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ABSTRACT 
Current trends suggest future software systems will comprise 
collections of components that combine and recombine 
dynamically in reaction to changing conditions. Service-discovery 
protocols, which enable software components to locate available 
software services and to adapt to changing system topology, 
provide one foundation for such dynamic behavior. Emerging 
discovery protocols specify alternative architectures and 
behaviors, which motivate a rigorous investigation of the 
properties underlying their designs. Here, we assess the ability of 
selected designs for service-discovery protocols to maintain 
consistency in a distributed system during catastrophic 
communication failure. We use an architecture description 
language, called Rapide, to model two different architectures 
(two-party and three-party) and two different consistency-
maintenance mechanisms (polling and notification). We use our 
models to investigate performance differences among 
combinations of architecture and consistency-maintenance 
mechanism as interface-failure rate increases. We measure system 
performance along three dimensions: (1) update responsiveness 
(How much latency is required to propagate changes?), (2) update 
effectiveness (What is the probability that a node receives a 
change?), and (3) update efficiency (How many messages must be 
sent to propagate a change throughout the topology?). We use 
Rapide to understand how failure-recovery strategies contribute to 
differences in performance. We also recommend improvements to 
architecture description languages. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 
methodologies and tools.  
D.2.5 [Software Engineering]: Testing and debugging – 
symbolic execution and tracing.  
D.2.8 [Software Engineering]: Metrics – performance measures. 

1. INTRODUCTION 
Growing deployment of wireless communications, implying 
greater user mobility, coupled with proliferation of personal 
digital assistants and other information appliances, foretell a 
future where software components can never be quite sure about 
the network connectivity available, about the other software 
services and components nearby, or about the state of the network 
neighborhood a few minutes in the future. In extreme situations, 
as found for example in military applications [1], software 
components composing a distributed system may find that 
cooperating components disappear due to physical or cyber 
attacks or due to jamming of communication channels or 
movement of nodes beyond communications range. Such 
environments demand new analysis approaches and tools to 
design and test software. 

In this paper, we use architectural models to assess the ability of 
selected designs for service-discovery protocols to maintain 
consistency in a distributed system during catastrophic 
communication failure. Using an architecture description 
language (ADL), we model two different architectures (two-party 
and three-party) and two different consistency-maintenance 
mechanisms (polling and notification). To provide our models 
with realistic behaviors, we incorporate consistency-maintenance 
mechanisms adapted from two specifications: Jini™ Networking 
Technology1 [2] and Universal Plug-and-Play (UPnP) [3]. We use 
our models to investigate performance differences among 
combinations of architecture and consistency-maintenance 
mechanism as interface-failure rate increases. We measure system 
performance along three dimensions: (1) update responsiveness 
(How much latency is required to propagate changes?), (2) update 
effectiveness (What is the probability that a node receives a 
change?), and (3) update efficiency (How many messages must be 
sent to propagate a change throughout the topology?). 

Our modeling and analysis approach builds on earlier work [4] 
where we derived benefits by creating dynamic models from 
specifications for service-discovery protocols. Dynamic models 

                                                                 
1 Certain commercial products or company names are identified in 

this paper to describe our study adequately. Such identification 
is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor to imply 
that the products or names identified are necessarily the best 
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Table 1. Mapping concepts among service-discovery systems. 

enable us to understand collective behavior among distributed 
components, and to detect ambiguities, inconsistencies and 
omissions in specifications. In this paper, we apply the same 
method: (1) construct an architectural model of each discovery 
protocol, (2) identify and specify relevant consistency conditions 
that each model should satisfy, (3) define appropriate metrics for 
comparing the behavior of each model, (4) construct relevant 
scenarios to exercise the models and to probe for violations of 
consistency conditions, and (5) compare results from executing 
similar scenarios against each model. To implement the method, 
we rely on Rapide [5], an ADL developed at Stanford University. 
Rapide represents behavior in a form suitable to investigate 
distributed systems, and comes with an accompanying suite of 
analysis tools that can execute a specification and can record and 
visualize system behavior. In this paper, we use Rapide to 
understand how failure-recovery strategies contribute to 
differences in performance. Based on our experiences, we also 
recommend improvements to architecture description languages. 

