
A VRML Integration Methodology for 

Manufacturing Applications 

Sandy Ressler* Afzal Godil 

Qiming Wang Gregory Seidman 

Information Technology Laboratory 

National Institute of Standards and Technology 

Abstract 

This paper describes several methods for using the Virtual Reality 
Modeling Language (VRML) as the visualization integration tech- 
nology for manufacturing simulation systems. One of our goals 
was to develop an integration methodology based on the use of 
VRML translators to produce reusable VRML components. The 
use of readily available off-the-shelf VRML models and systems 
was a major requirement. In addition to the component libraries we 
also wanted to add a significant analytic system to demonstrate 
potential application in a real-world manufacturing simulation sys- 
tem. This resulted in the integration of a near real-time dynamics 
engine with the VRML world. The production and use of interme- 
diate component worlds demonstrates the potential for component 
libraries of visual manufacturing elements that can be integrated 
into larger simulation and visualization environments. 

CR Categories and Subject Descriptors: D.3.2 [Programming 
Languages] Languages/Classifications - Virtual Reality Modeling 
Language 2.0; H.5.1 [Information Interfaces and Presentation] 
Hypertext navigation and maps; 1.3.2 [Computer Graphics] Graph- 
ics Systems - Distributed/network graphics; 1.3.6 [Computer 
Graphics] Methodology and Techniques - Interaction techniques 

Additional Keywords and Phrases: virtual environments, user 
interfaces, manufacturing environment, systems integration. 

I INTRODUCTION 

The Virtual Reality Modeling Language (VRML) is a 
recently ratified IS0 standard (IS0 14772) [ 1 I] tile format for the 
description of geometry and behavior of 3D computer graphics. 
We have used VRML as a canonical output format from a variety 

DISCLAIMER: Mention of trade names does not imply 
endorsemefit by NISI. 

*National Institute of Standards and Technology 
Bldg. 225, Rm. A216 
Gaithersburg MD 20899 
email: sressler@nist.gov, agodil@nist.gov, 
qwang@nist.gov, gseidman@acm.org 

VRML 99 Paderborn Germany 
^- l-58113-079-l/99/02 

of systems as well as with off-the-shelf VRML authoring tools, to 
produce integrated virtual worlds for manufacturing proof-of-con- 
cept applications. 

2 BACKGROUND 

Our VRML work is part of a larger Systems Integration for 
Manufacturing Applications (SIMA)[9] program at the National 
Institute of Standards and Technology (NIST) performing research 
in advanced manufacturing and the applications of information 
technology. VRML provides a robust foundation upon which one 
can build applications that are portable, distributable via the World 
Wide Web, and integratable with analytic systems. Much of our 
motivation stems from a desire to provide methods to share engi- 
neering information, visually. 

VRML, as an international standard, is well suited as a tile 
format for exporting from proprietary systems. When engineers 
collaborating on a particular project must share information, 
VRML is an additional tool they can use to facilitate their commu- 
nication. One major obstacle to increased use of VRML models is 
the difficulty of integrating models produced by different systems 
and people. Furthermore, enhanced analytic functionality, often a 
requirement for the production of a useful system, such as that pro- 
vided by a dynamics engine, is also difficult to integrate with 
larger more complex worlds. 

Figure 1. Early Integration Example 
Figure 1 illustrates an early proof-of-concept effort at inte- 

grating VRML originating from several sources. The world con- 
tains models created via three different translators, a robot from 
Deneb’s IGRIP software [12], the conveyor belt from Working 
Model 3D [ 131, and a human from Transom’s Jack[ IO]. When the 

