

Application of XML Tools for Enterprise-Wide RBAC

Implementation Tasks

Ramaswamy Chandramouli

National Institute of Standards and Technology

Gaithersburg, MD 20899,USA

001-301-975-5013

chandramouli@nist.gov

ABSTRACT

The use of Extensible Markup Language (XML) and its
associated APIs, for information modeling and information
interchange applications is being actively explored by the research
community. In this paper we develop an XML Document Type
Definition (DTD) for representing the schema of a Role-based
Access Control (RBAC) Model and a conforming XML document
containing the actual RBAC-based access control data for a
commercial banking application. Based on this DTD, the XML
document and the methods in the Document Object Model
(DOM) API Level 1.0 standards, we describe three application
tasks related to enterprise-wide implementation of RBAC. They
are: (a) implementing an RBAC model for a database application
(b) implementing RBAC models with identical data on two
different database servers and (c) transforming data under an
RBAC model to a different, but structurally similar model like
Group-based Access Control model. Other potential Access
Control Service applications exploiting the capabilities of some
commercial XML processors are also outlined.

1. INTRODUCTION

The Extensible Markup Language(XML) [8] had its origin as a
document markup language, but the tools and API standards
defined around it have greatly enhanced its potential for other
applications. As a Document Markup Language, XML can be
distinguished from HTML (the most widely used markup
language for web applications) in the customized set of tags it
provides (which can convey the semantics of the data represented)
as compared to the fixed tag set of HTML. Hence an XML
document can provide a logical representation of its data contents.
The logical organization of the tags themselves, that are used in an
XML document, are provided in a separate document called the
Document Type Definition or the DTD.

Commercial software tools* called XML processors have been
built to parse an XML document and create a data structure
whose contents can then accessed by application programs written
in languages like C++ or Java.

APIs to create, manipulate and access these data structures have
been standardized. One of them is the DOM API which was
issued as a W3C recommendation in October 1998 [2]. Another is
the SAX API [6]. An example of a commercial XML processor
based on the DOM API is IBM’s XML for Java [9]. In DOM, an
XML document is represented as a tree whose nodes are elements,
texts, etc. An XML processor parsing an XML document
generates this tree and the application program is able to
manipulate the nodes of the tree through the set of DOM-provided
APIs.

The ability to process an XML document contents by application
programs with the help of standardized APIs opens up
possibilities for XML being used for several applications besides
document markup. Some of these applications are:

(a)	 use XML to describe the metacontent of documents on
on-line resources so that they could be used by search
engines,

(b)	 use XML to publish and exchange database contents,
and

(c)	 use XML as a messaging format for communication
between application programs. Specifically, XML is
being considered as either an alternative to EDI
technology or as a supporting technology for providing
more flexibility for EDI-based message transfer
systems.

Based on the broad categories of XML applications outlined
above, the meta content description capability [item(a)] using a
DTD is utilized in this paper to describe the schema of a Role­

* Certain commercial products and standards are mentioned in this
paper. This does not imply recommendation or endorsement by
the National Institute of Standards and Technology not does it
imply that the products and standards mentioned are necessarily
the best available for the purpose.

mailto:chandramouli@nist.gov

based Access Control (RBAC) Model (RBAC) [3] for a database
application. The reference RBAC Model used for this purpose is
the RBAC3 Model (consisting of both role hierarchies and
constraints) described in [7]. The actual RBAC-based access
control data for the application is captured in an XML document
(with the schema for RBAC3 Model expressed in a DTD). The
logic to implement the RBAC model in a database server for an
application using these documents is described in Section 2.

The use of XML as a platform- independent data exchange format
is exploited to implement RBAC models with identical data on
multiple database servers. This process is described in Section 3.
Further, data in an XML document that conforms to one DTD can
also be captured and put into another XML document, whose
structure conforms to a different DTD, using some of the methods
provided in the DOM API. This capability can be utilized to
implement an access control service on platforms where the
supported access control model is different from RBAC, but has
some structural similarities. This application is described in
Section 4. A comparison of the applications described in this
paper with some related work is given in Section 5. Finally, other
potential applications of XML and its associated APIs for other
access control service applications are outlined in the Conclusions
section (section 6).

