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Abstract—Interoperable MPI (IMPI) is a protocol specification to allow The IMPI Steering Committee has published a proposed stan-
m“'“%'le MPI imp:eme”taﬁons to cooperate on adSing'e”'Vl'P' gOin U”"ﬁe dard for interoperability between MPI implementations that will
portable MPI implementations, an IMPI-connected parallel job allows the . o }
use of vendor-tuned message passing libraries on given target architectures,addn:f‘SS these issues [4] The main idea of the prppOSEd St‘f’m
thus potentially allowing higher levels of performance than previously pos- dard is to mandate a small set of protocols for starting a multi-
sible. Additionally, the IMPI protocol uses a low number of connections, jmplementation MPI job, passing user messages between the
which may be suitable for parallel computations across WAN distances. jynlementations, and shutting the job down. Note, however,
The IMPI specification defines a low-level wireline protocol that MPI im-
plementations use to communicate with each other; each point-to-point and that the proposed IMPI standard doest mandate any behav-

collective function in MPI-1 automatically uses this low-level protocol when ior within an MPI implementation — it only mandates behavior
communicating with a remote a MPl implementation. When running IMPl  hatweerMIPI implementations.

jobs, the only change visible to the user is the sequence of steps necessary

to run the job; any correct MPI program will run correctly under IMPI. In .

this paper, we provide an overview of IMPI, describe its incorporation into  A. LAM/MPI's Role in IMPI

the LAM implementation of MPI, and show an example of its use. L .
The LAM/MPI team was asked to join the IMPI Steering
Committee as a non-voting member part way through the pro-
cess. This allowed an implementation of IMPI to become pub-
Since the publication of the MPI-1 standard [1], a large nurlicly available both as a “proof of concept” work as well as a ver-
ber of high-quality MPI implementations have been made avaification and validation mechanism for the proposed standard.
able. The ease of obtaining an MPI implementation has led tomplementing IMPI in LAM/MPI continues a long-standing
a new level of portability; parallel codes can now run on a vasstory of freely available implementations of MPI providing
riety of different operating systems and architectures simply byt only the first implementation of MPI functionality, but also
recompiling the same source code with a different implementaroviding both impetus and a code base for vendor MPI imple-
tion of MPI. Indeed, all parallel vendors now have their own inmentation efforts. In addition to incorporating IMPI extensions
plementations of MPI that are optimized for their architecturesto LAM/MPI, the LAM/MPI team wrote an implementation-
There are also a number of freely available implementationsioflependent IMPI server [5] (described in Section II-A).
MPI, notably LAM/MPI [2] from the University of Notre Dame,
and MPICH [3] from Argonne National Laboratory. B. Related Work
Since only the functionality of the MPI APl is specified, each
implementation is unique in its underlying abstractions and
sumptions. Vendor implementations, for example, are tuned
specific architectures to optimize performance. So in one se

I. INTRODUCTION

The PVMPI [6], [7] project from the University of Tennessee
as a first attempt to join multiple MPI implementations in a
ﬁgle job. It utilized PVM as a communications bridge be-
en incompatible MPI implementations. PVMPI used non-
) X ) X NI functions to join separately started MPI jobs and commu-
It o Al curEnt el mplementa’qons afe unanie (o 'ntemperﬂﬁ?cate between them. While this approach was successful in cre-
with each qthe_r. It is not p035|ble_, for example’ to run a Slr%(ting a larger MPI universe, it did not provide a seamless com-
gle parallel job in a that spans multiple machines (from dncferemunication realm, and forced users to understand both PVM and
vendors) and still use the respective vendors’ highly-tuned MBibrin order to Wr,ite heterogenous programs.
implementations. While the freely available implementations The PVMPI project evolved into the MPI Connect effort [8]
support heterogeneous environments, message passing perfor: :

mance suffers since the freely available implementations do no lle using many of the same ideas from PVMPI, MPI Con-

. : el Implementatl nect utilizes the profiling layer in MPI to intercept messages for
provide vendor-quality architecture speC|f_|c optlmlza'_uons. remote ranks and re-send them using PVM. While using many
The Interoperable MPI (IM.PI) Steering Comm|ttee W.a?e\ger non-MPI functions than PVMPI, MPI Connect still relies
formed to solve these kinds of issues. The committee consis{ed b\ /\ 1 and some non-portable function calls. Additionally
of vendors who already have high periormance MPI |mplemeg\-/en with the mostly-native interface to MPI, only an intercom-

tations, with the National Institute of Standards and TeChnomPrYunicator is provided between MPI implementations, such that
(NIST) facilitating the meetings. collective communications are not possible both with MPI-1 im-

+ Dept. of Comp. Sci. and Eng., University of Notre Dame, Notre Dame, IQlementatloné,and between different MPI-2 implementations.

46556 gquyres@cse.nd.edu, Lumsdaine.l@nd.edu ).

t National Institute of Standards and Technology, Gaithersburg, MD 20899 While it is usually possible to merge an intercommunicator into an intracom-
(william.george@nist.gov, john.hagedorn@nist.gov, municator and use it to perform collective communications, it is unlikely that
judy.devaney@nist.gov ) MPI_INTERCOMMIERGHvill work between multiple MPI implementations.
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Fig. 1. TheMPI_.COMM_WORLD communicator is defined to include the

ranks from all MP! implementations. Fig. 2. The IMPI server is a rendezvous point for the MPI implementations. In

this example, two clients are shown. The first has two hosts, one with four
procs, the other with two procs. The second client only has one host which
contains four procs. This is a possible host decomposition for Fig. 1.

Unify [9], a project from the Engineering Research Center at

the University of Mississippi, was designed as an upgrade tool
for PVM programmers to port their software to MPI. Unify conA. Terminology
sisted of a subset of the MPI-1 API built on top of PVM. This

allowed users to mix PVM and MPI calls in the same prograq}\./I ) . .
. : . . . . . Pl implementations” to refer to the separate MPI universes
While this project did not allow a single job to span multipl hat are?oined by IMP! into a single par:fllel job. This term is
I .