The remainder of the paper is organized in six sections. We begin, 
in Section 2, by introducing service-discovery protocols and 
architectures, including a description of procedures to maintain 
consistency in replicated information. Section 2 also discusses 
various failures that can interfere with consistency maintenance. 
In Section 3, we outline some techniques, included in our models, 
to recover from failures. Section 4 defines an experiment, and 
related metrics, to compare the performance and overhead 
exhibited by selected pairings of architecture and consistency-
maintenance mechanism while attempting to propagate changes 
during interface failures. In Section 5, we present results from the 
experiment, and we discuss causes underlying some of the results. 
In Section 6, we outline future work to evaluate service-discovery 
architectures and protocols during message loss and node failure. 
We conclude in Section 7. 

2. SERVICE DISCOVERY SYSTEMS 
Service-discovery protocols enable software components in a 
network to discover each other, and to determine if discovered 
components meet specific requirements. Further, discovery 
protocols include consistency-maintenance mechanisms, which 
can be used by applications to detect changes in component 
availability and status, and to maintain, within some time bounds, 
a consistent view of components in a network. Many diverse 
industry activities explore different approaches to meet such 
requirements, leading to a variety of proposed designs for service- 
discovery protocols [2, 3, 6-14]. Some industry groups approach 
the problem from a vertically integrated perspective, coupled with 
a narrow application focus. Other industry groups propose more 
widely applicable solutions. For example, a team of researchers 
and engineers at Sun Microsystems designed Jini Networking 
Technology [2], a general service-discovery mechanism atop 
JavaTM, which provides a base of portable software technology. 
As another example, a group of engineers at Microsoft and Intel 
conceived Universal Plug-and-Play [3] in an attempt to extend 
plug-and-play, an automatic intra-computer device-discovery and 
configuration protocol, to distributed systems. The proliferation of 
service discovery protocols motivates deeper analyses of their 
designs.   

To help us compare designs, we developed a general structural 
model, documented using the UML (Unified Modeling 

Language). Our general model provides a basis for comparative 
analysis of various discovery systems by representing the major 
architectural components with a consistent and neutral 
terminology (see first column in Table 1). The main components 
in our general model include:  (1) service user (SU), (2) service 
manager (SM), and (3) service cache manager (SCM), where the 
SCM is an optional element not supported by all discovery 
protocols. These components participate in the discovery, 
information-propagation, and consistency-maintenance processes 
that comprise discovery protocols.  A SM maintains a database of 
service descriptions, (SDs), each SD encoding the essential 
characteristics of a particular service or device (Service Provider, 
or SP). Each SD contains the identity, type, and attributes that 
characterize a SP. Each SD also includes up to two software 
interfaces (an application-programming interface and a graphic-
user interface) to access a service. A SU seeks SDs maintained by 
SMs that satisfy specific requirements. Where employed, the SCM 
operates as an intermediary, matching advertised SDs of SMs to 
requirements provided by SUs.  Table 1 shows how these general 
concepts map to specific concepts from Jini, UPnP, and the 
Service Location Protocol (SLP) [8]. The behaviors by which SUs 
discover and maintain consistency in desired SDs depend partly 
upon the service-discovery architecture employed. 

2.1 Alternative Architectures 
Broadly speaking, system architecture comprises a set of 
components, and the connections among them, along with the 
relationships and interactions among the components. In our 
application, we represent the architecture of a discovery system 
using an architectural model, which expresses structure (as 
components, connections, and relations), interfaces (as messages 
received by components), behavior (as actions taken in response 
to messages received, including generation of new messages), and 
consistency conditions (as Boolean relations among state 
variables maintained across different components). Our initial 
analysis of six distinct discovery systems revealed that most 
designs use one of two underlying architectures: two-party and 
three-party. 