2. DEFINING AND IMPLEMENTING AN
 RBAC MODEL FOR A DATABASE
 APPLICATION

The database application we have chosen in this paper is a
corporate banking application (which we shall call BANKDB).
BANKDB contains data on (a) Customer Deposit Accounts and
(b) Customer Loan Accounts as well as (c) Accounting Data
related to transactions on these Customer Accounts. The
application is used by Tellers, Customer_Service_Reps and Loan_
Officers to perform various transactions. It is also used by
Accountants, Accounting_Managers and Internal_Auditors to
post, generate and verify accounting data. The process of
developing the RBAC-based access control data for this
application is described below.

Tasks T1 & T2 (Role Definition and Functions/Privileges
Identification) – Based on the various categories of users who will
be accessing BANKDB, the participating roles and overall
functionality/privileges required for each role are defined as
follows:

(a)	 Teller – Input and Modify transactions against Customer
Deposit Accounts.

(b)	 Customer_Service_Rep – In addition to the functionality for
the Teller Role, create and delete Customer Deposit
Accounts.

(c)	 Loan_Officer – Create and Modify status of Loan Accounts
(d)	 Accountant – Input all bank business transactions and

generate General Ledger Reports.
(e)	 Accounting_Manager – In addition to the Accountant

functions, the ability to modify Ledger Posting Rules
(f)	 Internal_Auditor – Verify all Transactions and Ledger

Posting Rules.

(g)	 Branch_Manager – Ability to perform any of the functions of
other roles in times of emergency and to View all
transactions, Account Statuses and Validation Flags.

Task T3 (Role Structural Relationships) - Based on the intended
functionality and the consequent privilege assignments required
for each role, a structural relationship emerges among the roles.
This relationship is shown through the Role Graph of Figure 2.1.
In this graph, roles higher in a hierarchical chain have associated
with them more privileges than the ones lower in the chain. The
privilege set for any two roles which are not part of the same
chain may be disjoint.

Task T4 (Formulation of Constraints) ­
(a)	 The maximum number of users that can be assigned to

Bank_Manager and Internal_Auditor roles is ONE.

(b)	 The following pair of roles cannot be assigned to the same
user (Static Separation of Duty (SSD) or “Membership
Mutual Exclusivity”):

(1)	 Customer_Service_Rep and Accounting_Manger
(2)	 Customer_Service_Rep and Internal_Auditor
(3)	 Loan_Officer and Accounting_Manager
(4)	 Loan_Officer and Internal_Auditor
(5)	 Accounting_Manager and Internal_Auditor
(6)	 Teller and Accountant
(7)	 Teller and Loan_Officer
(8)	 Teller and Internal_Auditor
(9)	 Accountant and Loan_Officer
(10) Accountant and Internal_Auditor

(c)	 The following pair of roles cannot be activated or enabled at
the same user session (Dynamic Separation of Duty (DSD)
or “Activation Mutual Exclusivity”):

Customer_Service_Rep and Loan_Officer

2.1 Representing the BANKDB
 RBAC-based Access Control Data
in an XML Document

Now our follow-on tasks after determining the RBAC-based
access control data for BANKDB are to define a DTD that will
represent the schema for the chosen RBAC Model (referred to in
Section 1) for this application and then to capture the actual data
in a conforming XML document. There are several issues we have
to consider while defining a DTD for representing the schema of
an RBAC Model:

(a)	 Expressiveness – should be able to capture the semantics of
the various RBAC Model constructs.

(b)	 Flexibility – it would be preferable if the DTD is generic
enough to be used for describing most common RBAC
models, not merely the one used for BANKDB.

