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ABSTRACT 
 

Quantum cryptography asserts that shared secrets can be established over public channels in such a way that 
the total information of an eavesdropper can be made arbitrarily small with probability arbitrarily close to 1.  
As we will show below, the current state of affairs, especially as it pertains to engineering issues, leaves 
something to be desired. 
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1. INTRODUCTION AND BRIEF HISTORY 
 
   Τhe purpose of this paper is to show that we need more rigorous results, more rigorous proofs, and 
more attention to engineering details.  As a result, we will be forced, often by example, to examine the 
presumed weaknesses that must be addressed so that we may have provably secure systems.  This is not a 
criticism of the papers cited; they are among the best published.  But we have collectively failed to develop a 
precise formulation of the problem.  As a result, the papers that focus on issues of Information theory often 
appear to overlook relevant aspects of the physical implementation and of the Reconciliation algorithm, while 
the articles focusing on channel implementation issues seem to rely on Information theory results whose 
assumptions are not demonstrably met. 
 
     We assume that the reader is familiar with the basic aspects of the BB84 protocol as described in the 
bibliography and will not duplicate this material.  For a quick, well written description of BB84 he is directed 
to the easily available8 although, as it was written nearly a decade ago, it can serve only as an introduction.  
 

To stay focused we will disregard all possible hardware/software shortcomings and we will adopt a 
minimalist view of the problem to be solved: 
 

Alice and Bob have retained a sequence of communicated bits whose values at Alice are  
{x[i] | i=1,2,..,N} and due to interference by an eavesdropper, Eve, were received as {y[i] | i=1,2,..,N} by Bob.   
Alice and Bob will exchange information over a public channel that supports unbreakable integrity and 
authentication services.   This information will allow reconciliation (i.e., flipping select bits of either x or y so 
that some sub-strings of x and y are, with great probability, identical).  Alice and Bob will estimate a 
probabilistic upper bound on the amount of information Eve has gathered about outcome of reconciliation 
and will proceed to extract a string about which Eve will know very little with probability close to 1.  To flesh 
out this rather generic description we shall further assume that: 
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1) The values of the bit-string at Alice and their encoding can be seen as the repeated tossing of a perfect 

coin.  
2) Eve is capable only of individual attacks on the transmitted qubits. 
3) The observed errors allow Alice and Bob to infer meaningful probabilistic upper bounds on the 

amount of information Eve collected through tampering. 
4) Reconciliation is achieved through parity exchanges. 
5) The final secret is extracted through a linear transform. 

 
Over time, the notion of an optimal attack by Eve has evolved, roughly following the stages below: 

 
(I) Measure and Resend strategies in which Eve obtains deterministic information2. 
(II) Measure and Resend strategies in which Eve obtains probabilistic information3. 
(III) Entanglement of the qubits and measurements of the collapsed systems after Bob/Alice 

announce the bases used13, 14. 
(IV) Channel profile modifications engineered by Eve, such as channels that provide better service 

to multiple photon emissions10.   
 
If we carefully monitor and estimate the percentage of double-photon transmission events in the 

retained bit-stream, reconciliation and privacy amplification can proceed as previously, provided that the 
relevant parameters are treated as time evolving constants.   Therefore, we shall pay mininal attention to this 
particular threat. 

 
2. THE CASE OF DETERMINISTIC INFORMATION  

 
Initially, it was believed that the best Eve could do is to try to guess the base used by Alice, measure 

the qubit in the chosen base, and forward to Bob the collapsed qubit.  Belief in this system did not quite 
disappear even after the Breidbart base attack became known8. 

 
In the context of such a model, privacy amplification is a breeze.  Alice and Bob can count the number 

of errors.  The a-priori probability that a measured qubit was read by Eve in the proper base would be 0.5.  
For all other measured qubits the value obtained by Eve would be totally unrelated to the encoded value and 
Bob’s measurement of the qubit would be in error with probability 0.5.  Therefore, Alice and Bob can derive a 
probabilistic upper bound U=U(e), such that Eve has measured correctly fewer than U(e) qubits with 
probability that exceeds 1-e.  If a similar upper bound L=L(e) can be established for the multi-photon bits in 
the retained string, then Alice and Bob can observe that: 
 

• The probability that the known bits exceed U(e)+L(e) is less than 2e. 
• If M is the number of the checksums exchanged and if N-U(e)-L(e)-M-S random checksums are 

formed, then Eve knows nothing about the values of these checksums with probability that exceeds  
1-2e-2-S. 
 