2.1.1 Two-Party Architectures 
A two-party architecture consists of two major components: SMs 
and SUs. In this study, we use a two-party architecture arranged in 
a simple topology consisting of one SM and five SUs, as depicted 
in Figure 1. To animate the architecture, we chose behaviors for 
discovery, information propagation, and consistency maintenance, 
as described in the specification for UPnP. Upon startup, each SU 
and SM engages in a discovery process to locate other relevant 
components within the network neighborhood. In a lazy-discovery 
process, each SM periodically announces the existence of its SDs 
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Figure 1. Two-party service-discovery architecture 
deployed in a six-node topology: five service users (SUs) 
and one service manager (SM). 

over the UPnP multicast group, used to send messages from a 
source to a group of receivers. Upon receiving these 
announcements, SUs with matching requirements use a 
HTTP/TCP (HyperText Transfer Protocol/transmission-control 
protocol) unicast link (for message exchanges between two 
specific parties) to request, directly from the SM, copies of the 
SDs associated with relevant SPs. The SU stores SD copies in a 
local cache. Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as 
Msearch queries, on the UPnP multicast group. Any SM holding 
a SD with matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter delay) 
directly to the SU. Whenever a UPnP SM responds to an Msearch 
query (or announces itself), it does so with a train of (3 + 2d + k) 
messages, where d is the number of distinct devices and k is the 
number of unique service types managed by the SM. For each 
appropriate response, the SU uses a HTTP/TCP unicast link to 
request a copy of the relevant SDs, caching them locally. 

To maintain a SD in its local cache, a SU expects to receive 
periodic announcements from the relevant SM. In UPnP, the SM 
announces the existence of SDs at a specified interval, known as a 
Time-to-Live, or TTL. Each announcement specifies the TTL 
value.  If the SU does not receive an announcement from the SM 
within the TTL (or a periodic SU Msearch does not succeed 
within that time), the SU may discard the discovered SD. We 
selected the minimum TTL of 1800 s, as recommended by the 
UPnP specification. (See Tables 2 and 4 for a summary of 
relevant parameter values used in this paper.) 

2.1.2 Three-Party Architectures 
A three-party architecture consists of SMs, SUs, and SCMs, 
where the number of SCMs represents a key variable. In this 
study, we model a three-party architecture with one SM and five 
SUs, as shown in Figure 2. We anticipate that under failure 
conditions, increasing the number of SCMs will increase the 
chance of successful rendezvous among components, leading to 
better propagation of information updates from SMs to SUs. To 
investigate this, we vary the number of SCMs in our three-party 
architectural model. To animate our three-party model, we choose 
behaviors described in the Jini specification. 

In Jini, the discovery process focuses upon discovery by SMs and 
SUs of any intermediary SCMs that exist in the network 
neighborhood. Elsewhere [4], we describe these procedures in 
detail. Here, we simply summarize. Upon initiation, a Jini 
component enters aggressive discovery, where it transmits probes 

on the aggressive-discovery multicast group at a fixed interval (5 s 
recommended) for a specified period (seven times recommended), 
or until it has discovered a sufficient number of SCMs. Upon 
cessation of aggressive discovery, a component enters lazy 
discovery, where it listens on the lazy-discovery multicast group 
for announcements sent at intervals (120 s recommended) by 
SCMs. Our three-party model implements both the aggressive and 
lazy forms of Jini multicast discovery. 