(c)	 Document-Readability – the conforming XML document is
readable and hence the logic of the RBAC implementation
program that parses this document is not unduly complicated.

Branch_Manager

Customer_Service_
Rep

Loan_Officer
Accounting_

Manager
Internal_
Auditor

Accountant
Teller

Fig 2.1 Role Graph for Bank Database Application (BANKDB)

Unfortunately, “Expressiveness” and “Document-Readability”
turn out to be conflicting requirements. An expressive DTD
whose elements truly reflects the semantics of all the constructs
(e.g., Parent_Role, Child_Role, etc.) of the RBAC model may
make the conforming XML document unreadable due to the
multiple levels of nesting of various tags. Taking into
consideration this trade-off, we have developed the following
DTD for representing the RBAC model schema:

Listing 2.2 – RBAC.dtd

<!ELEMENT Role_Graph (Application ,
 (role)*)*>

<!ELEMENT Application (DB_Name ,
Server)>

<!ELEMENT DB_Name (#PCDATA)>
<!ELEMENT Server (#PCDATA)>

<!ELEMENT role (Name , Cardinality? ,
 (Parent_Role?)* , (Child_Role?)* ,
 (SSD_Role?)* , (DSD_Role?)*)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Cardinality (#PCDATA)>
<!ELEMENT Parent_Role (#PCDATA)>
<!ELEMENT Child_Role (#PCDATA)>
<!ELEMENT SSD_Role (#PCDATA)>
<!ELEMENT DSD_Role (#PCDATA)>

A fragment of the XML document that conforms to the above
DTD which contains RBAC-based access control data relating to
BANKDB is given below:

Listing 2.3 – BANKDB_RBAC.XML
 (fragment)

<?xml version="1.0" ?>
<!DOCTYPE Role_Graph SYSTEM
 "RBAC.dtd">
<Role_Graph>

 <Application>
 <DB_Name>Bank Corporate

 Database</DB_Name>
 <Server>Solaris</Server>

 </Application>

 <role>

 <Name>Branch_Manager</Name>

 <Cardinality>1</Cardinality>

 <Child_Role>Customer_Service_Rep

 </Child_Role>

 <Child_Role>Loan_Officer

 </Child_Role>

 <Child_Role>Accounting_Manager

 </Child_Role>

 <Child_Role>Internal_Auditor

 </Child_Role>

 </role>

……………………….
</Role_Graph>

Since the above XML document was created manually using a
conceptual RBAC model for BANKDB, it has to validated for
conformance to the schema RBAC.dtd. Many commercial XML
processors like the IBM’s XML for Java [9] do perform this
validating function.

2.2 Implementing the RBAC Model
for BANKDB using the data in

 BANKDB_RBAC.XML

Let us now develop a Java program (by name RBAC_XML_
TO_DB.java) to read the data in the XML document BANKDB_
RBAC.XML The use of Java programs to parse XML documents
(by invoking a XML 1.0 conformant processor) and making use
of DOM API methods to extract the relevant contents has been
illustrated in [5]. Our Java program needs to do many additional
tasks after extraction of the needed data. The three overall tasks
that our Java program has to perform follow:

Task A - Parse the XML document BANKDB_RBAC.XML and
generate the internal DOM tree representation of this document.

TASK B - Navigate through the nodes of this DOM tree to extract
the data representing the names of the roles, role containment
relationships (parent and child roles) and role constraints by
navigating to the appropriate nodes.

TASK C - Based on the semantics associated with the extracted
data, generate the corresponding SQL command, to either (a)
create a role or (b) specify a structural relationship or (c) a
constraint involving previously created roles. Pass these SQL
command strings as parameters through appropriate JDBC
methods to implement them on the database server.

Repeat tasks (TASK B and TASK C) for all the relevant nodes
found in the DOM tree. The complete schematic diagram
depicting the above three main tasks is given in Figure 2.4.