MPI implementations, it does show the use of multi-protoc S L .
message passing, which is critical in IMPI (as well as other me ot only used to distinguish b(_atwe_en multiple |mplement§1t|ons
sage passing systems). 0 MPI,_ but also between multiple mstance; pf the same imple-
mentation of MPI. For example, IMPI can join two LAM/MPI
C. Paper Overview instances that were started independently (perhaps because of
) ) ) _large network distance).
Section Il gives an overview of the IMPI standard, and in- 1o are four types of IMPI entities: a server, clients, hosts,

troduces terminology used in this paper. Section Ill present§y rocs. They are described as follows (and shown in Fig. 2):
an overview of the internals of LAM/MPI. Section IV describes . . . .
Theserveris a rendezvous point for the MPI implementations

how IMPI was implemented into LAM/MPI. Section V presentfO meet upon startu
some timing results using IMPI across a WAN. Finally, in Sec- P P
tion VI, we discuss our conclusions and list future work.

This text (and the IMPI standard) commonly uses the term

» There is onelientper MPI implementation; it acts as a rep-
resentative for that implementation at the server. There can be a
Il. IMPl OVERVIEW maximum_ of thirty-two clients in a single IMPI job.
) ] ) « Each client must have one or mdrests
One of the main goals of IMPI is to provide a program; gach host must have one or m@recs(processes). Although
ming interface identical to MPI while utilizing multiple im- yhe specific use of hosts is implementation dependent, their ab-
plementations of MPI in a single parallel job. That is, prosyact purpose is to group procs in a single MPI implementation.

vide implementation-spanning communicators that can be U} example, hosts can be used to group procs physically located
in the same way that MPI intracommunicators are used. P{@ythe same SMP.

grams that run correctly with MPI should requir_e no source COdeThe IMP! server is considered a separate part of the IMPI en-
C'T)ansg(Sfo(;?tsruneigr;i(t:tgbrengfrs:)'}/lZIbgg; Smeajt?];'silée I:jhi:)? :onment — itis not tied to any particular MPIl implementation.
viou W v u y cou Fhe University of Notre Dame has published an implementation

fect the underlying MPI implementation is the completeness . : :
MPL.COMM.WORLD. 8 the IMPI server that is publicly available for download.

To make the programming model truly transparent,
ranks (regardless of which MPI implementation they are in
should share a commdvPI_COMM_WORLD. Fig. 1 shows  Atwo-step process is needed to launch MPI-spanning parallel
the IMPI-definedMPI_COMM_WORLD for a typical multi- jobs. A “server” process is first launched that will act as a ren-
implementation job. Each process receives a unique rank nutezvous point for each implementation; its purpose is to collect
ber (the order is strictly defined in the IMPI standard). All of thand disseminate job-specific information. The server is specifi-
MPI-1 functions may be used inside fPI_COMM_WORLD; cally designed to be as “dumb” as possible — it only knows how
there are no restrictions on the type of communication pé&o-connect and authenticate a client, then rebroadcast data to all
formed between the multiple MPI implementations. the clients (the content of which it does not understand).

MPI-2 [10], [11] functions, however, are not presently sup- After each of the clients is authenticated to the server, it sends
ported in IMPI. More specifically, the behavior of MPI-2 funcinformation about its local MPI job, such as how many hosts
tions is not defined on communicators that contain ranks frahrepresents, how many procs each hosts has, etc. The server
multiple MPI implementations. collects messages from all the clients and broadcasts a collated

The IMPI standard is divided into four parts: startup/shutdowopy back to each client. In this way, each client learns informa-
protocols, a data transfer protocol, collective algorithms, andian about all the other clients and can independently construct
centralized IMPI conformance testing methodology. an identically orderetPI_COMM_WORLD.

. Startup / Shutdown Protocols



MPI implementation A " MPI implementation B likely to be much slower than an implementation’s native mes-

| Vo | sage passing mechanism.
M 2. Theincrease in complexity and potential loss of efficiency in-
N . N /! curred by forcing every rank to be concerned with not only mak-
ing communication progress within its own implementation but
also with non-local ranks using the IMPI protocols was judged

to be too great.

Additionally, several variables are exchanged between clientd-00sely translated: communications using IMPI are expected
during startup. For example, the maximum message packet $g&€ slow. Adding additional hops not only adds little addi-
that is supported by each client is included in the collated dati@nal overhead (since the TCP/IP communication will be slow
Each client compares its maximum size to the maximum si@8yway), it greatly simplifies the implementation. This raises
supported by each other client, and chooses the smaller of #feissue that, while affecting the design of this implementation,
two. This is referred to as “negotiation” between clients, evé outside the scope of this paper: while correct MPI applica-
though the decisions are performed in an independent and #@0S can run without modification over IMPI, they should be
tributed fashion. Note that all negotiation is done on a clienfoodified to minimize communication between IMPI hosts.
pairwise basis; the values decided upon for cliehtnd B may C.1 Flow Control
be different than the values used between cliéhtendC. '

After startup, the hosts create a fully connected mesh ofCommunication between hosts is packetized. A packet throt-
TCP/IP sockets between themselves (this implies that the cliefiifsg mechanism prevents resources from being consumed with-
disseminate the relevant collated information to their host§t bound in hosts. Two values are negotiated at startup —
TCP/IP was chosen as the interconnection network becaus@ckmark andhiwater (wherel <ackmark < hiwater ).
is a least common denominator that can be assumed betw&b@se two numbers create a sliding window for acknowledge-
parallel resources. The TCP/IP mesh will be used to pass ug@nts — a protocol ACK is required for eveagkmark packets
MPI messages between MPI implementations. Once this mé&ggeived, but a sender may send upitwater packets before
is created, the server and clients sit idle until the end of the jowaiting for the protocol ACK from the firsickmark packets.

This startup protocol is likely to happen during an implemen-
tation'sMPI_INIT (but may occur sooner). OndéPI_INIT has -2 Data Protocols
completedMPI_COMM_WORLD can be used to communicate There are two basic protocols for sending user MPI messages
with any rank in the job. Section II-C describes the protocobletween hosts. Both protocols include unique message ID num-
used to pass user MPI messages between procs. bers to allow for matching of requests, acknowledgements, etc.

