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Abstract—As network utilization continues to grow in the were displaced by a failure. All WPs are mutually disjoint,
coming years, there will be increased pressure on network je. WP, NWP; = 0if i # 7.
operators to use traffic engineering to provision resources more For all the models that we will consider. we use a Boolean

efficiently. One way to do this is to allow backup paths associated . . .
with disjoint working paths to share bandwidth. Increasing sharing matrixS to describe the degree of resource overlap

the amount of sharing will naturally increase the risk that among the set of backup paths, where each eleragnis
a failed working path will either be unrecovered or forced defined as follows.

to use dynamic recovery mechanisms. To examine the trade-
y y . _{07 BP, NBP; = 0
1)

offs between robustness and efficiency and to develop useful (1)
1, BPR,NBP; #0

performance bounds, we develop theoretical models for (1:1)

recovery schemes that are independent of the network’s topology . .
and management plane. We confirm our results using simulations FOF €xample, a set oi 1:1 protection groups whose backup

of uncorrelated failures in a wide-area optical network with paths do not overlap has a sharing matrix that isshe n
various degrees of resource sharing. identity matrix.
A connectivity graph for a recovery scheme with sharing
matrix S can be created by associating a labeled vertex
. INTRODUCTION with index ¢ € {0,1,...,n} to each 1:1 protection group
Optical networks are moving from SONET/SDH tocand drawing an edge between each pair of verticemd
ASON/ASTN architecture and a GMPLS control plane, al if s;; = 1. If this graph is connected, we say that the
lowing for more flexible operations but incorporating morassociated recovery scheme iiseducible A disconnected
complexity. ASON/ASTN networks must be able to recoveronnectivity graph corresponds teeduciblerecovery scheme
from failures, hence the emerging standards support 1+1, 1ttiat can be decomposed into two or more independent irre-
M:N, and other recovery modes for path, subpath, and spdncible recovery schemes, each of whose size is less than
recovery. For the sake of efficiency, backup paths can shareThe number of irreducible recovery schemes of sizis
resources. The IETF introduced (I*1and (M:N)Y* notation 1,1,4,38,728,26704,...forn =1,2,3,4,5,6,... (Sequence
to describe recovery schemes that are composed of multiji@01187 in [4]). We obtain this sequence by taking the inverse
recovery schemes that share backup resources [1], [2]. In tHigler transform of the sequenag, = 2("~1)/2, From this
paper, we consider the trade-off between recoverability adicussion, it is clear there are many possible sharing arrange-
efficiency in (1:1) schemes. We have already examined thments for a recovery system of sizeand analyzing them all
(M:N)™ case in another paper [3]. is not practical. However, we can generate upper and lower
This paper is organized as follows. In Section Il we introperformance bounds for all possible (2:Iecovery schemes
duce basic concepts and describe the theoretical framewbykconsidering systems that feature, respectively, the minimum
that we use in our analysis. In Section Ill we derive lowesand maximum possible degrees of resource sharing. These
and upper bounds for the recovery blocking probability fdvounds will allow a network operator to quickly determine the
(1:1)* recovery schemes. In Section IV we present numericamount of backup resource sharing that is acceptable given the
results obtained from network simulations and compare thegrevailing conditions in the network.

to the results of our theoretical analysis. We now provide some definitions that will be used in the
theoretical development. Bymmetricecovery scheme is one
Il. SYSTEM MODEL in which then 1:1 recovery groups can be labeled such that all

the elements of each diagonal of the resulting sharing matrix
. . . X S have the same value, i.e;; = sy if [i —j| = |k —1|. A
each of which consists of a pair of working and backug,imajly connectegymmetric scheme is characterized by a
paths denoted a@VP;, BP;). Normal traffic is carried on the sharing matrixS whose elements are given by