RBAC_XML_TO_DB. java

DOM Tree
Representation

of XML
Document

Extracted Role Names,

Structural Relationships &

Constraints

SQL & JDBC

 Command Strings

Database Server

Invocation of XML

Processor

Invocation of

DOM API Methods

Invocation of
JDBC Driver

Routines

BANKDB_RBAC. XML

Figure 2.4 – Implementing an RBAC Model on a Database Server using data from an XML Document

.

3.	 IMPLEMENTING RBAC MODELS
WITH IDENTICAL DATA ON
MULTIPLE DATABASE SERVERS

There may be many situations in enterprise environments where
identical access control requirements are needed in two different
database servers. For example in our BANK environment, the
Customer Deposit Accounts may be partitioned along
geographical states and housed in different servers, but the access
control restrictions have to be identical. Implementing RBAC
models with identical access control data in two database servers
(let us call DBServerA and DBServerB) cannot be accomplished
using bulk data transfer utilities which are the common means for
transferring data between database servers. This is due to the fact
that access control data is not an application data, but a data used
by the security module of the DBMS and hence stored in System
(data dictionary) tables. Generally, DBMSs do not allow direct
updates (except for one or two data items) to the contents of
System tables. So the only way to implement RBAC models with
identical data on two database servers is to extract the needed
RBAC-based access control data from DBServerA, express it in a
database server-neutral format and then parse that data to generate
the necessary SQL commands to implement an RBAC model on
DBServerB**. Using XML as the server-neutral format, this
process translates to the following set of tasks:

TASK A - Using a Java program (let us call it
DB_TO_RBAC_XML.java) which makes of JDBC access
libraries and appropriate SQL commands, retrieve the RBAC-
based access control data from DBServerA. Generate an XML
document (let us call it as DBServerA_RBAC.XML) using that
retrieved data such that it conforms to RBAC.dtd.

.
TASK B - By parsing the XML document
DBServerA_RBAC.XML, generate a set of SQL commands to
implement an RBAC model on DBServerB.

It should now be fairly obvious that Task B (implementing an
RBAC model on a database server by processing the data
provided in an XML document) is what we accomplished in
Section 2. Hence the only task we need to address is TASK A.

Let us now look at the issues involved in this XML document
generation. To generate any XML document from scratch, the
first thing we need is to generate an internal DOM tree
representation of it. In our scenario, the structure for this DOM
tree (which represents the role’s parent-child relationships,
constraints etc) should conform to RBAC.dtd representing the
RBAC model schema. The contents of the DOM tree (texts
denoting role names) are to be obtained through SQL queries
against DBServerA. Generating an internal DOM tree
corresponding to a given DTD is called the “Validating
Generation.” Unfortunately, the DOM API Level 1.0 specification
neither provides methods for “Validating Generation” nor for
subsequently generating an actual XML document file from a
valid DOM tree. However some commercial XML processors like

** The SQL commands to implement RBAC models on
DBServerA and DBServerB will not be identical if these servers
are from different DBMS vendors. For a comparison refer [1].

IBM’s XML for Java [9] do provide Java libraries for carrying out
these functions.

Having addressed the issue of “validating generation of an XML
Document,” we now have all processes in place to accomplish our
goal of implementing RBAC models with identical data on
database servers DBServerA and DBServerB. The complete
schematic diagram of all processes involved is shown in Fig 3.1.

4.	 USING RBAC-BASED ACCESS
CONTROL DATA FOR
IMPLEMENTING AN ACCESS
CONTROL SERVICE BASED ON
OTHER MODELS

There are many enterprise platforms (including DBMS and
Operating Systems) which do not support RBAC as the access
control model, but a different but nonetheless structurally similar
models like Group-based access control. For example, the concept
of Group may support building a hierarchical chain using
Super_Groups and Sub_Groups but may not permit association of
any constraints other than Group membership limit. Hence there
may be a need to transform access control data in the enterprise
based on the concept of roles to ones based on concepts like
Groups. In other words, if we have captured this RBAC-based
access control data in an XML document (with an associated
DTD), then there is the requirement to convert this document into
another XML document (based on a different DTD).