167 



_...................................... .._ 

Figure 2. Overview of entire integrated world 

user clicks on the floor the robot picks up the box from the table, 
places it on the conveyor belt. As the box travels along the con- 
veyor belt, at the appropriate time, the human appears to push the 
box, which continues along the conveyor belt until it falls off into 
the box. We wrote the translators for the Deneb and Working 
Model 3D packages and obtained the Jack translator from the Uni- 
versity of Pennsylvania’s Center for Human Modeling and Simula- 

tion. 
I 

3 RELATED WORK 

The use of physically based modeling for simulation systems 
is of course, not a new field. We present work here which com- 
bines both the use of physically based modeling integrated with 
VRML and with off-the-shelf components for robots, humanoids, 
and motion sequences. The idea is to have the dynamics simulation 
produce, on the fly, animated sequences representative of the 
dynamics calculations rather than precomputed keyframes for an 
animation. S. Chenny et al. [6] have demonstrated the use of a 
dynamics system rather then keyframes as well. We, specifically 
set out to use an off-the-shelf dynamics system and not one of our 

own creation. Also of interest is the work of D. Brutzman [5] and 
the DIS-Java-VRML Working Group of the VRML Consortium, 
in the establishment of an infrastructure for linking various simula- 
tions. Our work does not rely on a specific protocol; it is a proof- 
of-concept methodology for demonstrating how distinctly different 
types of components can be integrated. 

4 SYSTEM OVERVIEW 

The overall system consists of four pieces. Robots from the 
Deneb VRML Robot Library, two HANIM[7] compliant human- 
oids, a Working Model 3D animation produced on a PC, and 
finally an integrated Working Model Dynamic Modeling Engine 
(DME) system[8]. Figure 2 illustrates the overall configuration of 
the final VRML world. 

The user clicks on a pallet in the center of the world and one 
robot picks up a widget and places it into a red box on the table. 
The other robot transports the red box to the conveyor belt where it 
is moved to the end of the conveyor belt and falls onto the blue 
plate. The blue plate may be adjusted by the user which causes the 
dynamics engine to recalculate the dynamics of the box hitting the 

168 



plate. The humanoid can walk to a position along the working area 
when the user clicks on the appropriate command interface (the 
four spheres in the left side of the scene). A different humanoid 

may be selected, by clicking on the box on the left side of the scene 

as well. 

5 INTEGRATION METHODOLOGY 

Each individual component in our world was created from a 
translator or from an off-the-shelf source. We wanted to demon- 
strate the feasibility of using translators and off-the-shelf VRML 
components to create a coherent integrated VRML world. 

Figure 3. Integration Methodology 

In addition to the relatively straightforward geometric inte- 
gration of different VRML tiles, we enhanced the overall function- 
ality of the world by adding an analytic component in the form of a 
dynamics engine. 

Two different types of translators were used for the creation 
of two portions of the environment. First a translator was created 
on the PC platform and embedded with the Working Model 3D 

product. As an aside, our translator was eventually incorporated 
into the Working Model 3D product and is available with the cur- 
rent version of the product. The other translator was the Deneb 

translator which has existed for approximately two years [12]. 
Rather than simply use a particular robot model however we first 
created a library of robots from which we can choose an appropri- 

ate robot. 
To integrate another robot from the robot library the follow- 

ing steps are followed: 
(1) Place the robot VRML from the library into the world. 

Currefitly this means simply to copy the main VRML 
robot file to your world, and all the files in its sub direc- 
tory to an identical directory structure in the working 
directory. A utility to automate this is planned. 

(2) Comment out the ROUTE WHERE.orientation_changed 
TO and the ROUTE WHERE.position_changed TO in 
the PROTO Dash (Dash is the dashboard control panel). 

(3) Use sliders to identify which joints to move and their 
values. When the sliders are moved (one for each degree 
of freedom) values of the joints are displayed on the 
Browser window pane as illustrated in Figure 4. 

(4) Create ScalarInterpolators in the PROTO Dash, 
each ScalarInterpolator refers to one joint, the 
keyValue of the ScalarInterpolator is the joint 

value found using the sliders. 
(5) Finally, add ROUTES in the PROTO Dash to route the 

TimeSensor in Dash to the ScalarInterpolator 
and route ScalarInterpolator’s value-changed to the 
robot joint. 