In MPI_FINALIZE, each proc will send a message to its lo- The “short” protocol is for non-synchronous mode messages
cal host indicating that it is shutting down. When the host réhat are less thamaxdatalen bytes (wherenaxdatalen is
ceives the shutdown message from all of its procs, it transmita@gotiated during startup). Such messages are sentimmediately,
shutdown message to its client. Similarly, when the client gedad are only subject to the flow control mechanism. “Long”
shutdown messages from all of its hosts, it transmits a shutdomessages are classified either as messages that are longer than
message to the server. Finally, the server shuts down wheméxdatalen bytes or require some kind of explicit synchro-

Fig. 3. Sample routing of a message from one proc to another.

receives shutdown messages from all of its clients. nization (such as synchronous mode messages).
Long messages are fragmented into packets of size
C. Data Transfer Protocol maxdatalen bytes. The first packet is sent eagerly (just like a

Messages within a single MPI implementation can utiliz8hort message), and is marked as the first of along message. The
the vendor-tuned code for high bandwidth/low latency messa@@stination host will return an acknowledgement when it has
passing. But when a point-to-point message is sent to a rankallpcated enough resources to receive the full message. Upon
another MPI implementation, it must be relayed through the Iggceiving the acknowledgement, the sender will queue the re-
cal host to the remote host. The remote host will then ensure tiining packets to be sent to the destination.
the message is routed to the destination proc. Note that IMPISynchronous messages always use the long message protocol;
only mandates the protocol between the hosts — no restrictiéie acknowledgement packet from the destination host serves as
are placed upon how messages are routed within the procs aidndicator to the MPI implementation that the synchronous
hosts in a single MPI implementation. This allows MPI implemode send may complete.
mentations to use the most efficient methods of routing within )
their local communication space. Fig. 3 shows a possible mésS Cancellation
sage routing between two MPI implementations. IMPI also supports message cancellation. If no part of a mes-

The IMPI Steering Committee decided on this design despgage has been sent to the destination host, cancellation is local.
potentially creating a bandwidth bottleneck for two reasons: If atleast one packet has been sent, a cancel request must be sent
1. Communications latency using IMPI protocols is likely to beontaining the message ID to be canceled.
orders of magnitude greater than vendor-tuned latency, regardon the remote host, if the message has not been received by
less of whether a direct connection is made between IMPI erttie user program, it can be canceled. Either way, the host must
ties or when additional hops are used. Indeed, communicati@esd back an ACK indicating whether or not the message was
between implementations currently must use TCP/IP, whichdaccessfully canceled.



C.4 Finalization

When a host will no longer require its IMPI channels for com-
munication (e.g., when all of its procs invok#PI_FINALIZE),
it will send finalization packets to each of the other hosts. The
host may not close a socket until it receives a finalization ac-
knowledgement from the host on the other end of the socket.

This allows some flexibility to MPI implementations. For ex-
ample, if a proc tries to send a message to a proc on a host that
has shutdown, a high quality implementation will likely fail the
message immediately. However, the implementation is free to
send the message anyway using its normal queue mechanism,
where the message will eventually be dropped (potentially caus-
ing deadlock in the user’s application).

Fig. 4. MPI_BARRIER across four MPI implementations, each with four local
llecti | ith ranks. Phase one is a local synchronization. Phase two is a global synchro-
D. Collective Algorithms nization between representative ranks of each implementation. Phrase three
. . . . . . is a final local synchronization.
For collectives involving multiple implementations to work, 's @ final local synchronizatio
the exact algorithm and communication pattern must be man-

dated so that each implementation knows its role in the overgllecuted. These scripts test various aspects of the local IMPI
collective action. The proposed IMPI standard includes ps&gsplementation. Once an IMPI implementation passes the tests
docode algorithms for each of the MPI-1 collective routinegjith all of the NIST tests, it can theoretically interoperate with

Note that not only are the behaviors of collective functiong,y other IMPI implementation that passed the NIST tests.
such asMPI_LBARRIER, MPI_BCAST, and MPI_SCATTER

mandated, but communicator constructor and destructor func- I11. LAM/MPI O VERVIEW

tions such adPI_COMM_CREATE andMPI_COMM_FREE he Local A Multi ter (LAM) impl tati f

must also be mandated to ensure that communicator context (? € Local Area Mulicomputer ( ) imp ementation o
grew out of the Trollius project from the Ohio Supercom-

unique across all MPI implementations. . . L
9 P ter Center [12]. The Trollius project was originally targeted

Since the TCP/IP communications between hosts is Iikely%I . .
. . .af Transputers, but eventually grew in scope to include general
be slow compared to message passing between procs in a smgle

. ; . : rallel computing. With a rich set of infrastructure and com-
implementation, the IMPI-mandated collective algorithms at-~ ~." = .

S L . : ~munication tools, an MPI layer was added to the top level of the

tempt to minimize communication across inter-implementati . .

. u N o Trollius software. Over time, the MPI software has become the

channels. Most collectives have “local” phases (within a S'rr]ﬁain use of LAM

gle implementation) and “global” phases (coordination between . s
all implementations). The behavior of local phases is not ma _Aéte[:;v?”\oﬂrlggilgal LAM/MPI drt]avelodpers_mctilv_lrcri]uallyrl]etft the_th
dated, allowing implementations to use optimized mechanis § ' ecamean orphaned project. Throughies wi

to achieve the mandated results. Actions during the glot%nF gtr I?r:gall\lgs\éelli?;nires’athri(::?grt?::;yn:grtr?e(:lg\?vtrgﬂecrsc:fﬂ]_%h:
phases are mandated with pseudocode in the IMPI standard 9 . -ame ag ; )
) S . The web site, mailing list, and source code repository moved to
For example, a barrier across multiple implementations uses .
.edu in early June, 1998.

two local phases and a global phase. Each implementation Pla'Fhe design of IMPI reflects, in part, its heritage in LAM/MPI.

a local masterrank among the ranks performing the barrie f the oriainal LAM/MP! devel h h
The first phase has each rank synchronize with their local m o ot the ongina EVEIopers — Who Were each rep-
resenting different vendors — were chapter authors on the IMPI

ter (i.e., within their respective implementations). The seco . . . o
phase is a synchronization between the local masters. The f’%aqermg Commltte_e. As such, the overall design of IMP1 is sim-
ilar to that of LAM itself.

