
Understanding Consistency Maintenance in Service
Discovery Architectures during Communication Failure

Christopher Dabrowski
NIST

NN Room 560
Gaithersburg, Maryland USA 20899

1-301-975-3249

cdabrowski@nist.gov

Kevin Mills
NIST

NN Room 445
Gaithersburg, Maryland USA 20899

1-301-975-3618

kmills@nist.gov

Jesse Elder
NIST

NN Room 579
Gaithersburg, Maryland USA 20899

1-301-975-4411

jelder@nist.gov

ABSTRACT
Current trends suggest future software systems will comprise
collections of components that combine and recombine
dynamically in reaction to changing conditions. Service-discovery
protocols, which enable software components to locate available
software services and to adapt to changing system topology,
provide one foundation for such dynamic behavior. Emerging
discovery protocols specify alternative architectures and
behaviors, which motivate a rigorous investigation of the
properties underlying their designs. Here, we assess the ability of
selected designs for service-discovery protocols to maintain
consistency in a distributed system during catastrophic
communication failure. We use an architecture description
language, called Rapide, to model two different architectures
(two-party and three-party) and two different consistency-
maintenance mechanisms (polling and notification). We use our
models to investigate performance differences among
combinations of architecture and consistency-maintenance
mechanism as interface-failure rate increases. We measure system
performance along three dimensions: (1) update responsiveness
(How much latency is required to propagate changes?), (2) update
effectiveness (What is the probability that a node receives a
change?), and (3) update efficiency (How many messages must be
sent to propagate a change throughout the topology?). We use
Rapide to understand how failure-recovery strategies contribute to
differences in performance. We also recommend improvements to
architecture description languages.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
methodologies and tools.
D.2.5 [Software Engineering]: Testing and debugging –
symbolic execution and tracing.
D.2.8 [Software Engineering]: Metrics – performance measures.

1. INTRODUCTION
Growing deployment of wireless communications, implying
greater user mobility, coupled with proliferation of personal
digital assistants and other information appliances, foretell a
future where software components can never be quite sure about
the network connectivity available, about the other software
services and components nearby, or about the state of the network
neighborhood a few minutes in the future. In extreme situations,
as found for example in military applications [1], software
components composing a distributed system may find that
cooperating components disappear due to physical or cyber
attacks or due to jamming of communication channels or
movement of nodes beyond communications range. Such
environments demand new analysis approaches and tools to
design and test software.

In this paper, we use architectural models to assess the ability of
selected designs for service-discovery protocols to maintain
consistency in a distributed system during catastrophic
communication failure. Using an architecture description
language (ADL), we model two different architectures (two-party
and three-party) and two different consistency-maintenance
mechanisms (polling and notification). To provide our models
with realistic behaviors, we incorporate consistency-maintenance
mechanisms adapted from two specifications: Jini™ Networking
Technology1 [2] and Universal Plug-and-Play (UPnP) [3]. We use
our models to investigate performance differences among
combinations of architecture and consistency-maintenance
mechanism as interface-failure rate increases. We measure system
performance along three dimensions: (1) update responsiveness
(How much latency is required to propagate changes?), (2) update
effectiveness (What is the probability that a node receives a
change?), and (3) update efficiency (How many messages must be
sent to propagate a change throughout the topology?).

Our modeling and analysis approach builds on earlier work [4]
where we derived benefits by creating dynamic models from
specifications for service-discovery protocols. Dynamic models

1 Certain commercial products or company names are identified in

this paper to describe our study adequately. Such identification
is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor to imply
that the products or names identified are necessarily the best
available for the purpose.

Table 1. Mapping concepts among service-discovery systems.

enable us to understand collective behavior among distributed
components, and to detect ambiguities, inconsistencies and
omissions in specifications. In this paper, we apply the same
method: (1) construct an architectural model of each discovery
protocol, (2) identify and specify relevant consistency conditions
that each model should satisfy, (3) define appropriate metrics for
comparing the behavior of each model, (4) construct relevant
scenarios to exercise the models and to probe for violations of
consistency conditions, and (5) compare results from executing
similar scenarios against each model. To implement the method,
we rely on Rapide [5], an ADL developed at Stanford University.
Rapide represents behavior in a form suitable to investigate
distributed systems, and comes with an accompanying suite of
analysis tools that can execute a specification and can record and
visualize system behavior. In this paper, we use Rapide to
understand how failure-recovery strategies contribute to
differences in performance. Based on our experiences, we also
recommend improvements to architecture description languages.

The remainder of the paper is organized in six sections. We begin,
in Section 2, by introducing service-discovery protocols and
architectures, including a description of procedures to maintain
consistency in replicated information. Section 2 also discusses
various failures that can interfere with consistency maintenance.
In Section 3, we outline some techniques, included in our models,
to recover from failures. Section 4 defines an experiment, and
related metrics, to compare the performance and overhead
exhibited by selected pairings of architecture and consistency-
maintenance mechanism while attempting to propagate changes
during interface failures. In Section 5, we present results from the
experiment, and we discuss causes underlying some of the results.
In Section 6, we outline future work to evaluate service-discovery
architectures and protocols during message loss and node failure.
We conclude in Section 7.

2. SERVICE DISCOVERY SYSTEMS
Service-discovery protocols enable software components in a
network to discover each other, and to determine if discovered
components meet specific requirements. Further, discovery
protocols include consistency-maintenance mechanisms, which
can be used by applications to detect changes in component
availability and status, and to maintain, within some time bounds,
a consistent view of components in a network. Many diverse
industry activities explore different approaches to meet such
requirements, leading to a variety of proposed designs for service-
discovery protocols [2, 3, 6-14]. Some industry groups approach
the problem from a vertically integrated perspective, coupled with
a narrow application focus. Other industry groups propose more
widely applicable solutions. For example, a team of researchers
and engineers at Sun Microsystems designed Jini Networking
Technology [2], a general service-discovery mechanism atop
JavaTM, which provides a base of portable software technology.
As another example, a group of engineers at Microsoft and Intel
conceived Universal Plug-and-Play [3] in an attempt to extend
plug-and-play, an automatic intra-computer device-discovery and
configuration protocol, to distributed systems. The proliferation of
service discovery protocols motivates deeper analyses of their
designs.