Within the context of our discussion, the above requirement
implies that the XML document BANKDB_RBAC.XML (based
on RBAC.dtd) must be transformed into one based on a DTD
defined for representing the schema for a Group-based Access
Control Model. An example of such a DTD is given below:

Listing 4.1 – Group_Access.dtd

<!ELEMENT Group_Org (Application , (group)*)>

<!ELEMENT Application (DB_Name , Server)>

<!ELEMENT DB_Name (#PCDATA)>

<!ELEMENT Server (#PCDATA)>

<!ELEMENT group (Name , Membership_Limit?

,Super_Group?, (Sub_Group?)*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Membership_Limit (#PCDATA)>

<!ELEMENT Super_Group(#PCDATA)>

<!ELEMENT Sub_Group (#PCDATA)>

On comparing the above DTD with the DTD (RBAC.dtd) of our
source XML document (BANKDB_ RBAC.XML) we find the
following node mappings are required.

DBServerA
(Source Platform)

Valid DOM Tree
from

SQL Query data

SQL & JDBC

 Command
Strings

Invocation of

DOM API Methods

Invocation of
JDBC Driver

Routines

Proprietary APIs
for reading DTD

definitions

RBAC.dtd

DBServerA_RBAC.XML

Use
Implementation

Process

(Fig 2.4)

DBServerB
(Target Platform)

DB_TO_RBAC_XML.java

Fig 3.1 – Implementing RBAC Models with Identical Access Control Data on two Database Servers

RBAC. dtd Group_Access.
dtd

role group
Parent_Role Super_Group
Child_Role Sub_Group
SSD_Role NONE
DSD_Role NONE

Table 4.2 – DTD Element Mappings

Now these node mappings themselves can be expressed in an
XML document using patterns as described in [5]. With the
creation of this XML document (which we shall as RBAC_
TO_Group_Mappings.XML) we are now in a position to describe
the sequence of tasks needed for XML document conversion.

TASK A - Parse the source XML document BANKDB_RBAC.
XML (based RBAC.dtd) and generate the internal DOM tree of
this document.

TASK B - Parse the XML document
(RBAC_TO_Group_Mappings.XML) and create a DOM tree for
the mappings.

TASK C - Using the DOM tree data created from TASK A (which
contain element names – like role, Parent_Role etc., and
embedded text data – Teller, Accountant etc.,) and conversion
mappings obtained from TASK B, create the converted DOM
tree. Use this converted DOM tree to generate the target XML
document.

We shall now illustrate the process of converting an element (an
element is one type of node) in the DOM tree of the source XML
document to an equivalent element in the DOM tree of target
XML document using some sample methods from the DOM API.

Supposing the DOM tree objects corresponding to the source
XML document, XML document containing the conversion
patterns, and the target XML document are sourcedoc, patterndoc
and targetdoc respectively. Also let us assume that initially the
sourcedoc and targetdoc are identical. Now the problem is to
replace elements in targetdoc for which element mappings are
found in patterndoc. To carry out this process it is essential to
access a node in the sourcedoc and verify whether it is an element
node. This can be done using the following method invocations.

/* Obtain an object of type Node */

Node sourcenode = sourcedoc.getDocumentElement().
GetFirstChild()

/* Check whether it is an ELEMENT node */

If (sourcenode.getNodeType() ==
Node.ELEMENT_NODE

Let us now call the objects in patterndoc that denote the pair of
mapped elements as FromNode & ToNode. Now the next step in
our process is to verify whether the extracted element in the

source document matches with a FromNode and if so create a new
node with a name equal to that of the ToNode.