working path, while the backup path may be used to carry

extra traffic that would be preempted if the normal traffic 6 — {
1) T

A (1:1)" recovery scheme comprisesl:1 recovery groups,
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We provide an example to illustrate these concepts. Using resources that are shared by; BBsing this definition,
Fig. 1(a) we show an optical network in which four workingt follows that the row vectov = {v,} can be computed as
paths are organized into a (1*1)yecovery scheme that isv = wS.
symmetric and minimally connected. For example, considerlf the (1:1)* system is in statav with F(w) = m, then
recovery group 1, which consists of a working path whose—m WPs are operational, but some of them may not be able
route isAB and a backup path whose routed#/ F'B. Group to recover in the event of a failure. We say that a working path
1 shares recovery resourcé® and F'B with recovery groups WP; is blockedif there exists at least one backup path;BP
2 and 4, respectively. These sharing relationships are depicsedh thats,;; = 1 and BB is being used. Blocked WPs are
in the resource sharing graph shown in Fig. 1(b). From tlessumed to be recovered by using dynamic rerouting while
form of the graph, we see that the recovery scheme depictaetbping the same BP. We can determine, for a given state
in Fig. 1(a) is a symmetric minimally connected scheme. The, how many functioning WPs are blocked as follows. We
corresponding sharing matrix is define B(w) to be the number of functioning WPs that will
1 be blocked if they fail. A working path WHs functioning if
w; = 0 and blocked ifv; > 0, so B(w) is given by

S = 3)

= O = =
=== O
—= = O =

1
1 n
0 B(w) = Ty (wi)Iz+ (v3), 5)

=1
whereZ* is the set of positive integers and whefig(x) is
an indication function that returns a Boolean value based on
the membership of the argument elemenh the setA:

na={ 0 28y ©®)

Becausew is a Boolean vectotlo, (w;) = 1—w; is a valid
indication function. Likewise we can ude+ (v;) = 1—4§(v;),
whered(v;) is the Kronecker delta function. This leads to the
following expression:

1>
{100

( {1 n
D C B(w) = 1—w;)(1—95(vy)). 7
@ (b) (w) ;( )(1 = 6(vi)) (7
Similarly, for a statew, we definel/(w) to be the number of
Fig. 1. (a): An example optical network supporting a (*:Ipcovery scheme. functioning WPs that will not be blocked if they fail (because
(b): The associated resource sharing graph. no BPs that share resources with their BPs are being used). A
1:1 group meets this criterion if its WP failure indicatoy is

To model a general (1:1)recovery scheme, we defineto  zero and if its BP usage measurgis also zero. Thus/(w)
be the rate of working path failures over the entire networlg

and we defing: to be the rate of repair, so that the mean time n n

to repair a fqiled Working path i_$/u. Failures and repairs U(w) = ZI{O}(wi)I{O} (v;) = Z(l —w;)d(v;).  (8)
are characterized by Poisson point processes. We assume that i—1 i—1

sufficient resources are available to the network operator B9 combining (7) and (8) and using (4), we obtain

that failed WPs can be repaired in parallel, i.e., the mean repair .

time is not state-dependent. The state of the system is given B U _ - l—w)—=mn—F 9
by a Boolean vectow of lengthn, where thei*" elementw; (w) +U(w) ;( wi) =n (w), ©
is 1 if WP; is in a failed state and its traffic is using B&nd i

is 0 otherwise. Thus, if alh working paths are operational,ShoWing thatB(w) +U(w) + F(w) = n for any statew.

the state vector has value = 0. We defineF(w) to be the For the discussion that follows, it is useful to partition the
number of failed WPs when the system is in statelt can universal set of all allowable states into subsets based on the

be computed as number of active backup pathis(w). If we defineW to be
the set of all statesv, we can define

F(w) = ; w;. (4) Wi = {w : F(w) = m} (10)

If a working path has failed and other backup paths sha@ m = 0,1,2,...,n. For example W, = {0}. Clearly
resources with its backup path, the ability of those workingV,,}7,_, is a cover of\W, i.e. W = UZL:O Win.
paths to recover from failures can be compromised. ConsideM/e can illustrate the partitioning of the state space using
an arbitrary working path WP The set of working paths the following example. Consider the state transition diagram
whose respective backup paths share resources withi8P shown in Fig. 2. Here four 1:1 protection groups are organized
{WP; : s;; = 1}, so we can define; = > | w;s;; to be into a minimally connected symmetric recovery scheme of

the number of failed working paths, including WRhat are the type depicted in Fig. 1, witt8 given by (3). Fig. 2



shows transition rates between states; for instance, the balance

. . . R F(w) states
equation for statg0 00 1] can be written by inspection as

(/\ + H)p[ooo 1] = /\p[oooo] + UPo101)s (11)

wherep,, is the steady state probability that the system is in
statew. The dashed lines in the figure indicate the partitioning
of W into subsetsV,, Wi, and W,, based on the value of
F(w) associated with each state. Note thet = W, = 0.