Figure 4. Robot Library Interface 

It is our intent to automate this process where possible. Deci- 

sions about the animation and how they should trigger other ani- 
mations and actions are a subject of further research. 

In the case of the Working Model 3D (WM3D) VRML files, 
we did not progress quite so far in terms of the reusability. Each 
VRML file produced from the WM3D translator is actually a col- 
lection of coordinated animations. Each sub-object within the ani- 
mation has its own timing. The translator simply produces a file. 
Given the requirements of reuse however we can see that it would 
be useful to modify the translator to produce VRML code with 
“hooks” for reuse. These hooks are such capabilities as: 

(1) A single point of entry to start the entire animation. 
(2) The ability to specify certain sub-animations as having a 

start and stop time that can be externally controlled. 
(3) The ability to specify certain sub-animations as continuing 

forever. 
Given a clearly defined set of VRML requirements we can go 

back and fairly quickly modify the translator to produce VRML 
that meets the new requirements. 

169 



6 DYNAMICS ENGINE INTEGRATION 

The most significant component integrated into this world 
was the dynamics engine. We deliberately chose to use an existing 
off-the-shelf dynamics engine to get a realistic view of integration 
issues. We used the Dynamic Motion Engine (DME) [8] from 
Knowledge Revolution for this task. Knowledge Revolution’s pri- 
mary product is a complete dynamics simulation and animation 
package that runs on PCs under the Windows OS. The DME sys- 
tem we used however runs on a Silicon Graphics workstation 
under the IRIX OS. 

Physical based modeling has emerged as an important method 
to simulate animations for virtual environments. Until recently the 
majority of animations in VRML world has been created with key- 
framing, resulting in fixed animation sequences. An alternative is 
to couple physical based modeling to the VRML world which 
allows for constant changes in parameters and properties, creating 
new animations. We have implemented a web based virtual envi- 
ronment based on VRML and Java where the animations are based 
on physical dynamics. Physical based modeling is inherently a 
CPU intensive task and we did not investigate those issues how- 
ever others have [6]. The dynamics engine we used was Dynam- 
ics Motion Engine (DME) from Working Model Inc. Baraff and 
Witkin provide a particularly useful reference, available on-line 

[31. 
Our VRML/Java system is based on a two-tier client/server 

model. Since our client program runs on any web browser that has 
support for VRML and Java. The server is based on the C++ DME 
API, hence only runs on a particular server and provides access to 
real world Newtonian mechanics. Figure 5 illustrate the overall 
system architecture. The DME calculates the motion of interacting 
bodies using advanced numerical analysis techniques. The engine 
can simulate complex multibody systems, compute their motion 
under a variety of constraints and forces. In addition to user- 
imposed constraints, such as springs, dampers, or joints, the engine 
has the capability to simulate collisions, gravity, and external loads 
conditions. Each body has a set of physical properties, including 
mass, inertia, position, velocity, and coefficient of restitution (elas- 
ticity) and friction. 

VRML 
World 

Http Server 

DME C++ 
Java,1 4 ) Server 
Applet SO&&+ 

Web Browser Web Server 

Figure 5. Dynamics Engine Interface Architecture 

The DME server must run on the same physical machine as 
the Web server because of the security restrictions imposed by the 
use of a Java applet. 

Figure 6 illustrates a test world we developed where the user 
can adjust the elasticity and angle of the target plate. A box travels 
along a conveyor belt and falls off of the end onto a target plate. 
The red box (A) is from an animation that is precomputed, created 

from the WorkingModel 3D PC application and the green box (B) 
is the animation calculated by the DME server. The user can either 
type in numbers for the plate angle and elasticity or can adjust the 
angle of the plate directly with the cursor. 

Figure 6. Dynamics Engine Test World 

The user adjusts the target plate causing the following 
sequence of events: 

(1) The user directly moves the plate angle, creating an 
event-out and a new plate angle. 

(2) The Java applet, via sockets, sends the DME server the 
new plate angle. 