Simply put, each subset of {1,2,…,N} can be identified with a vector of the vector space V(N)={0,1}N 

which consists of  2N vectors.  The values and checksums known to Eve can be seen as spanning a subspace of 
V[N], VD, whose dimension D  does not exceed U(e)+L(e)+M with probability exceeding 1-2e.   It can be easily 



shown that if we randomly choose N-D-S vectors in V, these vectors and the basis of VD  are linearly 
independent with probability exceeding 1-2-S.  Linear independence implies that Eve has zero knowledge 
about the checksums that correspond to the random vectors in question2. 

 
3. BREIDBART BASES AND THE TREATMENT OF PROBABILISTIC INFORMATION 

 
In short order, nevertheless, it was remarked that if one were using the Breidbart basis (essentially 

Eve used a measuring apparatus at an angle of π/8 with respect to the encoding bases), then the outcome of 
Eve’s measure-resend attack (in the Breidbart basis) would change the behavior of the measured bits as 
follows: 

 
• tampered qubits would be in error in Bob’s string with probability 0.25 and 
• a tampered qubit’s sent value would be known to Eve  with probability  

cos2(π/8)=(1+cos(π /4))/2=(2+sqrt(2))/4~0.85. 
 

This type of attack necessitates that the privacy amplification mechanism be changed.   Two new 
approaches were developed: 

 
• The Big Brother (BB) approach which invented an entity that takes over Eve’s measuring apparatus.  BB 

obtains deterministic readings of selected qubits and passes derivative information onto Eve in a way that 
mimics the Breidbart measurements.  Any privacy amplification mechanism that would limit BB’s 
knowledge would ipso facto limit Eve’s 3.  

• Reliance on existing results on hashing that are based on the properties of the Rényi entropy.  In 
summary, the idea is that if our knowledge is represented by partly compromised N-bit strings, then –
under the right conditions 5- we can map the N-bit strings onto K-bit strings in such a way that the K-bit 
strings are, more-or-less, equiprobable.  More precisely: 

 
1. The prevalent measure of lack of information, the Shannon entropy  

)(log2 ppH Σ−= ,  is an average; high H values do not necessarily  bound individual 
probabilities.  Of and by itself, a high H value cannot guide us on how to map n-bit strings onto 
highly secure k-bit strings.  E.g., if some p-value equals 0.5, every deterministic mapping will 
produce some specific string with probability at least 0.5.  

2. A more useful measure is the Rényi entropy.  For simplicity we shall restrict ourselves to the 
Rényi entropy, of degree 2, by definition equal to ∑−== )(log)()( 2

22 pXHXR  where X 

represents some discrete variable and p the probability values of X’s distribution.   
3. The Rényi entropy is used in conjunction with the notion of universal mappings.  A set of 

mappings, G, from finite set A to finite set B (of cardinality |B|) is called Universal iff for any 
two distinct points in A, a1 and a2,  

Prob{g(a1)=g(a2)|g in G}≤1/|B| 
(assuming, of course, the uniform distribution for G). 
 

4. If B consists of 2K elements, if X is a random variable in A of Rényi entropy R(X)=r, and if 
H(G(X)|G)  and R(G(X)|G)] represent the expected value of H(g(X)) and R(g(X))],  then 

 
H(G(X)|G) ≥ R(G(X)|G)≥k-2K-r/ln(2), while for all g,   



K≥H(g(X)) ≥ R(g(X))  
 

This is a powerful statement because it asserts that if K<r, the mean value of either 
H(g(X)) or R(g(X))  is close to the maximum value either random variable may attain  and, 
therefore, divergence from the mean is a low probability event.  Nevertheless, the statement 
asserts an ensemble property that may or may not apply to a specific g and offers an a-priori low 
probability of failure. 

 
To use this statement we need to have some reasonable lower bound on Eve’s entropy 

after Reconciliation.  This is addressed by the following two statements5: 
 

5. If W represents a random m-bit string, then 
R(X)-R(X|W=w)≤2(m+s)  
with probability not lower than 1-2-s 

6. If X, X in A, is the concatenation of N i.i.d. random bits and f a linear mapping from A onto the 
space of K-bit strings, then  R(X)-R(X|f(X)=w) ≤K+o(N) 

 
The above results, possibly in combination, can be used to prove that a given algorithm will fail to 

produce shared secrets with small probability.   But, the generality of the results cited entails a small price: 
 

• Reliance, possibly unnecessary, on a priori probabilities when a feedback mechanism might have 
informed us that we had better abort.  I.e., once a specific function g has been chosen out of a set of 
Universal mappings G, it is the properties of g that matter, not the ensemble properties of G. 