In fact, for any symmetric irreducible recovery scheme of size
n, Wy, = 0 if m > |n/2], where|z| is the largest integer
that satisfies < z.

U(w) states

Fig. 3. Probability flux into and out of state. The states at the top compose
setA,,—1 while those at the bottom compose séf, 1.

oor) (}1000) }( 0010) Fw) =1 Letting w=0 produce;s a set ot/(0) = n local balance
oY equations whose solution B = 1Po _V_y € A = Wy If

[V N we assume that there exists a positive integesuch that
Fw)=2 Pw = "po YW € Wp,, wherem = 0,1,...,k, then using
the local balance equations for eaehe W1 giveSpy, =

r(r¥pe) = r**lpe. So by induction we have, = r™pg

Fig. 2. State spac®V for a minimally connected recovery scheme wher : ; : ;
n = 4, showing transition rates and partitioned into sub3éts, based on G‘vw € W Furthermore, Inserting this result into the gIObaI

(owo)u (o
-

the value of F(w). balance equation (12),
>\m+1 A\
In order to compute performance metrics for different (1:1) 0 = —(UWwW)——+F(W)——)po
recovery schemes, we need to determine the steady state ;fm,l K \m+1
probabilitiespy, for all w € W. The solution for a (1:1) + F(W)A——po + U(W)u——7po, (15)
recovery scheme with an arbitrary sharing masixs given H K
by the following theorem. produces an expression that holds forwlic W. u

Theorem 1:Given a recovery scheme with sharing matrix Applying the normalization condition} _, y, pw = 1, we
S. For any statew € W, if F(w) = m, thenp,, = r"p,, have N
yvherer = \/u andpy is the steady-state probability of being 1=po+ Z Z Dw. (16)
in statew = 0. =1 wew,,
Proof: Because the arrival and departure processes trﬂfging the result of Theorem 1 in (16), we obtain the following
characterize the system are Poisson, it is not possible to have . ) ’
. X . . . expression forpg:
multiple simultaneous failure or repair events, since these
occur in an interval of lengtti\¢ with probability o(At). For
any statew € W,,, the only allowable transitions to or from Do = (
other states involve states’ whose Hamming distance from
w, d(w, w') = 3, [w; —wil, is unity. SinceF(w) = m, Ill. RECOVERY BLOCKING PROBABILITY BOUNDS
the states to which the system can transition frentan be ] ) N
grouped into two setsdm,_1 € Win_1 and Apmi1 C Winit, We dgfme the recovery bIockmg probablllﬂg to_ be the
wherex € A,,_; if F(x) =m — 1 andd(w,x) = 1, and probability that an arbitrary working path fal!ure is blocked
similarly for y € Ams1. F(w) and U(w) are the size of due to a lack _of backup resources. Consider tHe 1:1
setsA,,_, and A,.. ., respectively. The portion of the statg/€COVery group in a (1:¥)recovery scheme. The group can be
transition diagram consisting of the statesAp,_; U {w} U in one of two states, as shown in Fig. 4. The group transitions

A1 is shown in Fig. 3. Other transitions from the states iffom state 0 to state 1 only if its backup path is available;
A1 and A,,.1 may exist, but we do not show these foPtherwise it uses dynamic recovery to reroute the working

the sake of clarity. The global balance equationviocan be Path. Once the group is in state 1 it waits an average of
written as 1/ units of time before the working path is repaired and

then transitions to state 0. The steady-state probability that
0=—(UW)A+F(W)u)pw +A > px+ 4 ¥ py- (12) the group's working path is using its backup path is
XEAm_1 YEAm 41 )\(1 _ PB)

n -1
1+ rme|> . (17)

m=1

This equation can be decomposed into a set of local balance P = M1 —Pg)+p (18)
equations as follows, where= A/p: The recovery blocking probability’s is therefore
Pw = TPx VX E Ay (13) CA=P(A+p)  r—P(r+1) (19)