(3) The DME server calculates a set of new position and ori- 
entation values. 

(4) The DME server sends back to the Java applet the new 
positions and orientations. 

(5) The Java applet parses these new values and modifies the 
Position and Orientation Interpolators of the animation 
via the External Authoring Interface (EAI). 

The entire sequence typically takes from 3-5 seconds, and the 
display is static during that time. 

7 INTEGRATION OF ANIMATION 

The result of a simulation created on a PC with Working 
Model 3D is a VRML animation. This animation was placed into 
the larger environment and had to be “wired up” by hand. The log- 
ical wiring was simply a matter of creating ROUTES from the 
appropriate interpolators to start and stop animations at the correct 
time. In our particular example the conveyor belt animation was 
started by the completion of the robot animation. The end of the 
conveyor belt animation started the dynamics engine animation. 
The visual alignment of these elements however, was tedious and 
time consuming. The animations were lined up by hand to flow in 
a visually seamless manner. While it is clear that the logical ele- 
ments could be automatically wired by identifying start and stop 
interpolators, the visual aspect is much more problematic. 

170 



Figure 7. Animation sequence in fully integrated world. 

8 HUMANOIDS 

One of the key components in a real manufacturing environ- 

ment are the people. People on assembly lines in semiautomatic 
plants are often the most difficult element to characterize and sim- 

ulate. In our integrated VRML world we wanted to demonstrate 
the ability to introduce humans of different types. Given the exist- 
ence of the HANIM 1 .O specification for the description of VRML 
humanoids, we felt it important to at least provide some human 
models in the environment. We simply “borrowed” some existing 
well known HANIM models. Nancy created by Cindy Ballreich of 
3Name3D[2] and the Bimos model from Matt Beitler[4] of the 
University of Delaware were used and their owners generously 
allowed the use of their models for our demonstration. 

.._ _  ._ 

Figure 8. Nancy and Bimos Switchable Humanoids 

Our goal was to demonstrate the interoperability of these 
HANIM models with our environment. The animations in the 
Nancy model were able to drive both the Nancy and Bimos fig- 
ures. We simply added a screen element (a cube) to function as a 

toggle to switch between the Nancy and Bimos figures. In addition 
we modified the animation to cause the figures to walk along a 
fixed path so that the figures took their proper place on the assem- 
bly line. 

The path walking utilized a TimeChain PROTO we devel- 
oped which allows a TimeSensor driven animation to, upon 
completion, trigger another animation. The walking of the human- 
oids were a series of three animations linked by TimeChain 
Nodes. This PROTO is also useful for coordinating other anima- 

tions. 
We currently have software capable of generating VRML 

humans of arbitrary sizes based on work dealing with child anthro- 
pometry[ I]. The VRML figures however are not HANIM compli- 
ant and the files are somewhat large so we decided to leave 
conversion to HANIM for the future. 

Figure 9. VRML Humans of Different Sizes from 
Transom Jack 

9 INTEGRATION ISSUES 

The integration of worlds produced from different sources is 
clearly a difficult problem. Some of the difficulties can be miti- 
gated by the use of automated translators. As we discover new 
integration issues we can modify the translator to accommodate 

171 



our new requirements. The integration problems can be classified 

in three ways, (1) geometric, (2) behavior, and (3) interaction. 
Geometric issues are those such as rotated coordinate systems and 
vastly different scales. Behavioral issues are issues concerning a 
lack of simple hooks for starting and stopping animations depen- 
dent on one another. Interaction issues concerns problems integrat- 
ing a user interface, often created separately in stand-alone worlds 
which must be combined in a coherent integrated world. Each of 
the three integration categories presents its own unique challenges 
some relatively simple (geometric) and others clearly open to fur- 
ther research. 