phase is a second local synchronization. Fig. 4 shows a barrier

distributed between four MPI implementations. A. Features

E. NIST Conformance Tester LAM/MPI is more than just a communication library for MPI

NIST has implemented an IMPI conformance testing todl. it contains a rich set of features that are attractive to both de-
. . . velopers and end users.
A Java applet is available on the main IMPI web page

upimpinsgoup )t can provces - A UTPERENAE e WL LIS L
cess to a back-end IMPI simulator. The simulator can emulate P ’ 9dy

an IMP! server and any number of IMPI hosts and procs. namic processes, one-sided communication, C++ bindings for

C source code is also available on the web page that can'\{I)Fél_l functions, and paralle! /0.

compiled and linked against an IMPI implementation. It canzy the exception of the ability tyPI_CANCEL sent messages. Canceling
then be run in conjunction with the NIST Java applet to test thent messages in a parallel environment is an extremely difficult problem; since

local IMPI implementation against the NIST simulator. A num-ery few LAM/MPI users have asked for this functionality, the LAM team has
) cSecided not to implement this functionality.

ber of test scripts (which are very similar to C MP_I programs)s am includes the ROMIO package from Argonne National Labs [13], [14]
can be sent to the C program from the back-end simulator todsahe implementation of parallel I/O.
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program program One of the main functions of the MPI layer is to create and
Node n3 Node n2 maintain communication queues. All send and receive commu-

nications within LAM/MPI are collectively known agquests
Fig. 5. Example showing hompirun works in the LAM/MPI environment.  Unifying all types of communication under a single nomencla-
mpirun  sends execution messages to the local LAM daemon, who, in tuiyre allows the use of a uniform management system.
distributed them to the remote LAM daemons. Each daemon then starts upF .
the user MPI program. ~For egampIeMPI_SEND generates a request that contains
information such as the buffer, count, datatype, tag, destination
rank, and communicator of the message to be sent. If the queue
« Support for two kinds of shared memory (on node) / TCP/Ii8 empty, the request is passed directly to the RPI to be processed
(off-node) multi-protocol message passing. immediately (this is known as thehort-circuit optimizatioh If
« Persistent MPI run-time environment that provides (amonige queue is not empty, the new request is markebol@sking
other things) fast parallel job startup, robust process control, aaiéscribed below), and placed on the queue. The RPI is then

run-time monitoring of parallel jobs. invoked to progress the queue. Since the request was marked
as blocking, the RPI will not return until the message has been
B. Run Time Environment fully sent.

LAM/MPI provides a persistent run-time environment for )
MPI programs. Users initially launch LAM daemons on each: Reéguest Progression Interface

machine that they wish to use in MPI with themboot com-  Requests are processed through LAM’s request progression
mand. The LAM daemons are mainly used for process cdfterface (RPI). The RPI is responsible for all aspects of com-
trol, an out-of-band communication channel for meta data, afflinication with other MPI ranks — it progresses the communi-
a monitoring/debugging tool for user programs. Once the LAW¥htion requests that were formed and queued in the MP! layer.
daemons have been launched, MPI programs can be launchiesk is, the RP!I is responsible for actually moving data from
across the resulting “parallel machine”. Fig. 5 shows an examplge rank to another. Once the RPI finishes a request, it marks
of how the LAM daemons are usedrpirun user programs. the request as completed (the MPI layer will dequeue it).

LAM/MPI provides a convenient commandamclean ,  The RPI was designed to be a separate layer; the API for
than can be used to kill all running user programs in a boot@ge RPI consists of ten primitives, and is documented in [15].
LAM, and clean up any unreceived messagksnclean is Maintaining a separation between abstract message passing and
frequently used to kill runaway or deadlocked processes, esggvice-specific drivers is not only good software engineering, it
cially while developing and debugging user MPI applications.a|so allows the addition of native support for new communica-

When the user is finished with MPI, they can kill any runtion devices without changing any other parts of LAM/MPI.
ning programs and take down the run-time environment with There are two classifications of RPIs: daemon-bakerd)
thewipe command. and client-to-client¢2c). Thelamd RPI uses the LAM dae-
mons for all user communications. Fig. 7 shows the hops that
C. Code Structure a message must travel from rarkto rank B using thelamd

The communication library of LAM/MPI is divided into RPI (note the similarity to the IMPI design shown in Fig. 3).
three parts: the MPI layer, the request progression interfahough incurring extra hops, thamd RPI allows for extra
(RPI) [15], and the Trollius core. The MPI layer is actually anonitoring and debugging capabilities. Additionally, thend
somewhat-thin layer on top of Trollius and RPI functionality. ARPI allows for some degree of true asynchronous communica-
typical MPI function is fairly simplistic — it checks parameterstion. Since the LAM daemon is running in a separate process,
performs some “bookkeeping” functionality, and uses the undérean make progress on message passing regardless of what the
lying RPI or Trollius for many of the more complex functionsuser application is doing.
The RPI is discussed in Section IlI-E. Finally, Trollius contains c2c RPIs do not use the LAM daemons for user communi-
many “kitchen sink” kinds of functions, and provides a baclcations. Instead, some other interconnection network is used,
bone for most services (including the LAM daemons) that aveéhich greatly decreases message latency. Note that while it is
invoked throughout LAM. Fig. 6 shows a diagram of the LAMassumed that clients will be directly connected to each other (in
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Connections to other IMPI hosts

Node n0 LAM LAM Nodenl Fig. 9. Theimpid acts as a separate process in the IMPI job. Each rank in the
@ daemon daemon local LAM opens a connection to thepid using the current RPI.
\ /
T 4. An IMPI job must be able to use any of the four RPIs.