To help us compare designs, we developed a general structural
model, documented using the UML (Unified Modeling

Language). Our general model provides a basis for comparative
analysis of various discovery systems by representing the major
architectural components with a consistent and neutral
terminology (see first column in Table 1). The main components
in our general model include: (1) service user (SU), (2) service
manager (SM), and (3) service cache manager (SCM), where the
SCM is an optional element not supported by all discovery
protocols. These components participate in the discovery,
information-propagation, and consistency-maintenance processes
that comprise discovery protocols. A SM maintains a database of
service descriptions, (SDs), each SD encoding the essential
characteristics of a particular service or device (Service Provider,
or SP). Each SD contains the identity, type, and attributes that
characterize a SP. Each SD also includes up to two software
interfaces (an application-programming interface and a graphic-
user interface) to access a service. A SU seeks SDs maintained by
SMs that satisfy specific requirements. Where employed, the SCM
operates as an intermediary, matching advertised SDs of SMs to
requirements provided by SUs. Table 1 shows how these general
concepts map to specific concepts from Jini, UPnP, and the
Service Location Protocol (SLP) [8]. The behaviors by which SUs
discover and maintain consistency in desired SDs depend partly
upon the service-discovery architecture employed.

2.1 Alternative Architectures
Broadly speaking, system architecture comprises a set of
components, and the connections among them, along with the
relationships and interactions among the components. In our
application, we represent the architecture of a discovery system
using an architectural model, which expresses structure (as
components, connections, and relations), interfaces (as messages
received by components), behavior (as actions taken in response
to messages received, including generation of new messages), and
consistency conditions (as Boolean relations among state
variables maintained across different components). Our initial
analysis of six distinct discovery systems revealed that most
designs use one of two underlying architectures: two-party and
three-party.

2.1.1 Two-Party Architectures
A two-party architecture consists of two major components: SMs
and SUs. In this study, we use a two-party architecture arranged in
a simple topology consisting of one SM and five SUs, as depicted
in Figure 1. To animate the architecture, we chose behaviors for
discovery, information propagation, and consistency maintenance,
as described in the specification for UPnP. Upon startup, each SU
and SM engages in a discovery process to locate other relevant
components within the network neighborhood. In a lazy-discovery
process, each SM periodically announces the existence of its SDs

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Figure 1. Two-party service-discovery architecture
deployed in a six-node topology: five service users (SUs)
and one service manager (SM).

over the UPnP multicast group, used to send messages from a
source to a group of receivers. Upon receiving these
announcements, SUs with matching requirements use a
HTTP/TCP (HyperText Transfer Protocol/transmission-control
protocol) unicast link (for message exchanges between two
specific parties) to request, directly from the SM, copies of the
SDs associated with relevant SPs. The SU stores SD copies in a
local cache. Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as
Msearch queries, on the UPnP multicast group. Any SM holding
a SD with matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter delay)
directly to the SU. Whenever a UPnP SM responds to an Msearch
query (or announces itself), it does so with a train of (3 + 2d + k)
messages, where d is the number of distinct devices and k is the
number of unique service types managed by the SM. For each
appropriate response, the SU uses a HTTP/TCP unicast link to
request a copy of the relevant SDs, caching them locally.

To maintain a SD in its local cache, a SU expects to receive
periodic announcements from the relevant SM. In UPnP, the SM
announces the existence of SDs at a specified interval, known as a
Time-to-Live, or TTL. Each announcement specifies the TTL
value. If the SU does not receive an announcement from the SM
within the TTL (or a periodic SU Msearch does not succeed
within that time), the SU may discard the discovered SD. We
selected the minimum TTL of 1800 s, as recommended by the
UPnP specification. (See Tables 2 and 4 for a summary of
relevant parameter values used in this paper.)

2.1.2 Three-Party Architectures
A three-party architecture consists of SMs, SUs, and SCMs,
where the number of SCMs represents a key variable. In this
study, we model a three-party architecture with one SM and five
SUs, as shown in Figure 2. We anticipate that under failure
conditions, increasing the number of SCMs will increase the
chance of successful rendezvous among components, leading to
better propagation of information updates from SMs to SUs. To
investigate this, we vary the number of SCMs in our three-party
architectural model. To animate our three-party model, we choose
behaviors described in the Jini specification.

In Jini, the discovery process focuses upon discovery by SMs and
SUs of any intermediary SCMs that exist in the network
neighborhood. Elsewhere [4], we describe these procedures in
detail. Here, we simply summarize. Upon initiation, a Jini
component enters aggressive discovery, where it transmits probes

on the aggressive-discovery multicast group at a fixed interval (5 s
recommended) for a specified period (seven times recommended),
or until it has discovered a sufficient number of SCMs. Upon
cessation of aggressive discovery, a component enters lazy
discovery, where it listens on the lazy-discovery multicast group
for announcements sent at intervals (120 s recommended) by
SCMs. Our three-party model implements both the aggressive and
lazy forms of Jini multicast discovery.

Once discovery occurs, a SM deposits a copy of the SD for each
of its services on the discovered SCM. The SCM caches this
deposited state, but only for a specified length of time, or TTL. To
maintain a SD on the SCM beyond the TTL, a SM must refresh
the SD. In this way, if the SM fails, then the SCM can purge any
SDs deposited by the SM. To make behavior as consistent as
possible across our models for both the two-party and three-party
architectures, we selected 1800 s as TTL for a SD to be cached by
a SCM. Using these techniques, SUs and SPs rendezvous through
SDs registered by SMs with particular SCMs, where the SCMs
are found through a discovery process. The SCMs match SDs
provided by SMs to SU requirements, and forward matches to
SUs, which then access the appropriate SPs.

2.2 Consistency Maintenance Mechanisms
After initial discovery and information propagation (through
SDs), service-discovery protocols provide consistency-
maintenance mechanisms that applications can use to ensure that
changes to critical information propagate throughout the system.
Critical information may consist of service availability and
capacity, or updates to descriptive information about service
capabilities, which may be necessary for a SU to effectively use a
discovered service. In our study, we consider two basic
consistency-maintenance mechanisms, polling and notification,
along with accompanying mechanisms to propagate new
information.

