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Abstract —
between two greedy autonomous systems on pricing
and availability of Internet services with elastic de-

We consider the effect of competition

mand. The problem is formalized in two different
ways: (1) as a non-cooperative game, where the au-
tonomous systems attempt to maximize their prof-
its by adjusting prices and bandwidths, and (2) as
a natural evolutionary algorithm, where the behav-
iors of the autonomous systems are modeled by a sys-
tem of nonlinear differential equations. To investigate
the stability of this evolutionary system, we also con-
sider a system of fixed-point equations describing the
global behavior. Necessary conditions are presented
for equilibria of the game and the evolutionary al-
gorithm, and analytical solutions are found that give
the optimal capacities and the corresponding utilities.
The economic implications of competition on both the
users and the autonomous systems are quantified.

Keywords — Pricing, Capacity Optimization, Inter-
net, Game Theory.

I. INTRODUCTION

Incorporating economic concepts into models of providing
Internet services allows one to develop better understanding
of real-life situations. In a social welfare maximization frame-
work, pricing may allow the system to achieve the global op-
timum by a decentralized algorithm without assuming knowl-
edge of the user’s utilities by the central planner [1]. In profit
maximization models, autonomous systems (ASs) attempt to
maximize their profit by adjusting prices and capacities [2].
Since the Internet is comprised from a large number of ASs,
cooperation and competition among ASs is an important fac-
tor in understanding the evolution of Internet services.

The competitive pricing can be described [3] as a non-
cooperative game of the ASs, where each AS; owns a set
of links and attempts to maximize its revenue by adjusting

prices:
Vi= Z Z Prrdy ( Z Dkr + Pir)s (1)
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where E; is the set of external links owned by AS;, R; is the
set of routes traversing link I, and L, is the set of links for
route r; p;, is the price for route r on link [/, and d, is the
demand for route 7.

There are two ways to incorporate capacity constraints into
this model. One way is to assume capacity fixed and view
them as constraints [3]
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where C is the capacity of link I. Another way is to introduce
capacity cost [4] and assume that provider utility (profit) is

Ui = V; — ¢i(cs), (3)

where V; is the revenue for AS;, and ¢;i(c;) is the capacity
cost for capacity ¢;. In this paper we assume utilities given
by Eq. (3), since we are interested in joint pricing and dimen-
sioning ASs policies.

A single route shared by two providers has been consid-
ered by He and Walrand [3]. They observed that a bottleneck
provider may not have incentive to expand its capacity; in-
stead, it may prefer to create congestion and raise its price for
service. To address this problem, they [3] proposed a limited
form of regulation by fixing the portion of the total revenue
to be allocated to each provider. However, this market ineffi-
ciency may be a result of lack of competition among providers.

In this paper we investigate the effect of competition in
a simple case of two alternative routes owned by different
providers. This situation has been considered in [4] within a
game-theoretic framework assuming linear capacity cost. We,
however, approach this problem both from a game-theoretic
framework and from the view of evolutionary algorithms. Ad-
ditionally, we model the effect of barriers to entering the mar-
ket by assuming that the bandwidth cost is a concave func-
tion of the bandwidth. The main justification for adopting
an evolutionary point of view of this competitive situation is
that Nash equilibria based on the best responses requires com-
plete knowledge of user utilities or, equivalently, price/demand
curves, which may not be practically realistic. On the other
hand, evolutionary algorithms, based on local information
(gradients), can be estimated from historical observations.

We assume that the competition between the two ASs pro-
ceeds on two timescales. At the fast timescale, the capacity is
assumed fixed and the prices are allowed to reach the corre-
sponding Nash equilibrium. Under natural elasticity assump-
tions, the prices charged by the ASs are the same and such
that the capacity is filled. On the longer timescale, the ASs at-
tempt to adjust their capacities in order maximize their prof-
its. We consider two approaches: (1) a local gradient-based
evolutionary algorithm, modeled as a system of nonlinear dif-
ferential equations, that does not assume complete knowledge
of the utility functions, and (2) a global optimization approach
requiring complete knowledge of the utility functions. Both
approaches follow the concept of Nash equilibrium: no player
has an incentive to deviate from the equilibrium. The evo-
lutionary approach considers only small changes, while the
global approach uses fixed-point equations and allows all pos-
sible capacity deviations. These two models correspond to two
extreme cases, allowing for capacity adjustment by ASs.