• Asymptotic statements whose mapping to a well engineered system is left to the implementer, and 
• A perception of the underlying problem that may not fully match the underlying reality. 

 
Indeed, when the outcome of a measurement is probabilistic in nature, the level of our ignorance 

about the true value is a function not only of the measured value but, also, of the effects of Eve’s actions on 
Bob.   For instance, if the Βreidbart attack is used, then the typical set of four tampered-with bits will consist 
of three bits for which the values of Bob and Alice agree and one for which they differ.  Straightforward 
computations show that if Eve knows that a tampered bit did not cause an error, Eve has measured the 
correct value with probability (6+4sqrt(2))/12~0.97 .  Indeed, the a priori probabilities that Bob’s measurement 

matches the value sent are cos2(π/8)cos2(π/8)=
16

246 +
 when Eve has also measured correctly and sin2(π/8) 

sin 2(π/8)= 
16

246 −
 when Eve has measured incorrectly while the corresponding probabilities that Bob 

measured incorrectly are  cos2(π/8) sin2(π/8)=1/8 and sin2(π/8)cos2(π/8), both equal to 1/8.  Thus, the a-

posteriori probabilities for Eve are {
12

246,
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is nothing but the average over two distinct populations. 
     
 The practical results of this situation are the following: 



 
7. The definition of the Big Brother is in error.  A truly undetectable BB must take into consideration 

the measurements of Bob.  When such a measurement agrees with the value sent, BB either reads 
and passes to Eve the value sent with probability 2sqrt(2)/3~.94 or he passes to Eve a uniformly 
distributed random value; ditto, if the measurement of Bob does not agree with the value sent by 
Eve. 

8. Several entropy estimates, and consequently the size of the extractable key, are in error.   
 

As an example, let us look at a paper9 whose emphasis is on hardware and adopted the entropy 
estimates in the then extant bibliography.   The paper cites5 and estimates the extractable bits as 
F(N,µ,ε)≈N(R(µ,ε)-1.19f(ε))-s with R(µ,ε)≈1- µ-4εlog2(1.5).  The term f(ε) is the Shannon entropy, the factor 
1.19 reflects the overhead of the Cascade Reconciliation algorithm1, µ is the percentage of multiple photons 
emissions, and ε the observed error frequency.  If µ=0, then R(µ,ε)=(1-4ε)+ 4εlog2(4/3), the average Rényi 
entropy per bit taking into account the information Eve gathered through tampering.  Indeed, 
((2+sqrt(2)/4)2+((2-sqrt(2)/4)2=3/4,  hence the Rényi entropy equals - log2(3/4)= log2(4/3) per tampered bit. 

 
Alas, by the time Cascade has completed Eve knows where errors occurred.  Instead of assigning to 

the typical foursome the Rényi entropy of 4log2(4/3) ≈1.66, she will take into account the fact that wherever no 
error was discovered, she knows the transmitted value with probability p=(6+4sqrt(2))/12 and that R(p)= 
log2(18/17).  So that the Rényi entropy per typical foursome will be   3R(p)+1≈0.25+1=1.25. 
 

Remark:  We do not address in this paper the impact of Reconciliation on entropy.  One should ask, 
however, why the results seemingly fail to match the theoretical results described above.  One may think that 
this can be attributed to the information that flows back during reconciliation.   Nevertheless, we could 
consider a gedanken experiment in which Alice is told by BB as to which of Bob’s bits are in error and lets 
Bob and the world know the correct values for these bits.  The resultant entropy loss would exceed all bounds 
except for the 2(m+s) one which is generally considered to be unrealistically high.  It would therefore appear 
that the extant theorems assert properties for some population P when our actions may be directing us 
towards sampling a subpopulation P*.    I.e., the interactive algorithms, such as Cascade, inexorably guide the 
system toward information vectors W within the very low-probability subset that we would rather avoid. 
 