2.2.1 Polling
In polling, a SU periodically sends queries to obtain up-to-date
information about a SD that was previously discovered, retrieved,
and cached locally. In a two-party architecture, the SU issues the

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Figure 2. Three-party service-discovery architecture
deployed in a seven- or eight-node topology: five service
users (SUs), a service manager (SM), and a service cache
manager (SCM), with an optional 2nd SCM.

query directly to the SM from which the SD was obtained. In this
study, we use the UPnP HTTP Get request mechanism to poll the
SM to retrieve a SD associated with a specific URL (uniform-
resource locator). In response, the SM provides a SD containing a
list of all supported services, including their relevant attributes.

Polling in a three-party architecture consists of two independent
processes. In one process, a SM sends a ChangeService request to
propagate an updated SD to each SCM where the SD was
originally cached. In the second process, each SU polls relevant
SCMs by periodically issuing a FindService request, effectively a
query with a set of desired SD requirements. The SCM replies
with a MatchFound that contains the relevant information for any
matching SDs. In our study, we adopt a 180-second interval for
polling in both architectures.

2.2.2 Notification
In notification, immediately after an update occurs, a SM sends
events that announce a SD has changed. To receive events about a
SD of interest, a SU must first register for this purpose. In the
two-party architecture, the SU registers directly with a SM. We
model this procedure using the UPnP event-subscription
mechanism, where the SU sends a Subscribe request, and the SM
responds by either accepting the subscription, or denying the
request. The subscription, if accepted, is retained for a TTL,
which may be refreshed with subsequent Subscribe requests from
the SU. In our experiment, we chose 1800 s as TTL for event
subscriptions in both architectures.

In a three-party architecture, a SU registers with a SCM to receive
events using a procedure analogous to that used by a SM to
propagate a SD. As with SD propagation, the SCM grants event
registrations for a TTL, which may be refreshed. When a SD
update occurs, the SM first issues a ChangeService request to all
SCMs to which it originally propagated the SD. The SCM then
issues a MatchFound to propagate the event to all SUs that have
registered to receive events about the SD.

2.3 The Nature and Import of Failures
The foregoing discussion, while oversimplified, highlights the
complexity inherent in discovery protocols. Additional
complexity arises from uncertainty, as nodes, processes, and links
can appear and disappear without warning. Discovery protocols
must include behavior to cope with such changes. In this section,
we address the nature of various failures that can arise, and we
consider the implication of such failures on the behavior of
discovery protocols, and on the application software that depends
upon them.

2.3.1 Classifying Failures
In our research, we focus particularly on failures that can exist
within a hostile environment, such as encountered during military
or emergency-response operations. We can classify such failures
in two general categories: (1) communication failures and (2)
process failures. Communication failures can arise due to enemy
jamming, or other interference, due to congestion, due to physical
severing of cables, due to improperly configured or sabotaged
routing tables, or due to multi-path fading as nodes move across a
terrain. We can subdivide communication failures into three
classes: interface failures, message loss, and path failures. This
paper considers only interface failure. A communication interface
in a node may fail fully (both transmit and receive) or partially
(either transmit or receive). All outbound messages from an

interface will be lost when the transmitter fails, while all inbound
messages will be lost when the receiver fails. Message loss, a less
severe failure, implies that individual messages may be lost, either
sporadically or in bursts. Path loss appears as a blocked
communication route between two nodes, or areas, in the network.
A path can be blocked in one or both directions.

Process failures can be caused by enemy bombardments or cyber
attacks, by programming errors, or by hardware failures. We can
subdivide process failures into node and thread failures. During a
catastrophic failure, processing in a node ceases, and the node
must reinitialize before processing resumes. Some information
maintained by the node may persist across the failure, while other
information may be lost. The nature and condition of persistent
information could prove crucial to a node’s behavior after
processing resumes. Of course, the node might never reappear.
Thread failures, while less catastrophic, can be more troublesome
than node failures. A node might rely on certain long-running
threads to react to events from other nodes. Failure of selected
threads can interfere with the operation of the node, as well as
other nodes in a distributed system. In some cases, a node can
appear to be present, while being effectively inoperable.

2.3.2 Failure Recovery in Service Discovery Systems
In service-discovery systems, failure-recovery responsibilities are
divided among three parties: (1) lower-layer protocols, (2)
discovery protocols, and (3) applications. Discovery protocols and
applications use the services of three classes of lower-layer
protocols: (1) unreliable unicast protocols, (2) unreliable multicast
protocols, and (3) reliable unicast protocols. Unreliable protocols,
whether unicast or multicast, neither recover nor signal lost
messages; thus, neither source nor destination will learn of a loss.
Further, multicast protocols exchange messages along a tree of
receivers. For this reason, a multicast message might be received
by some nodes, but not by others. A failure near a multicast
source prevents messages from being received by any node in the
multicast tree, while a failure near a receiver prevents messages
from being received by only a single node in the multicast tree. Of
course, failures at intermediate points in the multicast tree could
result in messages being lost to subsets of receivers. Since
unreliable protocols provide no guarantees, recovery must be
provided by mechanisms at a higher layer.

Reliable unicast protocols include mechanisms that attempt to
ensure delivery of messages by detecting and retransmitting lost
messages. Of course, the reliability schemes may eventually give
up if too many retransmissions are needed (which might indicate
node, interface, or path failure). In such cases, the reliable unicast
protocol will signal to a higher layer that a message could not be
delivered. Some ambiguity does exist, however, when using
reliable unicast protocols to send request-response message pairs,
as is the case for discovery systems. After submitting a request
through a reliable unicast protocol, a requesting process might
wait for a corresponding response from a remote process. For
example, Jini can use Remote Method Invocation (RMI) over
TCP to invoke a method on a remote object, and to receive a
response. Similarly, UPnP uses TCP to submit HTTP requests and
receive HTTP responses. In such cases, the RMI layer or the TCP
layer can signal a remote exception (REX). The requesting
process cannot determine whether a REX was caused by failure to
transmit the request or by failure to receive a response from the
remote process. The responding process has more information, as

it does not receive a REX when an inbound request fails, but does
receive a REX when its outbound response fails. In essence, while
reliable unicast protocols attempt to deliver messages in the face
of various communication failures, ultimately the reliability
mechanisms might prove insufficient, causing a higher-layer
process to be notified of the failure. In such cases, the higher-layer
process is free to determine an appropriate recovery strategy.