Our investigation reveals that depending on the capacity
cost and the elasticity, there may be either one or three equi-
librium capacities achieved in the evolutionary process. For a
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Figure 1: Demand as a function of price (green), and
demand limited by a finite capacity of ¢ = 0.5 (blue).
d= p—1.3‘

linear capacity cost, there is a single equilibrium capacity vec-
tor, while for nonlinear costs, there are three equilibria. We
investigate the stability of these equilibria from the perspec-
tive of the global optimization approach. In the case were one
of these three equilibria is characterized by positive capacity
and profit for each AS, then this point is the unique Nash
equilibrium, which can be found as the unique globally-stable
point of the corresponding fixed-point equations. Otherwise,
the solution to the fixed-point equations oscillates.

The paper is organized as followed. In Section II, the mod-
els for demand and capacities are presented, and the dynamics
of the evolutionary algorithm are described. Section III con-
siders the emergent behavior of the system, by computing ana-
lytical solutions for the Nash equilibria of the non-cooperative
game and equilibria of the evolutionary algorithm. Section IV
discusses the results in terms of the economic benefits to the
users and the autonomous systems. Finally, Section V pro-
vides a few conclusions and addresses future work.

II. MODEL
DEMANDS

We consider elastic demand, characterized by a concave
user utility function u(d) [5]. The user chooses demand d by
maximizing its net utility

max u(d) — pd, (4)

where p is the fixed unit price for carrying a unit demand.
Maximizing Eq. (4) for all values of p leads to a curve giving
demand as a function of price.

A common model for a demand-price curve is of the form

d(p) = Ap™*, (5)

where A is the demand potential and « is the elasticity [2];
for telecommunications data traffic, values of a are often in
the range 1.3 to 1.7 [2]. Further, we assume that in all cases
a > 1. Fig. 1 shows a typical demand curve for « = 1.3. In

this section, we assume that each provider has a fixed lim-
ited capacity; the resulting demand curve is also shown in the
figure. For the demand curve given by Eq. (5), it is also inter-
esting to consider the user’s utility. Taking the derivative of
Eq. (4) and setting it equal to zero gives u'(d) = p = (%)1/0‘.
Integrating with respect to d gives

Al/a dlfl/a

u(d) = Togrgd (6)

Denote the price charged by providers 1 and 2 by p; and
p2, respectively. Now, the demand seen by each provider de-
pends on the prices charged by the two providers; that is
(p1,p2) = di(p1,p2) and (p1,p2) = d2(p1,p2). Each provider
will continue to adjust the price in response to the price set
by its competitor. The main questions here are whether an
equilibrium point exists and if it does, what is it. There are
three cases to comsider: (1) p1 < p2, (2) p2 < p1, and (3)
pP1 = p2.

For case 1 (p1 < p2),

d(p1) if d(pl) < C1
c1 otherwise,

di(p1,p2) = { (7)

where ¢ is the fixed capacity of provider 1. Defining the
revenue obtained by provider one as Vi(pi) = pidi(p1,p2)
and using Eq. (7) for the demand, one gets the revenue as
a function only of pi;. Hence, it is straight-forward to find
the price that maximizes the revenue; it turns out that for
the demand curve given in Fig. 1, the maximum occurs when
provider 1 sets its price such that the demand is equal to its
capacity. This result is generally true for a number of related
demand curves. Since it is assumed that provider 2 has a
higher price, there is no excess demand, and provider 2 ends
up with zero revenue. The implication is that when viewed as
a game of setting prices, p1 < p2 is unstable. By symmetry,
the case where ps < p; is also unstable.

Therefore, case three where p1 = p2 = p leads to a Nash
equilibrium, which is found by maximizing the total revenue
Vi(p) + Va(p) = pd(p). Again, setting %’;VQ(”)) =0 yields
p* to be the point where the demand is equal to the total ca-
pacity c¢1 +c2. In comparison, Hajek and Gopal [4] consider a
somewhat different game where middle agents acting in par-
allel buy capacity from a common provider and then resell it.
They show that in this case the Nash equilibrium occurs when
each agent gets zero profit. A difference is that in their game
they simultaneously optimize over prices and capacities.

CAPACITIES

Now, we consider the process of capacity adjustment, as-
suming the prices already have reached equilibrium, ¢.e. both
ASs charge the same price p1 = p2 = p.