Py = TDPw Vy € Aerl (14) B /\(]. - Pl) 7"(1 — Pl)



Theorem 2:For a minimally connected symmetric recovery

A1-Ry) :] , / :
AR, 0 W =0 1 w =1 scheme of sizer, the number of elements in the 941, is
H |Wm|”<"m1), (24)
m

m—1

Fig. 4. State diagram for th&® 1:1 recovery group in a (1:®)recovery .
scheme. Proof: Each element of the séV,, is a statew where

F(w) = m and no more than one working path uses a given
shared backup path. In the minimally connected case, the
In order to find Pz, we must first compute” . Since the degree of each vertex in the sharing graph is 2. Thus, if WP
recovery scheme is symmetri¢}; is the same for all 1:1 has failed, WR_; and WR,; (modulon) cannot be in a failed
recovery groups (WFBP;), 1 < ¢ < n. P, is found by state since BP which is in use, shares resources with; BP
summing the probabilities of all states wherew; = 1: and BR_ ;. We can represent the configuration of WP failures
P 20 associated with each state W,, by modeling the sharing
L= Z Pw- (20) graph as a ring of consecutively numbered ufb22,...,n}.
Zf:mf A failed working path WRis denoted by placing a single ball

We are now in a position to derive upper and lower boundi© the corresponding ura Thus a statev < W, can be
for the recovery blocking probability, which are respectivelfEPresented by placing indistinguishable balls into the urns
associated with maximally and minimally connected symmet? that there is no more than one ball in any urn and there

ric recovery schemes. We examine the maximally connectt@hdat least one empty urn between any two urns with balls in
em.

case first. . )
For m = 1, there aren possible outcomes (ball in urn 1,

ball in urn 2, etc.), sdW;| = n. Form > 2, there aren
places to put the first ball. Once the ball is placed into an urn,
Recall from our definition that a maximally connectecho balls can be put into that urn or the two urns on either
scheme is characterized by a sharing matrix in whigh=1 side of it. We can therefore remove those three urns from the
for all  andj. In such a scheme, the failure of a single workinging, leaving a chain of. — 3 urns into which we must put
path will cause the system to enter a state belongingio the remainingn — 1 balls such that the two above conditions
Now, [W,| = n, andvw € Wy, F(w) = 1 andB(w) =n—1. are satisfied. Then — 1 balls, if placed in such a manner,
In other words, if any one working path fails the remainingyill partition the chain into groups of empty urns. We use
n — 1 working paths will be blocked. Thus the state space the symbolX to represent an urn that contains a ball, and we
W = {0} UW;, andW,, = () for m > 1. From Theorem 1, definez; to be the number of empty urns in th& group of
pw = o for all w € W;. We use (17) and find thaty is empty urns in the chain, where the first group is located at
M 1 the left end of the chain. If a ball is placed in the leftmost
= PR 1 (21)  urn, thenz; = 0. Likewise, if a ball is placed in the rightmost
urn, thenz,,, = 0. Thus we can represent the chain of urns as
HenceP;, = r/(1 + nr). Using this fact in (19), we get follows:
(n—1r
1+ (n-1)r

as the upper bound for the recovery blocking probability.

A. Maximally Connected Symmetric Recovery Schemes

Do

o MRy X---Ka,_1 Kz,

Ppy (22)

wherex; >0, 3 >0, 23 >0, ..., z,,—1 > 0, andz,, > 0.
Now definey1 =x1+1, Y2 =T2,Y2 =3, .., Y2 = Tm—1,
andy,, = x,, + 1. The ball placement problem is isomorphic
B. Minimally Connected Symmetric Recovery Schemes o determining that number of ways that, y», . . ., ¥, can be

Next we consider the minimally connected case. We obtaidlded to produce —m. Itis well known (see for instance [5])
the recovery blocking probability by computing (20) andhat there areyv_,Cr—1 length-? vectors of positive integers

inserting the result into (19). We have whose elements can be added to proddteThus there are
n/2) n,m,lcm,l ways thatm — 1 failures can _be.ar_ranged over a
P = Z Z » chain ofn — 3 nodes. Since the balls are indistinguishable, we
= W5 w must divide this term byn, since we used one ball to break
w=1" the circle. We must also multiply this term bybecause there
In/2] aren urns into which we can place the first ball. This gives
= 1o Z rm{w:w e W,,, w; =1}|. (23) (24), completing the proof. [ ]
m=1 This leads immediately to the following corollary.