Direct connection between ranks
A. Theimpid
Fig. 8. Thec2c RPI design. The LAM daemons are not used for user com- . .
munication. The three RPIs that are currently included in the LAM/MPI In order to achieve true asynchronous communication and to

distribution use internet domain sockets for off-node communication.  maximize bandwidth, the IMPI host and client was implemented
as a separate daemon: thpid . Theimpid acts as the IMPI

n;;#@ﬁt during startup and shutdown, and as the IMPI host during
the rest of the job. After the startup, each local rank makes a

LAM/MPI currently includes three2c RPI implementations: connection to thémpid using the current RPI. This connection

1. tcp: The TCP RPI uses internet domain sockets betwe\é’lql be used for communication with any rank that is not in the

ranks inMP]_.COMM_.WORLD. TCP is LAM’s default RPI. local LAM. Fig. 9 shows how thémpid fits into a LAM/MPI

2. usysv. The USYSV RPI is the same as the TCP RPI, excel$te" 1oP-

that shared memory is used for communication between ra%i Separate Daemon

on the same node. Spin locks are used to lock the shared mem- _ o

ory between ranks. Having the IMPI host in a separate process space — similar to

3. sysv The SYSV RPI is the same as the USYSV RPI, excefte rationale for using the main LAM daemon — allows for some

that SYSV semaphores are used for locking the shared mem@@gree of communication progress independent of the user pro-

between ranks. The blocking nature of semaphores can gif@m. Thatis, a separate thread of control can progress message

higher performance than USYSV on uniprocessor machines.duéues as well as provide buffering for local and remote mes-
LAM/MPI currently does not allow more than om@c RPI S2ges. Inone sense, ihgpid  acts as a post office for messages

to used simultaneously. As such, the speaific RPI must be ©riginating from local ranks that are destined for remote IMPI

selected when LAM/MPI is configured. The choicdarhd vs. Nosts (and vice versa). Just as a snail mail letter reaches its desti-

c2c RPI can be made at run time with thepirun  command.  nation after being dropped off at a post office without the sender

knowing or caring how it gets there, so too timepid takes

care of communication with remote IMPI hosts. In many cases,

Aside from some debugging and maintenance, implementiﬁ? example, a userprocess ddR|_SEND a message and con-

IMPI was the first large-scale project in LAM/MPI that we at_tl ue processing long before the message_rea_ches its destination.

tempted. As such, the current package is actually a third genyf'-'s can a!low for true qverlap of cqmmunlcatlon and FompUt.a'

ation implementation of the IMPI standaftdThis implementa- tion — this is especially important since IMPl communication is

tion of IMPI was written in C++ in order to take advantage O?Xpected to be slow.

some basic object constructs as well as make use of the Standa ditionally, since LAM/MPI pronges a perglstent run-time
Template Library (STL) [16], [17] environment for MPI programs, multiple IMPI jobs can be run-

g_ing in the same universe simultaneously. Having a separate
process for thémpid (potentially on different nodes) not only
segregates communication from multiple IMPI jobs, it simpli-
fied the implementation since no additional logic was necessary
to determine which IMPI job a particular message belongs to.

software) for speed, this does not need to be the case. A sa
c2c RPI connection scheme is shown in Fig. 8.

IV. | MPLEMENTATION OF IMPI IN LAM/MPI

The following overall design goals were specified by th
LAM team when implementing IMPI:
1. A separate daemon (timapid ) will implement the role of
the IMPI client and host.
2. There will only be onémpid per IMPI job; subsetting into
multiple hosts will not be supported. o A.2 Startup Procedure
3. Theimpid must be transparent to the user; it will automat- ) i
ically be started, die gracefully when the program finishes, and1° further reduce complexity and take advantage of the in-
be able to be aborted with themclean command. frastructure already in LAM/MPI, thenpid was implemented

as an “almost MPI” process. By using MPI for the majority of

4The first two implementations represented a steep learning curve aboutmgssage passing, thepid automatically uses underlying data
LAM/MPI infrastructure by the Notre Dame LAM team. These two implemen- '

tations generally barely worked, and resulted in design changes for the rienversion, message fragmentlng and flow control, the LAM
generation. progress engine, etc.
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SB ‘ ro B S 2 Fig. 11. Path of a short message from one IMPI proc to another. 1) The message
< i T is sent from the source proc to threpid . It immediately crosses from the

LAM side to the IMPI side, where 2) it eventually gets sent to the remote
impid . The message immediately crosses to the LAM side, where 3) it
gets sent to the destination local LAM rank.

Incoming message QOutgoing queue

Fig. 10. Theimpid is split into two halves; one for receiving and processing
messages from local LAM/MPI ranks, the other for receiving and process-

ing messages from remote IMPI hosts. A message that is received on one . L . . .
side is queued for transmission on the other side. known that a blocking communication will complete immedi-

ately.
Since thampid is likely to be running on the same node as
That is, theimpid callsMPLINIT, uses different flavors of 3 user process, it is vital that tirapid take as few CPU cycles
MPI_SEND/MPI_RECV to communicate with local ranks, andas possible. Although unfortunately locked into a polling model,
eventually callsVPI_FINALIZE. Indeed, thempid isinitially  theimpid reduces its overall activity by using thp®ll(2)
launched viaMPI_.COMM_SPAWN from within MPLINIT of = system call with a non-zero timeout. That is, thpid allows
the user’s program. Thienpid is an “almost MPI” process, jtself to be blocked, thereby guaranteeing CPU cycles for the

however, because it was impossible to avoid circumventiRger program. Pseudocode for the miaipid polling loop is
some of the normal MPI mechanisms in certain cases. shown below:
The user must specify two command line arguments on thewhile (job_is_running) {
mpirun command line: the IP name or address of the IMP| // Check for activity on IMPI side
server and the rank number of this IMPI client. These arguments Whgﬁa(gr?ﬂéh?isr:iss’hggoss;sn’d;'(r;‘_eouo >0
are passed to thmpid from rank 0 inMPI_.COMM _WORLD. /I Check for activity on LAM side
Theimpid then connects to the IMPI server and performs the do {

ot ; _ MPI_Testany(npending, requests,
startup negotiation sequence as described above. Once the nego gindex. &flag, MPI STATUS, IGNORE):

tiation has completed, thepid creates a socket to each other if (flag)
IMPI host, creating a fully-connected topology of hosts. cleanup_finished_request(index);
Since theimpid was started viaPI_COMM_SPAWN, it } while(flag);

has an intercommunicator containing the local LAM ranks.