Given the capacity of each provider, one can invert the
demand-price curve to get the price as a function of the two
capacities ¢1 and ca:

A 1/«
c1+c2 '

p(d) = pler +¢2) = ( (8)

The revenue obtained by the two providers is then given by
Vi(er,e2) = cip(er +¢2), i=1,2. 9)

In general, each provider’s capacity cost function may be
different, denoted by ¢1(c1) and ¢2(c2), respectively. In the
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Figure 2: Uy (¢, c2) for fixed values of 2. A =1, a = 1.3,
B =0.61,and vy =1.

rest of this paper, it is assumed that each provider has the
same cost for adding capacity ¢(c) := ¢1(c) = ¢2(c). The
simplest analytical formula is a linear function ¢(c) = Bc,
which is used by [4] and others. However, other factors such
as economies of scale and fixed costs of entering the market
suggest the use of a nonlinear concave capacity cost. Klein-
rock [6, p. 336] considers the function

b(c)=Be', 0<y<1. (10)
In this paper, we are interested in relatively small deviations
from linearity, and so we assume y > 0.5. Thus, the utility
(profit) functions for each provider are given by Uj(c1,c2) =
Vi(e1,¢2) — ¢(e;), ¢ = 1,2. Combining this equation with
Egs. (8)-(10) gives

A 1/a
c1+c2

— Bc!

Ui(cl,02) ZCi( i 1= 1,2, (11)
where @ > 1 and 0.5 < vy < 1. Fig. 2 shows Ui(c1,c2) as a
function of ¢y for various values of ¢z, for A = 1, a = 1.3,
B = 0.61 and v = 1 (i.e. linear capacity cost). Because of
symmetry, U» is the same as U; with ¢; and ¢, reversed.

Stability, according to the theory of Nash equilibrium, is
when no player has an incentive to deviate from this equilib-
rium; this implies that one needs to determine maxima. So,
equilibrium capacities for ¢; > 0, 7= 1,2, are determined by
the following system of equations

AU;(c1, c2)

=0
dc; ’

1 =1,2. (12)
Depending on the values of the parameters A, a, B, and 7,
there may be up to three equilibria. One equilibrium corre-
sponds to the solution of Egs. (12). If the other two equilibria
occur, they are on the ¢; axis and the c» axis, respectively.
The equilibrium on the ¢; axis simultaneously satisfies the
following conditions

8U1 (Cl, 02)
601 |02=0 (13)
aUz(Cl, 02)

302

(14)

c1=ci*, c2=0 < 0:

where c}* is the value of ¢1 that results from solving Eq. (13) *.
By symmetry, Egs. (13) and (14) with ¢; and c; reversed give
the conditions for the equilibrium on the ¢; axis.

DyNAMICS

In the case where the system has a unique, non-negative
solution, this solution (12) represents unique Nash equilib-
rium capacities. However, when there are several equilibria,
including solutions of Egs. (13) and (14), one needs to further
examine their stability properties. We approach this issue in
two ways, through both local and global stability analysis. To
investigate local stability, we view the process of capacity ad-
justment as an evolutionary algorithm, where small changes
are made from a given point in order to improve utility. For
global stability analysis, we use fixed point equations to opti-
mize over the entire range of the capacities.

The first dynamic model associated with the game played
by the two ASs [7, pp. 148-150] allows local adjustments to
the capacity according to the following system of two ordinary
differential equations

dci _

AU;(ci,c2) .
dei _ pilenc)
dt ¢

- 2, (15)

where 7 > 0 is some constant, and ¢1 > 0 and ¢co > 0. If
c1 = 0, c2 > 0 the capacity adjustment is described by the
following system of equations

dei _ 8U1 (01,02)
dCz _ 8U2(C1, Cz)
dt K Jco ' (17)

The case ¢z = 0, ¢; > 0 can be obtained from Egs. (16)-(17)
by symmetry. Lastly, for ¢ =0, c2 =0

de;

AU;(c1,c2)
dt g

dc; (18)

= max{0, }oi=1,2.
The second model considers the global behavior, by con-

structing an algorithm consisting of the fixed point equations

ca(n+1) = axgmg)éw(cl,cz(")) (19)
c1>

c2(n+1) = argmaxUsz(ci(n),c2), (20)
c22>0

where n is an integer time step. Convergence of this algorithm
ensures the existence of a unique capacity vector, which is both
a Nash equilibrium and the global solution to the game.

I1I. EMERGENT BEHAVIOR

In this section, we first present analytical solutions to the
Nash equilibrium conditions given by Egs. (12) and Egs. (13)
and (14). Next, we examine the equilibria of the evolutionary
algorithm, relating them to the Nash equilibria.