Once discovery occurs, a SM deposits a copy of the SD for each 
of its services on the discovered SCM. The SCM caches this 
deposited state, but only for a specified length of time, or TTL. To 
maintain a SD on the SCM beyond the TTL, a SM must refresh 
the SD. In this way, if the SM fails, then the SCM can purge any 
SDs deposited by the SM. To make behavior as consistent as 
possible across our models for both the two-party and three-party 
architectures, we selected 1800 s as TTL for a SD to be cached by 
a SCM. Using these techniques, SUs and SPs rendezvous through 
SDs registered by SMs with particular SCMs, where the SCMs 
are found through a discovery process. The SCMs match SDs 
provided by SMs to SU requirements, and forward matches to 
SUs, which then access the appropriate SPs. 

2.2 Consistency Maintenance Mechanisms 
After initial discovery and information propagation (through 
SDs), service-discovery protocols provide consistency-
maintenance mechanisms that applications can use to ensure that 
changes to critical information propagate throughout the system. 
Critical information may consist of service availability and 
capacity, or updates to descriptive information about service 
capabilities, which may be necessary for a SU to effectively use a 
discovered service. In our study, we consider two basic 
consistency-maintenance mechanisms, polling and notification, 
along with accompanying mechanisms to propagate new 
information. 

2.2.1 Polling 
In polling, a SU periodically sends queries to obtain up-to-date 
information about a SD that was previously discovered, retrieved, 
and cached locally. In a two-party architecture, the SU issues the 
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manager (SCM), with an optional 2nd SCM. 



query directly to the SM from which the SD was obtained. In this 
study, we use the UPnP HTTP Get request mechanism to poll the 
SM to retrieve a SD associated with a specific URL (uniform-
resource locator). In response, the SM provides a SD containing a 
list of all supported services, including their relevant attributes. 

Polling in a three-party architecture consists of two independent 
processes. In one process, a SM sends a ChangeService request to 
propagate an updated SD to each SCM where the SD was 
originally cached. In the second process, each SU polls relevant 
SCMs by periodically issuing a FindService request, effectively a 
query with a set of desired SD requirements. The SCM replies 
with a MatchFound that contains the relevant information for any 
matching SDs. In our study, we adopt a 180-second interval for 
polling in both architectures. 

2.2.2 Notification 
In notification, immediately after an update occurs, a SM sends 
events that announce a SD has changed. To receive events about a 
SD of interest, a SU must first register for this purpose. In the 
two-party architecture, the SU registers directly with a SM. We 
model this procedure using the UPnP event-subscription 
mechanism, where the SU sends a Subscribe request, and the SM 
responds by either accepting the subscription, or denying the 
request. The subscription, if accepted, is retained for a TTL, 
which may be refreshed with subsequent Subscribe requests from 
the SU. In our experiment, we chose 1800 s as TTL for event 
subscriptions in both architectures. 

In a three-party architecture, a SU registers with a SCM to receive 
events using a procedure analogous to that used by a SM to 
propagate a SD. As with SD propagation, the SCM grants event 
registrations for a TTL, which may be refreshed. When a SD 
update occurs, the SM first issues a ChangeService request to all 
SCMs to which it originally propagated the SD. The SCM then 
issues a MatchFound to propagate the event to all SUs that have 
registered to receive events about the SD. 

2.3 The Nature and Import of Failures 
The foregoing discussion, while oversimplified, highlights the 
complexity inherent in discovery protocols. Additional 
complexity arises from uncertainty, as nodes, processes, and links 
can appear and disappear without warning. Discovery protocols 
must include behavior to cope with such changes. In this section, 
we address the nature of various failures that can arise, and we 
consider the implication of such failures on the behavior of 
discovery protocols, and on the application software that depends 
upon them. 

2.3.1 Classifying Failures 
In our research, we focus particularly on failures that can exist 
within a hostile environment, such as encountered during military 
or emergency-response operations. We can classify such failures 
in two general categories: (1) communication failures and (2) 
process failures. Communication failures can arise due to enemy 
jamming, or other interference, due to congestion, due to physical 
severing of cables, due to improperly configured or sabotaged 
routing tables, or due to multi-path fading as nodes move across a 
terrain. We can subdivide communication failures into three 
classes: interface failures, message loss, and path failures. This 
paper considers only interface failure. A communication interface 
in a node may fail fully (both transmit and receive) or partially 
(either transmit or receive). All outbound messages from an 

interface will be lost when the transmitter fails, while all inbound 
messages will be lost when the receiver fails. Message loss, a less 
severe failure, implies that individual messages may be lost, either 
sporadically or in bursts. Path loss appears as a blocked 
communication route between two nodes, or areas, in the network. 
A path can be blocked in one or both directions. 