In order to evaluate the above expression, we need toCorollary 3:
computepg and |[{w : w € W,,, w; = 1}|. Examining o — 1
(17), we find that meeting the first objective requires that we  |{w: w e W,,, w; =1}| = ( ) (25)
determingW,,| form = 1,2,...,|n/2], which we do in the m—1
following theorem.



Proof:

Let the first ball be dropped into urh From of 1/u

4 hours and400 hours < 1/\ < 4000 hours,

the proof of Theorem 2, the number of ways to arrange thespectively. We computed the recovery blocking probability

remainingm — 1 balls is,,_,—1Cr—1.

by taking the ratio of the number of blocked failures to the

Using the results of Theorem 2 and Corollary 3 in (23), wital number of failures (50,000 and 250,000 for the upper

obtain in/2) )
Z’rn 1 m(nmml )

and lower bounds, respectively) in each simulation run. In
Fig. 6, we plot the recovery blocking probabilities averaged

1= 1+ ZLW/?J nrm (nfmfl) ’ (26) over three simulation runs. The error bars in the figure indicate
. . . moL mel one standard deviation in the data. 40% of the data deviated
which, using (19), gives from the theoretical results in Fig. 5 by less than 1%; 10%
ZLn/QJ m— 1( 1) deviated by more than 3.1% and the greatest error was 5.7%.
Ppr=1- Tn_/2J (n=m)r™ 1 (@7)
1 + Z = m - (an ) 10_1
as the lower bound on the recovery bIockmg probability. PURNREEES
In Fig. 5 we plot values oPgy and Pgr. The upper limit P S S
. . . B S e = 1
on r corresponds to a mean repair time that is 1% of tf S SPE S SRS A
mean time between failures, e.g. a mean repair time of » S SRt S CE L A
- . = I e - et
hours while a failure occurs every 17 days, on average. +g i ’

of the lower bound curves nearly overlap, so that they are r

distinguishable in the figure. ifis small, then a high degree of £ w07

sharing is possible; if we impose a constraint tRat < 0.01,
we can use maximal sharing far< 8 if » < 0.0015. Minimal )
sharing works for < 0.005 for all n; this suggests that we can
chain together large numbers of backup paths without pena
as long as the probability is small that a WP’s neighbors
the sharing graph fail while the WP is failed.
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Fig. 5. Theoretical upper and lower bounds Bp for n = 3,4,...,8.

(1]

(2]
We used the GLASS [6] simulation tool to perform discrete
event simulations for the case of minimally and maximallys;

connected symmetric recovery schemes for values: of
3,4,...,8. In each case we simulated the behavior of a single
recovery scheme of size; because the current practice is to
use dedicated backup resources for each new working path]
it is unlikely that (1:1) schemes will incorporate more than 5]
eight shared backup paths in the near future. Each ofnthe
working paths was independently transitioned between faile@]
and healthy states with exponentially distributed durations

IV. SIMULATION RESULTS ANDANALYSIS
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Fig. 6. Upper and lower recovery blocking probability bounds obtained from
simulation forn = 3,4,...,8.

V. SUMMARY

We have presented analytical models for (1:19hared
protection schemes, considering both maximally and mini-
mally shared schemes. We have validated the results of the
analytical models with the help of network simulation results.
The analysis and results reported in this paper are useful
for quantifying the trade-offs between the resource sharing
benefits vs. performance in terms of protection blocking.
Network operators can use these results to determine the
level of resource efficiency they can achieve for a specified
connection availability (or robustness) requirement.
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