NASH EQUILIBRIA

Numerical solution of Egs. (12) for ¢1 > 0 and ¢z > 0
suggest that any solutions occur when ¢1 = ¢ = ¢*, which

satisfy
an (61 y 02)
_— 21
o; (21)

IThe second derivatives also need to be checked to ensure a
maximum.

i=1,2,

|C1262=c =0,




or using Eq. (11),
A 1/
(37 -

1 Al By
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2 ( 20) c (22)
It is straight-forward to verify that the solution of Eq. (22) is

. ln(%)+aln(%_&l‘))

¢ T ya—a+1

(23)

Substituting ¢; = ¢z = ¢* into Egs. (11) then gives the result-
ing equilibrium utilities U* = U;(c*,c*), i=1,2.

Now, let us turn to the equilibria on the ¢1 and c2 axes.
Eq. (13) can be written as

A 1/a 1 A 1/ Bc’ly’y
falil _ (£ =T _9 24
%) Jq) o : (24)
which has the solution

ln(%) + aln(% )

ya—a+1

%
c1” = exp(—

(25)

To evaluate Eq. (14), we take the partial derivative of Eq. (11)
giving

Wn(enes) _ (A e @l5ix)" By o0
dca T e +e afer + ¢2) ¢ ]

which needs to be compared to zero. Making the substitutions
c¢1 =" and ¢2 = 0, one sees that the first term is a positive
constant, the second term is zero, and the third term depends
on v. When v = 1, %;’02) c1=ct*, cp=0 = %, which is
greater than zero. Hence, there are no equilibria on the ¢;
axis. For 0.5 <y <1, —Bc;’_l'y — —o0 as c2 — 0, so there is
a stable equilibrium on the ¢; axis. Again by symmetry, the
same results hold for the ¢ axis.

EVOLUTIONARY EQUILIBRIA

Let us now look at the equilibria of the evolutionary al-
gorithm given by Egs. (15)-(18). It is clear that the equilib-
rium of Eq. (15) is the same as the Nash equilibrium given by
Eq. (12). Moreover, the equilibria of Egs. (16)-(17) are equiv-
alent to Egs. (13) and (14). From an evolutionary perspective,
what is interesting is how the system evolves given an initial
starting point.

As an example, consider the system (15)-(18) with the pa-
rameters A =1, a = 1.3, B = 0.32, v = 0.63. Fig. 3 shows the
resulting phase portrait, where the trajectories were obtained
by numerically solving this system. The three equilibrium
points are denoted by the squares in the figure. To confirm
that the equilibrium point at ¢* = (ci,c3) ~ (4.305,4.305)
is locally stable, we linearize the system (15)-(17) about this

point. The resulting linearized system is %f = A¢, where
& = ¢ — c¢*. Since the eigenvalues of A are negative, the

equilibrium c* is locally stable. This equilibrium is reached
by system (15)-(18) if the initial point (c1(0),c2(0)) lies far
enough from the axes ¢; =0 and ¢; = 0.

If the initial point (c1(0),c2(0)) lies close enough to one
of the axes, for example the ¢y axis, then ¢;(t) decreases with
time until ¢1 (¢7) = 0, for t' < co. For all t > t, the trajectory
stays on the c2 axes, i.e., ci(t) = 0. The evolution is now
described by sliding mode behavior, which is modeled by the
single ordinary differential equation

d02 _ dUQ(O, Cz)

& =" de (27)
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Figure 3: Phase portrait of system (15)-(18). A = 1,
a=1.3,B=0.32,v=0.63.

The resulting solution has c»(t) moving along the c» axis un-
til it reaches the equilibrium at ¢3* = 1.403. By symmetry,
trajectories in the lower right-hand corner move down to the
c1 axis, and then while c2(t) stays at zero, ci1(t) moves along
the ¢; axis to its equilibrium point ¢7* = 1.403.

So, one can see that the initial conditions determine which
evolutionary equilibrium is reached. Since these equilib-
ria are equivalent to the Nash equilibria in the correspond-
ing game, it is also useful to consider the behavior from
a more global perspective. For the parameters used in
the previous example, the equilibria are approximately at
(4.305, 4.305), (0,1.403), and (1.403,0), with corresponding
utilities (0.019,0.019), (0,0.685), and (0.685,0). Starting at
various initial conditions, the fixed-point algorithm given by
Egs. (19) and (20) converges to the point (4.305,4.305), where
the utilities are small but positive. Hence, this is the single
global optimum. The other two equilibria are not global op-
tima, since the autonomous system with zero capacity gets
zero utility, and so it has an incentive to increase its capacity.