3. THE SLUTSKY PROBE AND BOUND. 
 

Boris Slutsky13,14, suggested a different more efficient individual attack.  If BB84 is inherently secure, 
we can endow Eve with whatever is physically possible even though it may be currently unavailable.  E.g., 
with a quantum memory that will allow Eve to entangle the transmitted qubits with qubits of her own to be 
measured after Alice and Bob have matched bases and agreed which string to amplify.  A long analysis 
follows that addresses individual qubit attacks and attempts to characterize Eve’s best strategy, its effects on 
the measured error rate and on the Rényi entropy, and the appropriate privacy amplification 
countermeasures  (including detailed formulas that should adequately guide an implementer). 

 
Are we done?  Possibly, but we are still short of a complete proof.  The cited papers 13,14 assume that 

for every (expected) target error rate E that Eve can expect Alice and Bob to witness, the best attack is the one 
that leads to maximum information gains. From this definition it follows that Eve’s optimal strategy is to 
entangle the q_bits in a way that maps the Breidbart basis, ([e0>,[e1>), onto ((|e0>|Φ00>,|e1>| Φ11>) where  
 



(|Φ00>,| Φ11>)= (cos(φ)|w1>+sin(φ)|w2>),(sin(φ) |w1>+cos(φ)|w2>)), and 
 (|w1>,|w2>) is the orthonormal basis of a Hilbert space perpendicular to ([e0>,[e1>). 
 
  If ((|u >,|ū>)  is one of the bases Alice is using (obtained from the Breidbart basis through a 
counterclockwise rotation α=π/8, straightforward manipulations of the Slutsky formulas show that Eve’s 
meddling will map  

 
|u>    (cos2(α)cos(φ)+sin2(α)sin(φ))|u>|w1>+ 

(cos2(α)sin(φ)+sin2(α)cos(φ))|u>|w2>+ 
cos(α)sin(α)(-cos(φ)+sin(φ))|ū >| w1>+ 
cos(α)sin(α)(cos(φ)-sin(φ))|ū >| w2> 

|ū>   ( sin2 (α)|Φ00>+ cos2(α)| Φ11>) |ū>+ 
  (-cos(α)sin(α)|Φ00>+ cos(α)sin(α)| Φ11>)|u> 
 
The entangled system for u shows that the squares of the coefficients sum up to 1, so that the probability that 
u will be measured as ū by Bob is 
 
 E=2 cos2(α)sin2(α)(cos(φ)-sin(φ)) 2=(1-sin(2φ))/4 
 
   In the event Eve learns that no error occurred, Eve concludes the entangled system collapsed, 
respectively, either onto 
 
(cos2(α)cos(φ)+sin2(α)sin(φ ))| w1>+ (cos2(α) sin(φ) +sin2(α) cos(φ ))| w2>, or  
(sin2(α)cos(φ)+cos 2(α)sin(φ ))| w1>+ (cos2(α)cos(φ )+sin2(α) sin(φ))| w2>. 
 
Inspection shows that the collapsed systems, are of the form A|w1>+ B|w2> and B|w1>+ A|w2>, 
symmetrically located the w-plane, and forming equal angles, ζ, with the nearest base vectors.  Therefore, 
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Thus, for small E, d grows, roughly, as the square root of E while Eve’s information gain 
( )41(log))5.0()5.0((log1 2

2
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2 ddd +=−+++ ) is, roughly, proportional to E.  The square root of E 
probability increase suggests that for small E the relative cost of the BB approach will be high and the 
arithmetic data below show this to be the case.  We also note that when Eve cannot distinguish between 
correct and incorrect measurements, the probability that Eve knows the value of a bit drops to  
0.5+D= 0.5+(1-E)d. 
 
   The optimal probe having been found 13, the companion paper 14 shows how to use the number of 
observed errors so as to derive probabilistic upper bounds on E and on the Rényi entropies of Eve before and 
after reconciliation.   
 



   Both papers are rigorous, well written.  As they are also conservative in their estimates and err on the side 
of caution, careful examination of the remaining issues very probably will show that their conclusions and 
derived bounds are correct even if slightly incorrectly reasoned.  Nevertheless, there are a couple issues that 
are not fully addressed.  Namely, 
 

• The paper implicitly assumes an interactive reconciliation scheme and at the very outset disregards 
the informational content of the bits in error (these values will be common knowledge once 
reconciliation is completed).  But, as we saw above, the vector W(checksums released) is not 
necessarily random and most of the results used to estimate R(X|W) are not directly applicable.  We 
note, however, that by disregarding the bits in error and by applying the a-posteriori probabilities, 
the papers probably sidestep the issue raised.  