This intercommunicator is merged into an intracommunica- Notice that there is no “sending” code evident in the above
tor so that the IMPI startup negotiation data can be broagseudocode. A convenient side effect of having the event-driven
cast to all ranks. When the ranks receive the negotiation datadel is that sends are always triggered by receives. For exam-
MPI_COMM_WORLD is formed, MPLINIT returns, and the ple, when a short non-synchronous message is received from the

MPI portion of the user program begins. LAM side, it is immediately placed in the outgoing host quéue.
. Placing a message in the queue triggers an attempt to progress
A.3 Design the queue according to current flow control values (see Sec. II-

The IMPI host in thémpid is split in two halves. One side C-1). The queue will be progressed as much as possible, after
communicates with the local LAM/MPI, the other communiwhich the polling loop will continue.
cates with other IMPI hosts. When a message is received on on&s another example, it is possible that the queue will not have
side, the message buffer and destination information is traféained before flow control values indicate that sending must
ferred to the other side where it is queued up to be sent. E&AP- Eventually, the remote host will send an acknowledgment
side of theimpid follows a complex state machine to procesidicating “ok to send more packets”. When this acknowledge-
an incoming message; both sides can receive multiple typed#nt is received, it will trigger an attempt to progress the send
messages, each of which require different (but related) handlif§€ue again.

Fig. 10 shows the basic division in tivapid .

Ideally, it would have been possible to assign multiple threa
to each side of thempid . For example, one thread could re- Fig. 11 shows the process for sending and receiving a short
ceive incoming messages while another could progress the dugssage between two instances of LAM/MPI. Two instances of
going queues. This design allows for a blocking event-drivésAM are shown both for simplicity; the diagram for connecting
semantics; threads that are waiting for something to happen WiiM/MP1 to another IMPI implementation is similar.
block until they are needed. Unfortunately, since the underlyingbong and synchronous messages use a similar, but more com-
LAM infrastructure is not thread safe, implementing this desigiicated, protocol. Fig. 12 shows the process for sending and re-
was not possible. Instead, both sides of timpid must be ceiving along message. Except for the addition of the ACK sent
polled for activity. A side effect of only having one thread of | h ) i | values ind hat it i
control is that thémpid  must never block; only non-blocking eSS 315452 €M and flw contl s ndecte a1 per
communications can be used, except in situations where itsi®rt-circuit optimization that is used in the MPI layer.

S4 General Operation



swce  (am L omp ) [ mpr | oLawm ) Desinaion ACK” list on the LAM side. When the ACK is received from the
Sde ) side Sde | sde local LAM (step 4 in Fig. 12), an ACK is returned to the remote
@4% —-[%@ IMPI host (step 5 in Fig. 12). Similarly, for long messages, a
o 2\ ‘ 3 ping is sent to the local LAM rank, and an entry is inserted in
: : ~ the “waiting for ACK” list. When the ACK is received, an ACK
LaM o IMA M LAM is sent to the remote IMPI host. The remaining packets are sent
,,,,,, Aok ol 1 using the Data packet type (step 7 in Fig. 12).
Q@) Syncfmode} A% 5 : } @ « Data: This packet type is used to send short messages as well
_ only 3 PN 3 [] P, as the remaining packets of a long message (step 2 in Fig. 11
and step 7 in Fig. 12).
CLam | ome ) MR | LAM ) « Sync ACK: These ACKs (step 5 in Fig. 12) trigger sending
side side side sde the remaining packets of a long message, and the sending of an
Q | @ _ﬁ @ ACK back to the local LAM rank for synchronous messages.
g ‘ 7 - 8

« Flow control: Flow control packets decrease the “unacknowl-
Fig. 12. Path of a long message from one IMPI proc to another. 1) The messgg(;:I ed pacl_<et count bgckmark . .
is sent from the source proc to threpid , and is queued on the IMPI side. * cancellation: Acknowledgements of cancel requests will be
2) The first packet is sent to the rematepid , where it is buffered on the sent from remote IMPI hosts. However, thapid will cur-
LAM side. 3) A “ping” message is sent to the destination rank. 4) Whefbntly not receive such ACKS, because LAM does not Support
the ping is acknowledged, 5) an ACK is send from the rerimofgd to the . -
local impid who 6) sends a “ping” back to the sender (for synchronou@e cancellation of sent messages. Hence, LAM will never re-
mode sends only), and 7) sends the remaining packets of the message t6|th@st a remote IMPI host to cancel a message.
remoteimpid . 8) The remotempid  then sends the entire message to thg Finalization: When a remote IMPI host closes down, it must
waiting destination. send a notice to each other IMPI host. This prevents hosts from

interpreting the close of the connecting socket as an error.

back to the source (step 6), the process for a long synchrongus
message is the same. The process for a short synchronous eé\—/lpl Layer Hooks

sage is slightly different: the message is sent to the local LAMIn order to enable IMPI to use any of the existing RPIs, it
rank in step 3 (instead of just a ping), and steps 7 and 8 are m@ts decided to implement IMPI hooks in the MPI layer. Most

necessary. of the hooks deal with the manipulation sifiadow requestsA
) shadow request is supplementary, system-generated request that
A5 Local LAM Side is linked to a user-generated request.

On the local LAM side of thempid , MPI is used to com-  For example, when sending a message tointad , it is
municate with the local LAM/MPI ranks. Thienpid posts necessary to first tell thenpid information about the message

persistent receives for the following kinds of messages: that will be sent, such as the message size, datatype, destination
« “Lamgiappe” headers: Lamgiappe headers are describethnk, etc. This meta information is packaged in a “lamgiappe”
more in Sec. IV-B. This is step 1 in Figs. 11 and 12. header and sent to thimpid . The real message is sent im-

« Synchronization ACK: A LAM rank will send a synchro- mediately following the lamgiappe. Each of these two sends
nization ACK back to thémpid after it receives a “ping” mes- generates a request; they are both marked as “mandatory” and
sage from theémpid indicating that a long or synchronoudinked together so that the overtPI_SEND will not complete
mode message is being received. This is step 4 in Fig. 12.  until both requests complete.

