
E

rr
o

r
(u

s)

Figure 10. Measured Time Synchronization Error for the
Quiet Local Cluster Using the Standard Protocol with
Autolock parameters tuned for 10 microsecond accuracy.

We also determined that the measured time

synchronization did not achieve its expected value. This
was mainly due to the default internal parameters of the
algorithm that were tuned for the more common
milli second range, rather than our targeted microsecond
range. Once these parameters were adjusted, the
anticipated accuracy was achieved. Our measurements
further suggest that these algorithms can achieve 10 us, or
better, for local cluster systems that have low variance in
their network delays. This implies that hardware support
may not be necessary for each node within a cluster, but
only one node to act as the reference time server using
software algorithms, with the revised time exchange
protocol, to synchronize the other nodes.

References

[1] B. Abali , C. Stunkel and C. Benveniste, “Clock
Synchronization on a Multicomputer” , IBM Research
Report, Mar. 1996.

[2] J. Levine, “Time Synchronization Using the Internet” ,
IEEE Trans. on Ultrasonics, Ferroelectronics and
Frequency Control, Vol. 45, No. 2, pp 450-460, Mar.
1998.

[3] J. Levine, “Time Synchronization Using the Internet
Using an Adaptive Frequency-Locked Loop ” , IEEE
Trans. on Ultrasonics, Ferroelectronics and Frequency
Control, Vol. 46, No. 4, pp 450-460, July 1999.

[4] D. Mill s, “ Improved Algorithms for Synchronizing
Computer Network Clocks” , IEEE/ACM Trans. on
Networks, pp 245-254, June 1995.

[5] A. Mink, “Operating Principles of Multikron II
Performance Instrumentation for MIMD Computers” ,
NISTIR 5571, National Institute of Standards and
Technology, Dec. 1994.

[6] W. Salamon and A. Mink, “Linux Clusters at NIST” ,
Linux Journal, Issue 62, pp 105-109, June 1999.