If (sourcenode.getNodeName(). equals
(FromNode.getNodeName()) {

/* create a new node and set its name */

Node NewNode = new Node();
NewNode.setNodeName() =

ToNode.getNodeName(); }

The last step in this process is to retrieve a node in the target
DOM tree (which needs to be replaced –which now has the same
name as the node in the source DOM tree) called OldNode,
navigate to its parent and replace the OldNode with the NewNode.

ParentNode = OldNode.getParent();
ParentNode.replaceChild(NewNode, OldNode);

The complete schematic diagram of the XML document
conversion logic is given in Fig 4.3.

DOM Tree
Representation

of XML
Document

Invocation of XML

Processor

Invocation of

DOM API Methods

BANKDB_RBAC. XML

RBAC_TO_Group_Mappings.XML
(Rule file containing DTD
Transformation Patterns)

DOM Tree
Representation
of Conversion

Mappings

BANKDB_Group_Access. XML

Converted
DOM Tree

RBAC_TO_GROUP_CONVERT.java

Figure 4.3 Transforming an XML Document containing RBAC-based Access Control Data into an XML Document containing Data for

Group-based Access

5.	 COMPARISON WITH RELATED
WORK

The work that can compared with the XML-based implementation
techniques outlined in this paper is the MIX Project [4]. The MIX
Project has focused on mapping XML DTDs to relational schemas
as well as deriving candidate DTDs for given relational schemas.
The work outlined here involves much more sophisticated
processing requirements (using DOM API and some proprietary
methods) than the simple schema mapping techniques outlined in
MIX. This is due to the reasons already stated earlier – that
RBAC-based access control data is not an application data located
under a specified relation but is distributed over several DBMS
system tables which cannot be directly updated.

6. CONCLUSIONS

In this paper we have illustrated the capabilities of XML
processors and some of the methods in its associated APIs to
perform three common enterprise-wide tasks relating to
implementation of access control service based on RBAC. Several
extensions to the application ideas outlined in this paper are
possible. For example, we could use the XML document
conversion ideas discussed in Section 4 to extract access control
data from several platforms and represent the access control data
for the entire enterprise through a common model. Similarly
access control data under an Enterprise Model can be translated to
ones that are native to the platforms.

7. REFERENCES

[1] 	Ramaswamy Chandramouli and Ravi Sandhu, “ Role-Based
 Access Control Features in Commercial Database

 Management Systems,” In Proceedings of the 21st National
 Information Systems Security Conference, pages 503-511,
Arlington, VA, (October 5-8, 1998).

[2] Document Object Model – Level –1 Recommendations. In
http://www.w3.org/TR/REC-DOM-Level-1(October 1998).

[3] David Ferraiolo, Janet Cugini and Richard Kuhn, “Role-based
 Access Control (RBAC): Features and motivations,” In

 Proceedings of 11th Annual Computer Security Applications
 Conference, pages 241-48, New Orleans, LA, (December 11­
15, 1995).

[4] 	Mediation of Information using XML. In
http://www.npaci.edu/DICE/MIX, San Diego Super
Computer Center, La Jolla, CA (1999).

[5] 	“XML and Java – Developing Web Applications” by Hiroshi
 Maruyama, Kent Tamura and Naohiko Uramoto, Addison­

Wesley, Reading, MA, (1999).

[6] http://www.megginson.com/SAX

[7] Ravi S. Sandhu, Edward J.Coyne, Hal L. Feinstein and
 Charles E. Youman, “Role based access control models,”

 IEEE Computer, 29(2): 38-47, (February 1996).

[8] The Extensible Markup Language, Version 1.0. In
http://www.w3.org/TR/REC-xml, (February 1998).

[9] http://www.ibm.com/xml

http://www.ibm.com/xml
http://www.w3.org/TR/REC-xml
http://www.megginson.com/SAX
http://www.npaci.edu/DICE/MIX
http://www.w3.org/TR/REC-DOM-Level-1(October