Process failures can be caused by enemy bombardments or cyber 
attacks, by programming errors, or by hardware failures. We can 
subdivide process failures into node and thread failures. During a 
catastrophic failure, processing in a node ceases, and the node 
must reinitialize before processing resumes. Some information 
maintained by the node may persist across the failure, while other 
information may be lost. The nature and condition of persistent 
information could prove crucial to a node’s behavior after 
processing resumes. Of course, the node might never reappear. 
Thread failures, while less catastrophic, can be more troublesome 
than node failures. A node might rely on certain long-running 
threads to react to events from other nodes. Failure of selected 
threads can interfere with the operation of the node, as well as 
other nodes in a distributed system. In some cases, a node can 
appear to be present, while being effectively inoperable. 

2.3.2 Failure Recovery in Service Discovery Systems 
In service-discovery systems, failure-recovery responsibilities are 
divided among three parties: (1) lower-layer protocols, (2) 
discovery protocols, and (3) applications. Discovery protocols and 
applications use the services of three classes of lower-layer 
protocols: (1) unreliable unicast protocols, (2) unreliable multicast 
protocols, and (3) reliable unicast protocols. Unreliable protocols, 
whether unicast or multicast, neither recover nor signal lost 
messages; thus, neither source nor destination will learn of a loss. 
Further, multicast protocols exchange messages along a tree of 
receivers. For this reason, a multicast message might be received 
by some nodes, but not by others. A failure near a multicast 
source prevents messages from being received by any node in the 
multicast tree, while a failure near a receiver prevents messages 
from being received by only a single node in the multicast tree. Of 
course, failures at intermediate points in the multicast tree could 
result in messages being lost to subsets of receivers. Since 
unreliable protocols provide no guarantees, recovery must be 
provided by mechanisms at a higher layer. 

Reliable unicast protocols include mechanisms that attempt to 
ensure delivery of messages by detecting and retransmitting lost 
messages. Of course, the reliability schemes may eventually give 
up if too many retransmissions are needed (which might indicate 
node, interface, or path failure). In such cases, the reliable unicast 
protocol will signal to a higher layer that a message could not be 
delivered. Some ambiguity does exist, however, when using 
reliable unicast protocols to send request-response message pairs, 
as is the case for discovery systems. After submitting a request 
through a reliable unicast protocol, a requesting process might 
wait for a corresponding response from a remote process. For 
example, Jini can use Remote Method Invocation (RMI) over 
TCP to invoke a method on a remote object, and to receive a 
response. Similarly, UPnP uses TCP to submit HTTP requests and 
receive HTTP responses. In such cases, the RMI layer or the TCP 
layer can signal a remote exception (REX). The requesting 
process cannot determine whether a REX was caused by failure to 
transmit the request or by failure to receive a response from the 
remote process. The responding process has more information, as 



it does not receive a REX when an inbound request fails, but does 
receive a REX when its outbound response fails. In essence, while 
reliable unicast protocols attempt to deliver messages in the face 
of various communication failures, ultimately the reliability 
mechanisms might prove insufficient, causing a higher-layer 
process to be notified of the failure. In such cases, the higher-layer 
process is free to determine an appropriate recovery strategy. 

3. MODELING RECOVERY STRATEGIES 
Our architectural models incorporate three classes of failure-
recovery strategies: (1) recovery by lower-layer protocols, (2) 
recovery by discovery protocols, and (3) recovery by application 
software. For each class, we outline the strategies (see Table 2) 
included in our models. 