3. MODELING RECOVERY STRATEGIES
Our architectural models incorporate three classes of failure-
recovery strategies: (1) recovery by lower-layer protocols, (2)
recovery by discovery protocols, and (3) recovery by application
software. For each class, we outline the strategies (see Table 2)
included in our models.

3.1 Recovery by Lower-Layer Protocols
Our models operate over two types of channels: unreliable,
simulating the UDP in both multicast and unicast forms, and
reliable, simulating the TCP. In UDP simulation, we discard
messages lost due to transmission errors, and we discard messages
lost due to path and interface failures. During path failure,
messages can be discarded in one or both directions. During
interface failure, we discard all messages sent from a node with a
failed transmitter, and we discard all messages inbound for a node
with a failed receiver. Neither sender nor receiver learns the fate
of lost messages.

In the TCP simulation, our model proves more complex. For
messages lost to transmission errors, we schedule a retransmission
(roughly within a round-trip time, or RTT). We increase the RTT
by about 25% with each successive retransmission. If successive
retransmissions exceed a threshold (three in the current study),
then we discard the message and issue a REX. For messages lost
to interface or path failure, we model TCP connection
establishment procedures by discarding the message and waiting
for a period, uniformly distributed between an upper and lower
bound (30-75 s in the current study), then we signal a REX. When
discarding a request, we signal a REX to the requester, but when
discarding a response, we signal a REX to both parties.

3.2 Recovery by Discovery Protocols
Discovery protocols include built-in robustness measures to deal
with the possibilities of UDP message loss and node failure.
Discovery protocols specify periodic transmission of key
messages. For example, Jini requires a node to engage in
aggressive discovery on startup, and then to enter lazy discovery,
where all SCMs periodically announce their presence. In a similar
lazy discovery, UPnP requires SMs to periodically announce their
presence. While not specifying aggressive discovery, UPnP
permits SUs to issue Msearch queries at any time. To compensate
for the different announcement intervals recommended for Jini
and UPnP, we chose to have UPnP SUs issue Msearch queries
every 120 s, but only after a SU purges a SD from its local cache.
Once a SU regains its desired SD, the related Msearch queries
cease. Whenever a UPnP SM announces itself or responds to an
Msearch query, it sends n copies of each message, where n is a
retransmission factor (two in the current study) recommended by
the UPnP specification to compensate for possible UDP message
loss. In both Jini and UPnP, each announcement includes a TTL.
Receiving nodes can cache the information in the announcement
until the TTL expires; then the information must be purged from
the cache. In this way, each node in the system eliminates residual
information about failed or unreachable nodes. Our models
incorporate these failure-recovery behaviors.

3.3 Recovery by Application Software
When discovery nodes communicate over a reliable channel, a
REX may occur. Response to a REX is left to the application. In
our models, depending on the situation, we implement three
different strategies: (1) ignore the REX, (2) retry the operation for
some period, and (3) discard knowledge. The retry strategy
attempts to recover from transient failures. The discard strategy,
which occurs following repeated failure of the retry strategy, relies
upon discovery mechanisms to recover from more persistent
failures.

3.3.1 Ignore the Remote Exception
In many cases, we simply ignore a REX. In general, our models
ignore a REX received when attempting to respond to a request. A
SU can ignore a REX received in response to a poll, FindService
or HTTP Get, because the poll recurs at an interval. The SCM
(three-party model) or the SM (two-party model) also ignores a
REX received while attempting to issue a notification. This
behavior, which is described in both the Jini and UPnP
specifications, depends upon reliable lower-layer protocols to
provide robustness for notifications. Notifications include
sequence numbers that allow a receiving node to determine
whether or not previous notifications were missed.

3.3.2 Retry the Operation
In our models, we retry selected operations in the face of a REX.
The UPnP specification separates the operation of discovering a
resource from obtaining a description of the resource (Jini
combines these operations). Without a description, the resource
cannot be used. For this reason, in our two-party model, a SU
must issue a HTTP Get to obtain a description. If no description
arrives within 180 s, then our model retries the HTTP Get. If
unsuccessful after three attempts, the SU ceases the retries, but
sets a flag reminding itself to reissue a HTTP Get when the
resource is next announced. Our three-party model, based on Jini,

Table 2. Summary of recovery responsibilities and
strategies as implemented within our models for two- and
three-party architectures.

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP

No recoveryNo recoveryUDPLower-Layer
Protocols

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP

No recoveryNo recoveryUDPLower-Layer
Protocols

Table 3. Experiment combinations.

also contains a retry strategy, but associated with attempts to
register or change a SD with a SCM. In these cases, the SM retries
a ChangeService or ServiceRegistration 120 s after receiving a
REX. Similarly, when a SU receives a REX (from either a SM or
SCM) in response to a request to register for notification, the SU
retries the registration in 120 s. These retries occur until some
time bounds, after which the SM discards knowledge of the SCM.

3.3.3 Discard Knowledge
Both our two-party and three-party models include the possibility
that an application can discard knowledge of previously
discovered nodes. In UPnP, after failure to receive
announcements from the SM within a TTL, a SU discards a SM
and any related SDs. We implement this behavior in our two-party
model. In Jini, the specification states that a discovering entity
may discard a SCM with which it cannot communicate. In our
three-party model, a SM or SU deletes a SCM if it receives only
REXs when attempting to communicate with the SCM over a
540-s interval. After discarding knowledge of a SM (UPnP) or
SCM (Jini), all operations involving the node cease until it is
rediscovered, either through lazy discovery (Jini or UPnP
announcements) or aggressive discovery (UPnP Msearch queries).