If the utilities at the equilibrium ¢* are negative, the global
behavior is quite different. To see this, consider the parameter
set A=1, a=1.3, B=0.4, and v = 0.5. The equilibria are
at (8.973,8.973), (0,1.702), and (1.702, 0), with corresponding
utilities (—0.225, —0.225). (0,0.609), and (0.609, 0). Using the
algorithm given by Egs. (19) and (20), one sees some interest-
ing behavior, as depicted in Fig. 4. Staring at the equilibrium
point (8.973,8.973) leads to both ¢; and ¢» following the same
trajectory. Starting at other initial conditions, e.g. (0,1) leads
to slightly more complicated behavior. Now, ¢; and c2 again
oscillate among the same three points, but the two trajectories
are out of phase.

IV. DISCUSSION

First, consider the case of linear capacity cost, i.e. 7 = 1.
Fig. 5(A) shows the optimal capacity, ¢*, as a function of the
cost parameter B for four values of &. When there is only
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a single provider, e.g. provider 1, Eq. (13) gives a necessary
condition for finding the optimal capacity ¢, which is shown
in Fig. 5(B) for the same parameters. Varying A scales ¢* and
¢i™ by the same constant, and so does not change their ratio.
Looking at Eqs. (23) and (25), it is clear that limp_, o c* =
0 and limp_ e c1* = 0, so there is less incentive to provide
capacity as the unit capacity cost increases.

More interesting are the corresponding utilities, U* and
Ut™, which are always positive and monotonically decreasing
with B. Since these utilities are positive, the autonomous
system(s) have an economic incentive to provide service.
Fig. 6(A) shows the ratio gT; Note that for all values
of a@ and B, the provider’s utility is higher when there is
no competition; also, this ratio does not depend on A. As
the cost B increases, the profits U* and U;™ decrease, with
limp_,oo Ui(c™,¢*) =0, ¢ =1,2, and limp_, 00 U1(c1*,0) = 0.

Another interesting comparison is that between the user’s

alpha= 1.2

o*

alpha= 1.3

G T T T T T T T T T T T T T T T T T T T 1

alpha=1.9

Figure 5: % (A) ¢® and (B) ¢i* vs. Bfor A =1 and
vy=1. a=1.3,1.5,1.7, and 1.9.

utility when there are two providers compared to when there is
only one. Fig. 6(B) shows the ratio 17—:*, where v* and u** are
the resulting user’s utility for the two equilibria ¢*, and ¢}*,
respectively. The competition between the two autonomous
systems results in more total capacity (sum of the capacities
provided by each AS), which leads to lower prices, and hence
higher utility for the user. Again, the parameter A does not
change the ratio.

To investigate the effects of economies of scale and barri-
ers to market entry, we consider non-linear capacity costs, ¢.e.
v < 1. Fig. 7(A) shows the behavior of the equilibria as a
function of B and v, when A =1 and o = 1.3. As discussed
above, there are three locally stable equilibria. Below approxi-
mately v = 0.62, the equilibrium at (¢*, ¢*) results in negative
values for U”, which means that neither autonomous system
will have an economic incentive to remain at this point; hence,
unstable behavior may occur as illustrated in Fig. 4. Above
this line (and below v = 1), U™ is positive, and so (c*,c*) is
the Nash equilibrium that is the global solution to the capac-
ity game. Since the equilibria on the ¢; and ¢, axes give zero
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utility to one of the autonomous systems, they are globally
unstable. If each AS makes local decisions, these equilibria
may be reached, perhaps indicating that a barrier to market
entry exists. Over a wide range, the parameter B has neg-
ligible effect. Similarly, varying A changes the value of the
utilities, but not the sign; hence, Fig. 7(A) is valid for A > 0.

Since the parameters a and 7 are the most important,
Fig. 7(B) shows the behavior of the equilibria as a function of
them. As o increases over the range 1.3 — 1.9, the value of «
needed to ensure U* > 0 increases slightly.

V. CONCLUSIONS

The analysis above suggests that for the case of two au-
tonomous systems providing Internet service where there is
elastic demand, competition is economically beneficial for the
users. In contrast, He and Walrand [3] suggest the use of reg-
ulation, perhaps because the system they are analyzing allows
each AS to have monopoly power. For our model with linear
capacity cost, competition is achieved because the only stable
equilibrium results in both ASs providing positive capacity.
For non-linear capacity costs, local (evolutionary) behavior
may result in only one AS providing service, while more global
behavior may result in oscillations in the provided capacities;
operating in the region U™ > 0 ensures a globally stable solu-
tion. Future research will investigate extending these results
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}
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P
0.8 3 Equilibria, U* > 0
0.7
0.5: _______________________________________________
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1 1:
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Figure 7: % Bifurcation diagram. (A) v vs. B, with
a=13. (B) v vs. a.

to N greedy autonomous systems, and it will also consider
unequal capacity costs.
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