3.1 Recovery by Lower-Layer Protocols 
Our models operate over two types of channels: unreliable, 
simulating the UDP in both multicast and unicast forms, and 
reliable, simulating the TCP. In UDP simulation, we discard 
messages lost due to transmission errors, and we discard messages 
lost due to path and interface failures. During path failure, 
messages can be discarded in one or both directions. During 
interface failure, we discard all messages sent from a node with a 
failed transmitter, and we discard all messages inbound for a node 
with a failed receiver. Neither sender nor receiver learns the fate 
of lost messages. 
 
In the TCP simulation, our model proves more complex. For 
messages lost to transmission errors, we schedule a retransmission 
(roughly within a round-trip time, or RTT). We increase the RTT 
by about 25% with each successive retransmission. If successive 
retransmissions exceed a threshold (three in the current study), 
then we discard the message and issue a REX. For messages lost 
to interface or path failure, we model TCP connection 
establishment procedures by discarding the message and waiting 
for a period, uniformly distributed between an upper and lower 
bound (30-75 s in the current study), then we signal a REX. When 
discarding a request, we signal a REX to the requester, but when 
discarding a response, we signal a REX to both parties. 

3.2 Recovery by Discovery Protocols 
Discovery protocols include built-in robustness measures to deal 
with the possibilities of UDP message loss and node failure. 
Discovery protocols specify periodic transmission of key 
messages. For example, Jini requires a node to engage in 
aggressive discovery on startup, and then to enter lazy discovery, 
where all SCMs periodically announce their presence. In a similar 
lazy discovery, UPnP requires SMs to periodically announce their 
presence. While not specifying aggressive discovery, UPnP 
permits SUs to issue Msearch queries at any time. To compensate 
for the different announcement intervals recommended for Jini 
and UPnP, we chose to have UPnP SUs issue Msearch queries 
every 120 s, but only after a SU purges a SD from its local cache. 
Once a SU regains its desired SD, the related Msearch queries 
cease. Whenever a UPnP SM announces itself or responds to an 
Msearch query, it sends n copies of each message, where n is a 
retransmission factor (two in the current study) recommended by 
the UPnP specification to compensate for possible UDP message 
loss. In both Jini and UPnP, each announcement includes a TTL. 
Receiving nodes can cache the information in the announcement 
until the TTL expires; then the information must be purged from 
the cache. In this way, each node in the system eliminates residual 
information about failed or unreachable nodes. Our models 
incorporate these failure-recovery behaviors. 

3.3 Recovery by Application Software 
When discovery nodes communicate over a reliable channel, a 
REX may occur. Response to a REX is left to the application. In 
our models, depending on the situation, we implement three 
different strategies: (1) ignore the REX, (2) retry the operation for 
some period, and (3) discard knowledge. The retry strategy 
attempts to recover from transient failures. The discard strategy, 
which occurs following repeated failure of the retry strategy, relies 
upon discovery mechanisms to recover from more persistent 
failures. 

3.3.1 Ignore the Remote Exception 
In many cases, we simply ignore a REX. In general, our models 
ignore a REX received when attempting to respond to a request. A 
SU can ignore a REX received in response to a poll, FindService 
or HTTP Get, because the poll recurs at an interval. The SCM 
(three-party model) or the SM (two-party model) also ignores a 
REX received while attempting to issue a notification. This 
behavior, which is described in both the Jini and UPnP 
specifications, depends upon reliable lower-layer protocols to 
provide robustness for notifications. Notifications include 
sequence numbers that allow a receiving node to determine 
whether or not previous notifications were missed. 