4. EXPERIMENT DESIGN AND METRICS
In this paper, we investigate the following question: How do
alternative service-discovery architectures, topologies, and
consistency-maintenance mechanisms perform under deadline
during interface failure? To address this question, we deploy a
two-party and three-party architecture (recall Figures 1 and 2),
each in a topology that includes one SM and five SUs. In the
three-party case, we use two topologies, one with one SCM and
another with two SCMs. To establish initial conditions, we
exercise each topology until discovery completes, and the initial
information (a SD) propagates to all SUs. To begin the
experiment, we introduce a change in the SD at the SM, and we
establish a deadline, D, before which the change must propagate
to all SUs. We measure the number of messages exchanged and
the latency required to propagate the new information, or until D,
under two different consistency-maintenance mechanisms: polling
and notification. We repeat this experiment while varying the
percentage of interface-failure time for each node up to 75% (in
increments of 5%). We provide further details below.

4.1 Experiment Combinations
To compare change propagation in two- and three-party
architectures, we use our models to combine the architectures with
different consistency-maintenance mechanisms. Table 3 depicts
the six combinations. Each experiment runs one combination from
time zero until D, while introducing failures at each node (see

4.3). Each experiment aims to restore consistency among the
changed SD held by the SM and the cached copies of the SD held
by all of the SUs.

4.2 Tracking Consistency
To track consistency in our experiment, we employ property
analysis [4], using a single consistency condition: service
attributes for a SD discovered by a SU should have the same
values as the attributes of the SD being maintained by the SM that
manages the SD. More formally,

 FOR All (SM, SU, SD)
 (SM, SD [Attributes1]) isElementOf SM managed-services AND
 (SM, SD [Attributes2]) isElementOf SU discovered-services
 implies Attributes1 equals Attributes2

The condition is incorporated directly into our models and
checked using Rapide procedural code. We establish an initial
system state in which this condition holds, and then introduce a
change in (SM, SD [Attributes1]), which negates the condition for
all SUs. Then, we monitor updates to (SM, SD) tuples in the set
of discovered-services maintained by individual SU's to determine
if the condition becomes true. Note that if a SU discards its (SM,
SD) tuple, the tuple must be recovered before the condition can be
satisfied. These consistency checks form the basis for our
measurements.

4.3 Generating Interface Failures
We set aside an interval, up to time Q, to complete initial
discovery and information propagation. In our experiments, Q =
100 s and D = 5400 s. We choose a time, randomly distributed on
the uniform interval Q to D/2, to introduce a change into the SD
on the SM. We also choose times, randomly distributed on the
uniform interval Q to [D - (D x F)], for each node to suffer an
interface failure, where F is the interface-failure rate, which
defines the duration of failures as follows. Once activated, each
failure remains in effect for a duration of D x F, after which the
failure is remedied. We choose interface failures to be of equal
and increasing length to give a suitable basis for comparative
analysis. When activating each interface failure, we choose with
equal likelihood that the transmitter, receiver, or both fail. Table 4
summarizes most of the relevant parameters and values for our
experiments.

4.4 A Sample Run
Figure 3 shows partial results from a sample run for the three-
party architecture, with two SCMs, using notification as the
consistency-maintenance mechanism. In this run, F was 0.05, and
so each failure occurred between 100 and 5130 s [D - (D x F)],
and lasted for 270 s (D x F). Figure 3 shows the time when each
interface failed, and recovered. The performance section of the
figure lists two times for each node: loss of consistency and
restoration of consistency, or D where inconsistency remains. The
figure also lists two message counts for each node: messages sent
to restore consistency and total messages sent. For each SM and
SCM, the first count includes messages sent while any SU
remains inconsistent. In this sample run, SUs 1, 2, 4, and 5 and
both SCMs became consistent quickly, within 0.00109 s, which
represents the time necessary to propagate the change from the
SM to at least one SCM, match the changed SD registration to all
the SU notification requests registered on the SCM, and forward
the matches. However SU 3, whose receiver failed at an
inopportune time, never heard the notification and continued in an

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

inconsistent state for the remainder of the run. This illustrates how
lack of robustness in the notification mechanism can lead to
prolonged inconsistent states.

4.5 Metrics
We use the data collected from experiment runs to compute three
metrics: update responsiveness, update effectiveness, and update
efficiency. We define these below.

4.5.1 Update Responsiveness
Assuming information is created at a particular time and must be
propagated by a deadline, then the difference between the
deadline and the creation time represents available time in which
to propagate the information. Update Responsiveness, R,
measures the proportion of the available time remaining after the
information is propagated. More formally, let D be a deadline by
which we wish to propagate information to each SU-node n in a
service discovery topology. Let tC be the creation time of the

information that we wish to propagate, where tC < D. Let tU(n) be
the time that the information is propagated to SU n, where n = 1
to N, and N is the total number of SUs in a topology. Define
change-propagation latency (L) for SU n as: Ln = (tU(n) -
tC)/(max(D, tU(n)) – tC). This is effectively the proportion of
available time used to propagate the change to SU n. The
numerator represents the time at which the SU achieved
consistency after the update occurred. The denominator represents
the time available to propagate the change. The term max(D, tU(n))
accounts for cases where tU(n) > D. Define R for SU n as: Rn = 1 –
Ln. Rn is the proportion of available time remaining after
propagating a change to SU n.

4.5.2 Update Effectiveness
Update Effectiveness, U, measures the probability that a change
will propagate successfully for a given SU, i.e., tU(n) < D. More
formally, assuming definitions from 4.5.1 hold, let X be the
number of runs (30 here) during which a particular topology is
observed under identical conditions. Recalling that N is the total
number of SUs in a topology, define the number of SUs observed
under identical conditions as: O = X .N. Define U, the probability
that tU(n) < D, as: U = 1 – P(F), where P(F) = (ΣiΣj (one if Ri,j
equals 0 and zero otherwise))/O and where i = 1...X and j = 1...N.