« Abort: If a local LAM rank invokes MPI_ABORT, the The ability to link one or more shadow requests to any user-
impid  will exitimmediately. The other ranks in the local LAM generated request enabled many of the hidden aspects of IMPI to

will be killed by their respective LAM daemons. be performed in the MPI layer. Most of the queue manipulation
« Finalization: This message is sent to th@pid when a code of LAM is contained in the various flavors PI_TEST
LAM rank invokesMPI_FINALIZE. and MPI_WAIT. Enabling shadow requests entailed rewriting

The array of requests given ddPI_TESTANY in the main much of this code.
polling loop not only contains the requests for the persistent )
receives listed above, it also includes requests from any pefidt Redirected Send Requests
ing sends to local LAM ranks. Hence, in addition to mak- In order to effect seamless communication with ranks on
ing progress on incoming messages, Miel_TESTANY also other IMPI hosts, it is necessary to intercept messages bound
makes progress on outgoing messages. for remote ranks and redirect them to ihepid . For example,

) whenMPI_SEND is used to send a message to a rank on a dif-

A.6 IMPI Side ferent IMPI host, the message must be redirected tanpél

The IMPI side of thémpid can receive the following kinds instead. That is, when the send request is initially created, LAM
of packets from other IMPI hosts: determines that the message is bound for a remote IMPI proc
« Sync data This packet type is used to send the first packet ahd switches the destination to tingpid .
long and synchronous mode messages (step 2 in Fig. 12). FdBefore the user message is sent, a lamgiappe header is formed
short messages, the message is immediately sent to the laca sent to thémpid . When theimpid receives the lam-
LAM rank, and a placeholder is inserted into the “waiting fogiappe, it allocates a buffer for the incoming message and calls



MPI_RECYV to receive the real message. Note that it is safe ieenting communicators into local and remote groups. Any
use the blockingPI_RECV call because the header is alwaysommunicator in LAM that contains ranks on a different IMPI
immediately followed by its corresponding data message.  host now has ahadow communicatoThe shadow communi-
For non-blocking and persistent sends, all flavorsvifl_- cator has a unique context ID and contains only the local LAM
TEST andMPI_WAIT will not indicate that the request has fin+tanks from the real communicator.
ished until the header and user data have both been sent. Shadow communicators are used for the local phases of
Synchronous mode sends, however, post an additionallective operations. For example, Fig. 4 shows that an
shadow request — a receive from timepid . MPI mandates MPI_BARRIER on a communicator with ranks from multiple
that synchronous mode sends do not return until the destimlsP| hosts has two local phases and one global phase. With
tion starts to receive the message. The long message protocshadow communicators created and maintained elsewhere in
IMPI described in Sec. II-C.2 conveniently handles this caselLAM, MPI_BARRIER is implemented as:
synchronous mode messages are sent as long messages. Whehocal phase
the synchronization ACK is returned by the remote IMPI host MP!_Barrier(shadow_communicator);
. . . . /I Global phase
(step 5 in Fig. 12), the local host will send a “ping” message j; [ iMpi-mandated algorithm...]
to the sending rank (step 6 in Fig. 12), letting it know that the // Local phase
synchronous send has completed. MPI_Barrier(shadow_communicator);

B.2 Redirected Receive Requests C. Shutdown Sequence

There is no way to know ahead of time whether a messageAs mentioned previously, the call tlPI_FINALIZE trig-
received from thempid will be synchronous or not. Indeed,J€rs @ message to be sent to thwpid indicating that it is
the MPI API does not provide a mechanism for determining $utting down. When all of the local LAM ranks have called
a received message was the result of a synchronous send. BYBhFINALIZE, the impid  will quit the main polling loop.
though the underlying implementation has this information, it iEhe IMPI client code in thempid = will send a message to the
buried deep within the LAM progression engine (it is actuallMP! server indicating that it is shutting down, and then call
in the lowest regions of the thr@@2c RPIs), and is difficult to MPI-FINALIZE itself before exiting.
propagate up to the MPI layer. But the MPI layer needs to kn
if the send was synchronous or not in order to potentially serd
an ACK back to thempid (step 4 in Fig. 12). The current implementation of IMPI in LAM/MPI does not

Since the decision to send an ACK (or not) must be madesunpport any MPI collectives other thafPI_BARRIER. While
the MPI layer in the user's program, it is not possible to pighe infrastructure for the remainder of the data-passing collec-
gyback the “synchronous” flag on the main message data witives is already in place, implementing the collective communi-
out potentially corrupting the user data, or causing an incidentaltor constructors (e.gMPI_COMM_SPLIT) will require sig-
memory copy. Hence, the synchronous flag must be contaimgficant modifications to the current design. It was realized
in an additional message. late in the process that thienpid contains many assump-

One potential solution to this problem is to send a query to tkiens that the communicator being used to pass messages is
impid asking if the received message was synchronous. HoMPI_COMM_WORLD. This will need to change; thinpid
ever, this “active query” model would entail sending a quemyill probably need to become aware of all communicators that
every time a message is received from tmpid , this could are created, at least in the local LAM.
create undue latency and bandwidth overhead. Canceling sent messages is a difficult problem, especially in

Hence, a passive solution was used. Theid sends the a distributed environment. As such, LAM/MPI does not sup-
additional ping message only if the message was synchronqa®t MPI_CANCEL on send requests. Since LAM itself does
This ping will always precede the main message; the guarant@ed support this functionality, there was little point in including
ordering allows the MPI layer to determine if the message weancel support in the IMPI functionality, either.
synchronous. That is, a shadow receive is posted on every re-
ceive request that will receive the ping from timepid (step V. RESULTS
3 in Fig. 12). If the ping request completes, the message washe LAM/MPI implementation of IMPI passes all the point-
synchronous, and it triggers an ACK to be sent toithpid  to-point tests of the NIST IMPI conformance tester. Hence,
(which is, itself, a shadow request linked to the ping request).\lhen vendors make IMPI implementations available, LAM
the ping request does not complete by the time the main mgRould be able to interoperate with them.
sage request completes, the message was not synchronous, ag#éle use for IMPI (especially while LAM/MPI is the only
the ping request is canceled. MPI implementation that has IMPI support) is for running par-

allel jobs over WAN distances. IMPI is useful in this situation
B.3 MPILBARRIER because a low number of sockets are used, thereby lowering the

IMPI mandates anMPI_BARRIER inside of MPI_- possibility of network disruption (for example).