3.3.2 Retry the Operation 
In our models, we retry selected operations in the face of a REX. 
The UPnP specification separates the operation of discovering a 
resource from obtaining a description of the resource (Jini 
combines these operations). Without a description, the resource 
cannot be used. For this reason, in our two-party model, a SU 
must issue a HTTP Get to obtain a description. If no description 
arrives within 180 s, then our model retries the HTTP Get. If 
unsuccessful after three attempts, the SU ceases the retries, but 
sets a flag reminding itself to reissue a HTTP Get when the 
resource is next announced. Our three-party model, based on Jini, 

Table 2. Summary of recovery responsibilities and 
strategies as implemented within our models for two- and 
three-party architectures. 
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Recovery 
Mechanism
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Table 3. Experiment combinations. 

also contains a retry strategy, but associated with attempts to 
register or change a SD with a SCM. In these cases, the SM retries 
a ChangeService or ServiceRegistration 120 s after receiving a 
REX. Similarly, when a SU receives a REX (from either a SM or 
SCM) in response to a request to register for notification, the SU 
retries the registration in 120 s. These retries occur until some 
time bounds, after which the SM discards knowledge of the SCM. 

3.3.3 Discard Knowledge 
Both our two-party and three-party models include the possibility 
that an application can discard knowledge of previously 
discovered nodes. In UPnP, after failure to receive 
announcements from the SM within a TTL, a SU discards a SM 
and any related SDs. We implement this behavior in our two-party 
model. In Jini, the specification states that a discovering entity 
may discard a SCM with which it cannot communicate. In our 
three-party model, a SM or SU deletes a SCM if it receives only 
REXs when attempting to communicate with the SCM over a 
540-s interval. After discarding knowledge of a SM (UPnP) or 
SCM (Jini), all operations involving the node cease until it is 
rediscovered, either through lazy discovery (Jini or UPnP 
announcements) or aggressive discovery (UPnP Msearch queries). 

4. EXPERIMENT DESIGN AND METRICS 
In this paper, we investigate the following question: How do 
alternative service-discovery architectures, topologies, and 
consistency-maintenance mechanisms perform under deadline 
during interface failure? To address this question, we deploy a 
two-party and three-party architecture (recall Figures 1 and 2), 
each in a topology that includes one SM and five SUs. In the 
three-party case, we use two topologies, one with one SCM and 
another with two SCMs. To establish initial conditions, we 
exercise each topology until discovery completes, and the initial 
information (a SD) propagates to all SUs. To begin the 
experiment, we introduce a change in the SD at the SM, and we 
establish a deadline, D, before which the change must propagate 
to all SUs. We measure the number of messages exchanged and 
the latency required to propagate the new information, or until D, 
under two different consistency-maintenance mechanisms: polling 
and notification. We repeat this experiment while varying the 
percentage of interface-failure time for each node up to 75% (in 
increments of 5%). We provide further details below. 

4.1 Experiment Combinations 
To compare change propagation in two- and three-party 
architectures, we use our models to combine the architectures with 
different consistency-maintenance mechanisms. Table 3 depicts 
the six combinations. Each experiment runs one combination from 
time zero until D, while introducing failures at each node (see 

4.3). Each experiment aims to restore consistency among the 
changed SD held by the SM and the cached copies of the SD held 
by all of the SUs. 

4.2 Tracking Consistency 
To track consistency in our experiment, we employ property 
analysis [4], using a single consistency condition: service 
attributes for a SD discovered by a SU should have the same 
values as the attributes of the SD being maintained by the SM that 
manages the SD.  More formally, 

 FOR All (SM, SU, SD) 
 (SM, SD [Attributes1]) isElementOf SM managed-services   AND 
 (SM, SD [Attributes2]) isElementOf SU discovered-services 
  implies Attributes1 equals Attributes2 
 
The condition is incorporated directly into our models and 
checked using Rapide procedural code.  We establish an initial 
system state in which this condition holds, and then introduce a 
change in (SM, SD [Attributes1]), which negates the condition for 
all SUs. Then, we monitor updates to (SM, SD) tuples in the set 
of discovered-services maintained by individual SU's to determine 
if the condition becomes true. Note that if a SU discards its (SM, 
SD) tuple, the tuple must be recovered before the condition can be 
satisfied. These consistency checks form the basis for our 
measurements. 