4.5.3 Update Efficiency
Given a specific service-discovery topology, examination of the
available architectures (two-party and three-party) and
consistency-maintenance mechanisms (polling and notification)
reveals a minimum number of messages, M, that must be sent to
propagate a change to all SUs. In our topology, M (M = 7) occurs
when using notification to propagate information in a three-party
architecture with one SCM. Update Efficiency, E, can be defined
as the ratio of M to the actual number of messages observed. More
formally, let S be the number of messages sent while attempting to
propagate a change from a SM to SUs in a given run. Define
average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X.

5. RESULTS AND DISCUSSION
In this section, after showing results from our experiments, we
consider the relative performance of our models. We propose
reasons for performance differences, subject to further analysis
and verification by on-going research. We also use Rapide to
examine selected saw-tooth behaviors, and we outline suggestions
for improving ADLs (based on our experiences with Rapide).

5.1 Results
In a series of six graphs, which have identical abscissas (interface-
failure rate, increasing from 0% to 75% in increments of 5%) and
ordinates (one of the three metrics ranging between 0 and 1), we
plot selected measurements generated from our models. Each
graph compares four of the configurations in Table 3 against one
of the metrics: update responsiveness (median), effectiveness, or
efficiency (average). We choose the median as a measure of
update responsiveness because the measured data tend to clump in
distinct concentrations. Averages proved less representative of the
data. Figure 4(a) compares responsiveness from our two-party
model against that from our single-SCM, three-party model, for
both polling and notification. Figure 4(b) provides a similar
comparison, but substitutes the results from our dual-SCM, three-
party model in place of results from our one-SCM, three-party
model. Figures 4(c) and 4(d) compare update effectiveness using

Rate - 5
Run number - 21

SM 1 OUT Interface down 365, up 635

SCM 1 OUT Interface down 2417, up 2687
SCM 2 IN & OUT Interface down 519, up 789

SU 1 IN Interface down 2238, up 2508
SU 2 IN Interface down 3256, up 3526
SU 3 IN Interface down 207, up 477
SU 4 OUT Interface down 2876, up 3146
SU 5 IN Interface down 4478, up 4748

Performance:

SM 1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU 1 346.00000 346.00109 0 11
SU 2 346.00000 346.00109 0 11
SU 3 346.00000 5400.00000 4 11
SU 4 346.00000 346.00109 0 11
SU 5 346.00000 346.00114 0 11

Figure 3. Console output from a sample run: three-party,
two SCMs, notification, F = 5%, Q =100 s, and D = 5400 s.

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihood

Failure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihood

Failure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

Table 4. Values for relevant parameters.

vv

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

 U
p

d
at

e
R

es
p

o
n

si
ve

n
es

s

Two-Party
Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-Party Single-
SCM Polling

Figure. 4. Graphs comparing combinations of architecture, topology, and consistency-maintenance mechanism.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80

Interface Failure Rate (%)

U
p

d
at

e
E

ff
ec

ti
ve

n
es

s

Two-Party Notification

Two-Party Polling

Three-Party Single-SCM
Notification

Three-Party Single-SCM
Polling

(c) Update Effectiveness of Two-Party vs. Three-Party (Single-
SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

 U
p

d
at

e
R

es
p

o
n

si
ve

n
es

s

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(b) Median Update Responsiveness of Two-Party vs.
Three-Party (Dual-SCM)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

U
p

d
at

e
E

ff
ec

ti
ve

n
es

s
Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(d) Update Effectiveness of Two-Party vs. Three-Party
(Dual-SCM)

(e) Update Efficiency of Two-Party vs. Three-Party (Single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
g

e
U

p
d

at
e

E
ff

ic
ie

n
cy

Two-Party Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-PartySingle-SCM
Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
v

e
ra

g
e

 U
p

d
a

te
 E

ff
ic

ie
n

c
y

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM Notification

Three-Party Dual-SCM Polling

(a) Median Update Responsiveness of Two-Party vs. Three-
Party (Single-SCM)

(f) Update Efficiency of Two-Party vs. Three-Party (Dual-
SCM)

Table 5. Summary statistics (mean across all interface-failure
rates) computed for each curve given in the graphs shown in
Figures 4(a) through 4(f).

Table 6. Depicts upper and lower bounds of the 95% C.I.,
computed using appropriate statistical techniques, for each
metric and all experiment combinations at selected interface-
failure rates.

the same combinations. Figures 4(e) and 4(f) use the same
combinations, but compare update efficiency. The graphs
reporting measures of responsiveness and effectiveness depict a
system undergoing a phase-transition from peak performance
(where changes propagate quickly) to non-performance (where
changes fail to propagate). Regarding efficiency, the graphs show
a system that begins at its best efficiency (without interfering
failures) and then asymptotically approaches zero efficiency as the
failure rate increases toward 100%. The graphs (particularly those
showing update effectiveness) also depict several eccentricities, in
the form of saw-tooth behaviors. Using the analysis and
visualization tools provided by Rapide, we were able to
investigate the causes underlying these eccentricities (see 5.3).
Because the graphs can be difficult to interpret, we compute
summary statistics (see Table 5) for each of our six combinations.
Each summary statistic reflects the mean of a particular metric,
when averaged across all interface-failure rates, for a specified
configuration. To indicate the uncertainty associated with our
measurements, we also give (see Table 6) the upper and lower
bounds (computed using an appropriate standard error formula for
each metric) associated with selected interface-failure rates (5%,
40%, and 75%) for each of our curves.

5.2 Understanding Relative Performance
Below, we discuss the results for each of our three metrics. The
reader should note that engineering trade-offs exist among these
metrics: responsiveness, effectiveness, and efficiency.

5.2.1 Responsiveness
Results in Figs. 4(a) and 4(b) and the first column of Table 5
show that the various combinations of architecture and behavior
exhibit similar responsiveness, where the mean median ranges
between 0.663 and 0.530. Table 6, which reports uncertainty in
the results, confirms a rough similarity in responsiveness.
Similarity arises because interface failures interfere with both
polling and notification, requiring nodes to rely on recovery
mechanisms in the underlying discovery protocols to restore
consistency. Absent failures, notification proves more responsive
because change notices are issued to interested parties
immediately after a change occurs, while polling incurs some lag
time. The presence of interface failures complicates the situation.
First, if a required interface is not operating when a notification is
issued, then an update will be lost. Second, when polls fail for an
extended period (likely during high interface-failure rates), then
polling ceases and updates can be missed. Under both (polling

and notification) mechanisms, restoring consistency depends upon
the recovery mechanisms in the discovery protocol.