• While it is true that some Reconciliation schemes reveal information about the location of errors, 
others apparently do not.  For example, recent work at BBN 7, 12 showed that sparse matrix error 
correction can be used for effective reconciliation.  Thus, the bounds in 14 would appear to 
unnecessarily penalize non-interactive reconciliation schemes.   

• For reasons probably related to analytical tractability, the best strategy for Eve is defined 13,14 as the 
one that maximizes Eve’s average gain in Rényi information.   It is clear though that the best strategy 
for Eve is the one that maximizes Eve’s objectives.  That is, Eve’s objective might be to maximize the 
probability that it will collect more than m bits worth of information once privacy amplification is 
completed.  In other words, Eve may wish to beat the probabilistic upper bound of BB84 often and 
by a large (absolute or relative) margin.  If the reconciled strings are large enough, this becomes 
synonymous with the best mean possible (the papers prove that a mixed strategy with fixed error 
rate E must lower the information gain).  Nevertheless, a mixed strategy would seem to have a 
higher variance (fatter tails) and, therefore, for relatively short strings, it is not excluded that the 
gains in variance trump the losses due to a lowered mean value. 

 
Interestingly enough, the convexity of the Defense frontier has been discussed 6, 11   and there is 

numerical support that the function displays the proper convexity profile.  
 

• Finally, the referenced paper 14, like all the papers until recently, assumes that the mean number of 
errors in the transmitted qubits and the mean number of errors in the qubits retained are the same.  
Another assumption that has luckily bitten the dust with manageable protocol effects. 

 
4. METHODS OF ATTACK AND THEIR IMPACT 

 
For the reader to get a rough idea on how the different schemes by Eve and countermeasures affect 

the output of BB84, let us see the asymptotic information loss per bit as a function of the observed error 
rate E (assuming of course that it was all induced by Eve).  We are giving the formula and its arithmetic 
value for E=0.03 side by side.  The reader should note that, 
 
• Measurements that cause errors impart no information to Eve,  
• The probabilities cited are the probabilities that Eve correctly measured the value sent, and 
• When BB mimics an apparatus that delivers the correct value with probability 0.5+x, BB must know 

the correct value with probability 2x. 



Table 1.   Average Entropy loss per bit (column 2) for different attack schemes and its value for E=0.03 
   

Measure Resend 2E 6% 
(I) Breidbart, error location 
unknown )5.1(log4 2E  (

4
22 +

=prob ) 
7% 

(II) Breidbart, error location 
known 

EE 75.2))18/17(log1(3 2 ≅+  

(
6

223 +
=prob ) 

8.25% 

(III) Corresponding BB 

2
24E  (case I) or 

3
223E case (II) 

8.5% 

(IV) Slutsky, error location 
unknown 

)41(log 2
2 D+  15% 

(V) Slutsky, error location 
known 

 )41(log)1( 2
2 dE +−     15.4 % 

(VI) Corresponding BB 2D (case IV) or (1-E)2d (case V) 33% 
 
 

In short, while the Breidbart attack delivered a minor blow to the BB approach, the Slutsky attack 
KO-ed it.  

 
5. DECOY STATES 

 
Apart from the fact that better proofs and more engineering detail are necessary, it is mildly 

disconcerting that the devotees of the provably secure system have more than once proven security by 
assuming physical models which were later debunked.  Each time, large or small changes in privacy 
amplification are devised so that we would still have a provably secure system by sacrificing more of the bits 
previously deemed to be secure.  

 
Recently, e.g. 10, the community discovered that the percentage of multiple-photon in the transmission 

stream does not necessarily coincide with their percentage in the sub-stream to be reconciled.  Hence all the 
formulas that rely on the knowledge of Alice’s hardware in order to assess the impact of double photons in 
the stream are, potentially, incorrect and, therefore, link-monitoring protocols are necessary. 

 
6. CONCLUSION 

 
    As of today, the quantum generation of shared-secrets has a single strength:  unlike the extant 
schemes, its security cannot be compromised through scientific or engineering advances enabling new attacks 
on the communicated data.   Therefore, it is highly desirable, if not necessary, that our proofs of this feature 
be as strong as the claim they serve.  In particular, it is important that the engineering systems we build base 
their security on theorems whose assumptions are clearly satisfied by the systems in question. 
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