The geometric integration issues are the most straightforward 

of the three categories. Integration can be made much simply by 
development of a geometric normalizer which would orient and 

scale all geometries to their “standard” orientation and size. 
For behavioral integration a standard naming convention for 

interpolators would enable automated ROUTES a 
In the case of the Deneb robot library behavioral integration 

was the primary issue we encountered. We can substitute (theoreti- 
cally) any of the robots for each other. If we clearly identify the 
particular joints of interest we can wire up interpolators to those 
joints. In the case of the Working Model 3D animations, we can 
modify the translator to identify the last action of the animation 
which is used subsequently to start the animation produced by the 

dynamics engine. A recommended practice and conventions for 
the production of named interpolators would be of great use in 

these cases. 
The integration issues for interaction are perhaps the most dif- 

ficult. Small component worlds often have little widgets or other 
graphical elements for user interaction. As one integrates several 
component worlds the user interface elements must be either 
reworked or integrated. The simplest approach to address this area 
is to create worlds that do not contain embedded controls, and rely 
on external, in the HTML page control that takes advantage of the 
EAI. Clearly this is also not a sufficient and further research is nec- 

essary. 

10 CONCLUSIONS AND FUTURE WORK 

We have demonstrated the integration of collections of vari- 
ous types of VRML worlds. In addition we have also demonstrated 
the integration of an additional analytic component, a dynamics 
engine, into this complex VRML environment. This type of inte- 
grated world allows engineering systems to be visualized and com- 
municated via the Web. Proprietary systems retain their value and 
their strengths in performing particular tasks, and the addition of a 
VRML export and integration path allows these proprietary sys- 
tems to leverage the value of Web publishing. 

In the future we will develop automated and/or semi-auto- 
mated programs to ease the integration process. Lessons learned 
from the various integration issues we encountered, will lead to 
improved integration tools that take advantage of built in hooks 
embedded in the generated VRML. 

11 ACKNOWLEDGEMENTS 

humanoids. Thanks to Gary Yang, one of our intrepid summer stu- 
dents for his work with Jack. Finally thanks to Sharon Laskowski 
for her typically ruthless editing of this paper. 

References 

[l] AnthroKids web site. http://ovrt.nist.gov/projects/anthrokids/ 

[2] Cindy Ballreich, 3Name3D http://www.ywd.com 

[3] D. Baraff, A. Witkin, Siggraph 97 Course notes from “Physi- 
cally Based Modeling: Principles and Practice” http:// 
www.cs.cmu.edu/-baraff/sigcourse. 

[4] Matt Beitler, Bimos, http://www.asel.udel.edu/-beitler 

[5] D. Brutzman “Distributed Interactive Simulation DIS-Java- 
VRML” http://www.stl.nps.navy.mil/dis-java-vrml/#Overview 

[6] Chenney, Ichnowski, Forsyth, Efficient Dynamics Modeling for 
VRML and Java, in Proceedings of VML98 Monterey CA Feb 
1998. 

[7] Humanoid Animation Working Group (HANIM) http:// 
ece.uwaterloo.ca:80/-h-anim/ 

[8] Knowledge Revolution Inc., San Mateo, CA. Dynamic Motion 
Engine API Reference, Version 1.2, Sept. 1997. 

[9] Systems Integration for Manufacturing Applications (SIMA) 

Program http://www.nist.gov/sima 

[lo] Transom Jack User Manual V 1.1 Ann Arbor MI 1997. 

[l l] VRML. VRML 2.0 Spec$cation ISO/IEC CD 14772, 1996. 

[12] Q. Wang, S. Ressler, Translating IGRIP Workcells into 
VRML2, NISTIR 6076, http://www.nist.gov/itl/div878/ovrt/ 
projects/vrml/deneb2vrml.html, Sept. 1997. 

[ 131 Working Model 3D Translator to VRML, http://ovrt.nist.gov/ 
work3d/ 

We would like to thank the continuing sponsorship of the 
Systems Integration for Manufacturing Applications (SIMA) pro- 
gram for supporting this work. Thanks to Cindy Ballreich and Matt 
Beitler for allowing us to use their Nancy and Bimos HANIM 

172 