The recovery mechanisms, as implemented in our models, exhibit
similar responsiveness: rediscovery of lost nodes will occur within
120 s after restoration of a failed interface. In the three-party case,
periodic (120 s) announcements by each SCM (lazy-discovery
procedures) ensure rediscovery. Similarly, in the two-party model,
the periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) also ensure rediscovery. In this way,
restoration of a failed interface leads to rediscovery of lost nodes,
and to restoration of consistency in cached copies of SDs. As the
interface-failure rate increases beyond 30%, the rediscovery
machinery tends to dominate the responsiveness results (see 5.4
for further discussion of recovery mechanisms).

5.2.2 Effectiveness
Results in Figs. 4(c) and 4(d) and the second column of Table 5
show that certain combinations lead to better update effectiveness,
and Table 6 suggests that these differences could be significant.
Differences in effectiveness may be partly attributed to
architecture and topology. For example, each SD copy must
propagate over either one link (two-party case) or two links
(three-party case). For this reason, the three-party architecture
(single SCM) can prove more vulnerable to interface failures (two
links must be operational). This suggests that a two-party
architecture will be more effective under severe interface failures,
and our results support this. On the other hand, the three-party
architecture allows replication of SCMs, which provides a greater
number of paths through which information can propagate. This
suggests (and our results agree) that the three-party architecture
with the dual SCM should provide superior effectiveness over the
single-SCM, three-party architecture. Our results also indicate that
the dual-SCM three-party architecture yields effectiveness close to
that of the two-party architecture. Adding SCMs will likely
improve the effectiveness of the three-party architecture by
increasing path redundancy in the topology.

Differences in effectiveness may also be attributed in part to
consistency-maintenance mechanism. In general, polling should
lead to better effectiveness than notification. Our results support
this for the two-party architecture and for the three-party
architecture with a single SCM. Polling has built-in robustness
from issuing periodic requests. On the contrary, in both two- and
three-party architectures, each notification is issued only once

EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.

EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.

0.1100.9270.587
Three-Party Polling

(Dual SCM)

0.2210.9420.655
Three-Party Notification

(Dual SCM)

0.2010.9110.530
Three-Party Polling

(Single SCM)

0.3890.8940.601
Three-Party Notification

(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

0.1100.9270.587
Three-Party Polling

(Dual SCM)

0.2210.9420.655
Three-Party Notification

(Dual SCM)

0.2010.9110.530
Three-Party Polling

(Single SCM)

0.3890.8940.601
Three-Party Notification

(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

with no further action by the sender in response to a REX (recall
Table 2). In two-party notification, effectiveness suffers from
situations where the notice is lost but the SM is not lost (because
announcements occur only every 1800 s and thus an interface
failure can be restored before the next announcement). In these
situations, rediscovery does not occur and the change will not be
propagated (see 5.3).

5.2.3 Efficiency
For a given combination of architecture and topology, we expect
that notification would be more efficient than polling. We also
expect that the two-party architecture would be more efficient
than the three-party architecture, and that the single-SCM
topology would be more efficient than the dual-SCM topology. In
general, our results support these expectations, but with a few
twists. The three-party, single-SCM architecture with notification
proves more efficient than the two-party architectures because in
Jini the SD arrives with the notification, while in UPnP
notifications indicate only that a change has occurred, requiring a
SU to exchange a request-response message pair to obtain the
updated SD.

In notification, efficiency also decreases as the failure rate
increases because SUs need to recover from REXs associated with
refreshing remote registrations. Each SU must periodically refresh
notification requests deposited on the SM (two-party case) or
SCM (three-party case). Interface failures lead to REXs during
refresh attempts. A REX invokes retry procedures: every 120 s
until 540 s of continuous REX (three-party case) or every 120 s
until a SM is purged (two-party case).

5.3 Investigating Saw-Tooth Phenomena
A number of the curves shown in Figures 4(a)-(f), exhibit saw-
tooth phenomena, most pronounced for update effectiveness,
particularly for the two-party architecture with notification. Our
uncertainty calculations suggest that at failure rates above 40%
these spikes may be attributed to random variations, which might
be reduced by increasing the number of runs at each failure rate
(currently 30) and the corresponding number of data points
(currently 5 SUs x 30 runs = 150). On the other hand, spikes at
lower failure rates appear more likely due to causal behavior in
our models. For example, the two-party architecture with
notification exhibits a significant dip at 15% interface-failure rate.

Using visualization and analysis tools included with Rapide, we
examined the partially ordered sets of events (POSETs) that
display the complete causal behavior of our model. The POSETs
revealed that at the 15% interface-failure rate a large number of
notifications were lost when either the SM transmitter was
inoperable (causing notifications to all SUs to be lost) or when SU
receivers were inoperable (causing lost notifications to individual
SUs). Recovery from notification loss depends upon a SU
discarding a SM, and then rediscovering the SM, and retrieving
related SDs. A SU discards a SM when it fails to receive an
announcement from the SM within the specified time.
Unfortunately, in many cases, a failed interface that caused a
notification loss was repaired prior to the next SM announcement
(announcements come every 1800 s). In such cases, the SU does
not purge the SM, and therefore there is no rediscovery. Without
rediscovery, there is no mechanism to restore consistency; thus,
lost notifications lead to inconsistencies that persist to the
deadline (and beyond).

Why does this behavior not appear with notification in the three-
party architecture? The three-party architecture requires a SM to
first propagate a change to a SCM. The SCM then propagates the
change on to SUs that requested notification. While notification
from SCM to SU is unprotected, on failure a SM retries change
propagation to a SCM. An inoperable SCM transmitter leads not
only to failure to propagate notifications to SUs, but also to
failure to confirm the change propagated by the SM. Absent
confirmation, the SM retries the change for up to 540 s, during
which time the SCM transmitter might be restored. Each repeated
change that propagates to the SCM also causes notifications to be
sent to the relevant SUs. Thus for SCM transmitter failures, we
conclude that robustness in change propagation from SM to SCM
compensates for lack of robustness in notifications from SCM to
SU. No equivalent serendipity occurs in the two-party
architecture. These cases suggest relationships between the timing
and scope of failures and the role of recovery mechanisms in the
different architectures.