FINALIZE. This entailed adding much of the infrastructure for To measure the overhead of IMPI protocol, a standard ping-
IMPI collective algorithms to LAM. Since the IMPI collectivespong test was conducted between machines at the University of
are implemented on top of point-to-point functionality, the maNotre Dame in Indiana and Lawrence Berkeley National Lab in
jority of LAM’s collective infrastructure had to do with seg-California. A 400Mhz Intel Pentium-II machine running Linux

Limitations of Implementation
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design the RPI to be used in a rank-pairwise manner such that
multiple RPIs can be used in a single program.

VIl. ACKNOWLEDGEMENTS

We would like to acknowledge the help and guidance from
Raja Daoud and Nick Nevin during this project. M. D. Mc-
Nally wrote the IMPI server and helped with debugging. Ki-
nis L. Meyer contributed to the design and implementation. Fi-
nally, this paper was written while the first author was a guest at
Lawrence Berkeley Lab in the Future Technologies Group, led
by Bill Saphir.

10° 10" 10°
Size of message (bytes)

Fig. 13. Ping-pong timing results using IMPI and MPI. [

REFERENCES

Message Passing Interface Forum, “MPI: A Message Passing Interface,” in
Proc. of Supercomputing '9®p. 878-883, IEEE Computer Society Press,
November 1993.

2.2.12 was used at each end. Each machine was unloaded[%lnoG- Burns, R. Daoud, and J. Vaigl, “LAM: An open cluster environment for

located on a 100Mbps local switched network. The measured
available bandwidth between Notre Dame and LBL at the tini&
of the test was 2.3Mbps.

Figure 13 shows timing results comparing various sized ping-
pongs between Notre Dame and LBNL using IMPI and usiri¢]
a single LAM spanning both hosts. As expected, the IMPI res
sults reflect the overhead in the three-hop design of IMPI. These
results should not be taken as an indictment of IMPI (or this
particular implementation), however. The value of IMPlis in al®!
lowing highly-tuned implementations of MPI to work together7;
In some cases, having IMPI available will be the difference be-
tween being able to conduct an experimentor not. In other casgs,

MPI,”in Proceedings of Supercomputing Symposiun(J94%V. Ross, ed.),
pp. 379-386, University of Toronto, 1994.

N. E. Doss, W. Gropp, E. Lusk, and A. Skjellum, “An initial implementa-
tion of MPI,” Tech. Rep. MCS-P393-1193, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL 60439,
1993.

IMPI Steering Committee, “IMPI - interoperable message-passing inter-
face,” tech. rep., NISThttp://impi.nist.gov/IMPI/ ,1999.

M. McNally, J. M. Squyres, and A. LumsdaineA Freeware Im-
plementation of the IMPI Server University of Notre Dame,
http://www.mpi.nd.edu/research/impi/ ,1999.

G. E. Fagg and J. J. Dongarra, “PVMPI: An integration of the PVM and
MPI systems,” tech. rep., University of Tennessee, 1994.

G. E. Fagg, J. J. Dongara, and A. Geist, “Heterogeneous MPI appli-
cation interoperation and process management under PVMPEuin
roPVM/MPI'97, 1997.

§]S G. E. Fagg and K. S. London, “MPI inter-connection and control,” Tech.

the proper performance comparison to make will be to compare
vendor-tuned implementations communicating over IMPI wit@]
a portable implementation (such as LAM) running on all hosts.
To be able to conduct such experiments awaits the delivery of
at least one vendor implementation of IMPI. Naturally, we hop#!
that this particular implementation will give encouragement ang;
impetus to the vendors to do so.

V1. CONCLUSIONS

LAM/MPI has proved that IMPI works, and several vendorjslzl
on the IMPI Steering Committee have voted in favor of the
proposed IMPI standard. Having IMPI-enabled vendor-tunéef!
MPI implementations will enable not only larger, and poten-
tially more efficient MPI jobs, it also joins MPI with the growing[14]
field of geographically distant parallel computing research — the
study of linking distant resources into a single parallel resource.

More information about LAM/MPI, as well as the softward15]
package is available frotittp://www.mpi.nd.edu/lam/

[16]
A. Future Work

LAM/MPI has some limitations in its implementation off17]
IMPI which need to be addressed:
« Finish implementing the data-passing collectives, such as
MPI_SCATTER, MPI_GATHER, etc.
« Re-design thémpid allowing communicator constructors.
« Optimize the collectives; the pseudocode algorithms in the
IMPI standard are only a first attempt, and use well-known al-
gorithms. More research is needed in this area.
o Re-structure LAM/MPI to use generic multi-protocols; re-

Rep. 98-42, Corps of Engineers Waterways Experiment Station Major
Shared Resource Center, 1998.

F.-C. Cheng, P. Vaughan, D. Reese, and A. Skjelltime Unify System
NSF Engineering Research Center, Mississippi State University, Septem-
ber 1994. Version 0.9.2.

Message Passing Interface Forum, “MPI-2,” July 1997. http://www.mpi-
forum.org/.

A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
W. Saphir, T. Skjellum, and M. Snir, “MPI-2: Extending the message-
passing interface,” inEuro-Par '96 Parallel Processing(L. Bouge,

P. Fraigniaud, A. Mignotte, and Y. Robert, eds.), no. 1123 in Lecture Notes
in Computer Science, pp. 128-135, Springer Verlag, 1996.

G. D. Burns, “The local area multicomputer,” froceedings of the Fourth
Conference on Hypercube Concurrent Computers and ApplicatAos
Press, March 1989.

R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably
and with high performance,” iRroceedings of the 6th Workshop on 1/O in
Parallel and Distributed Systempp. 23-32, ACM Press, May 1999.

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective 1/O in
ROMIO,” in Proceedings of the 7th Symposium on the Frontiers of Mas-
sively Parallel Computationpp. 182—-189, IEEE Computer Society Press,
February 1999.

LAM Team, “Porting the LAM 6.3 communication layer,’
Tech. Rep. TR 00-01, University of Notre Dame, August 1999.
http://www.mpi.nd.edu/lam/download/ .

A. Stepanov, “The Standard Template Library — how do you build an
algorithm that is both generic and efficientByte Magazingevol. 20, Oct.
1995.

A. A. Stepanov and M. Lee, “The Standard Template Library,” Tech. Rep.
X3J16/94-0095, WG21/N0482, ISO Programming Language C++ Project,
May 1994.