5.4 Role of Recovery Mechanisms
Under hostile conditions, such as those in our experiments,
recovery mechanisms play a key role in consistency maintenance.
For example, a detailed analysis of results from our two-party
architectural model show that at 30% failure rate and below,
interface failures tend to be restored more frequently within the
REX retry period associated with HTTP Get requests; thus,
application recovery contributes substantially to update
effectiveness. Above 30% failure rate, application recovery tends
to exhaust its allotted time, leading a SU to discard knowledge of
the SM. In such cases, update effectiveness depends primarily on
robustness mechanisms built into the discovery protocol. We plan
additional analysis to establish the contribution to update
effectiveness of various recovery strategies in both two- and three-
party architectures.

5.5 Recommendations for Improving ADLs
While the Rapide ADL provided useful abstractions to represent
and analyze the structure and behavior of service-discovery
protocols under failure, we recommend some improvements that
apply generally to ADLs. First, this study reinforces our previous
recommendations [4] that component states should be selectively
exportable to allow data extraction and recording for analysis.
Such an export mechanism would also assist in implementing
techniques to evaluate consistency conditions that involve state
variables from two or more components and that consider time,
two important considerations when analyzing component
interactions. We note that some ADLs include constraint-analysis
engines that consider time [e.g., 15]. Second, ADLs, and
especially their tools, must provide representations of behavior
that can be evaluated efficiently. For example, to bound POSET
size in this study, we were forced to substitute procedure calls in
place of Rapide constraint evaluation. Third, we would find it
convenient if ADL tools supported the same statistical techniques
available from commercial simulation systems. For example, ADL
tools might include mechanisms to track and summarize statistics
about selected state variables. ADLs might also include machinery
to apply statistical tests to selected variables across experiment
runs in order to automate halting decisions. We expect to develop
additional recommendations as our work proceeds.

6. FUTURE WORK
We envision future work along three general directions. First, we
intend to complete our characterization of performance for various
combinations of architecture, topology, and behavior during
failures. We will model the effects of message loss, which appear
likely to differ significantly from those described in this study,
and we will assess the ramification of node failure on discovery
and recovery mechanisms in various architectures and topologies.
Second, we plan to model and evaluate selected changes to
improve the performance of discovery architectures and protocols
in response to failure. Here, our goal is to increase the fault-
tolerance of such systems. We intend to implement and evaluate
our most promising suggested changes in publicly available
service-discovery software. Third, we will expand our generic
structural model of service-discovery architectures to include
message exchanges and verifiable consistency conditions.

Along a different dimension, we hope to improve methodologies
available to design and engineer distributed software systems. At
present, many publicly available specifications come with one or
more reference implementations. We hope to demonstrate that
architectural models lead to better understanding of the properties
of distributed systems. In addition, we aim to improve ADLs, and
associated tools, by providing recommendations based on our
experience. We are also considering developing our own
modeling and analysis tools especially designed for understanding
collective behavior in multi-party distributed systems.

7. CONCLUSIONS
Emerging service-discovery protocols provide the foundation for
software components to discover each other, to organize
themselves into a system, and to adapt to changes in system
topology. While likely suitable for small-scale commercial
applications, questions remain regarding the performance of such
protocols at large scale, and during periods of high volatility and
duress, such as might exist in military and emergency-response
applications. In this paper, we used architectural models to
characterize the performance of selected combinations of system
topology and consistency-maintenance mechanism during
catastrophic communication failure. Further, we used behavioral
analysis to investigate causes underlying observed performance.
Our initial investigations show significant differences in update
effectiveness can be obtained by varying aspects of the design
(architecture, topology, consistency-maintenance mechanism, and
recovery strategies). Our results also suggest relationships among
interface-failure rate, failure timing, and recovery strategies.

8. ACKNOWLEDGMENTS
The work described benefits from financial support provided by
the National Institute of Standards and Technology (NIST), the
Defense Advanced Research Projects Agency (DARPA), and the
Advanced Research Development Agency (ARDA). In particular,
we acknowledge the support of Susan Zevin from NIST, Doug
Maughan and John Salasin from DARPA, and Greg Puffenbarger
from ARDA. We also thank Stefan Leigh of NIST and the
anonymous WOSP reviewers for insightful comments that helped
us to improve the manuscript.

9. REFERENCES
[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented

Component Architecture for Self-Forming, Self-Healing,
Network-Centric Systems,” on the web site:
http://www.openwings.org.

[2] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[3] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[4] Dabrowski, C. and Mills, K., “Analyzing Properties and
 Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Proceedings of Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001.

[5] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[6] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[7] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[8] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

[9] Specification of the Bluetooth System, Core, Volume 1,
Version 1.1, the Bluetooth SIG, Inc., February 22, 2001.

[10] B. Miller and R. Pascoe, Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer, Version 1.0,
Bluetooth SIG White paper, July 1, 1999.

[11] C. Bettstetter and C. Renner, “A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol”, Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications,
EUNICE 2000, Twente, Netherlands, September, 13-15,
2000.

[12] G. Richard, “Service Advertisement and Discovery: Enabling
Universal Device Cooperation,” IEEE Internet Computing,
September-October 2000, pp. 18-26.

[13] B. Pascoe, “Salutation Architectures and the newly defined
service discovery protocols from Microsoft and Sun: How
does the Salutation Architecture stack up,” Salutation
Consortium whitepaper, June 6, 1999.

[14] J. Rekesh, UPnP, Jini and Salutation - A look at some
popular coordination framework for future network devices,
Technical Report, California Software Lab, 1999. Available
online from http://www.cswl.com/whiteppr/tech/upnp.html.

[15] Allen, R. A Formal Approach to Software Architecture,
Ph.D. Thesis, Carnegie Mellon University, CMU Technical
Report CMU-CS-97-144, May 1997.