4.3 Generating Interface Failures 
We set aside an interval, up to time Q, to complete initial 
discovery and information propagation. In our experiments, Q = 
100 s and D = 5400 s. We choose a time, randomly distributed on 
the uniform interval Q to D/2, to introduce a change into the SD 
on the SM. We also choose times, randomly distributed on the 
uniform interval Q to [D - (D x F)], for each node to suffer an 
interface failure, where F is the interface-failure rate, which 
defines the duration of failures as follows. Once activated, each 
failure remains in effect for a duration of D x F, after which the 
failure is remedied. We choose interface failures to be of equal 
and increasing length to give a suitable basis for comparative 
analysis. When activating each interface failure, we choose with 
equal likelihood that the transmitter, receiver, or both fail. Table 4 
summarizes most of the relevant parameters and values for our 
experiments. 

4.4 A Sample Run 
Figure 3 shows partial results from a sample run for the three-
party architecture, with two SCMs, using notification as the 
consistency-maintenance mechanism. In this run, F was 0.05, and 
so each failure occurred between 100 and 5130 s [D - (D x F)], 
and lasted for 270 s (D x F). Figure 3 shows the time when each 
interface failed, and recovered. The performance section of the 
figure lists two times for each node: loss of consistency and 
restoration of consistency, or D where inconsistency remains. The 
figure also lists two message counts for each node: messages sent 
to restore consistency and total messages sent. For each SM and 
SCM, the first count includes messages sent while any SU 
remains inconsistent. In this sample run, SUs 1, 2, 4, and 5 and 
both SCMs became consistent quickly, within 0.00109 s, which 
represents the time necessary to propagate the change from the 
SM to at least one SCM, match the changed SD registration to all 
the SU notification requests registered on the SCM, and forward 
the matches. However SU 3, whose receiver failed at an 
inopportune time, never heard the notification and continued in an 
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inconsistent state for the remainder of the run. This illustrates how 
lack of robustness in the notification mechanism can lead to 
prolonged inconsistent states. 

4.5 Metrics 
We use the data collected from experiment runs to compute three 
metrics: update responsiveness, update effectiveness, and update 
efficiency. We define these below. 

4.5.1 Update Responsiveness 
Assuming information is created at a particular time and must be 
propagated by a deadline, then the difference between the 
deadline and the creation time represents available time in which 
to propagate the information. Update Responsiveness, R, 
measures the proportion of the available time remaining after the 
information is propagated. More formally, let D be a deadline by 
which we wish to propagate information to each SU-node n in a 
service discovery topology. Let tC be the creation time of the 

information that we wish to propagate, where tC  < D. Let tU(n) be 
the time that the information is propagated to SU n, where n = 1 
to N, and N is the total number of SUs in a topology. Define 
change-propagation latency (L) for SU n as: Ln = (tU(n) - 
tC)/(max(D, tU(n)) – tC). This is effectively the proportion of 
available time used to propagate the change to SU n. The 
numerator represents the time at which the SU achieved 
consistency after the update occurred. The denominator represents 
the time available to propagate the change. The term max(D, tU(n)) 
accounts for cases where tU(n) > D. Define R for SU n as: Rn = 1 – 
Ln. Rn is the proportion of available time remaining after 
propagating a change to SU n. 

4.5.2 Update Effectiveness 
Update Effectiveness, U, measures the probability that a change 
will propagate successfully for a given SU, i.e., tU(n) < D. More 
formally, assuming definitions from 4.5.1 hold, let X be the 
number of runs (30 here) during which a particular topology is 
observed under identical conditions. Recalling that N is the total 
number of SUs in a topology, define the number of SUs observed 
under identical conditions as: O = X .N. Define U, the probability 
that tU(n) < D, as: U = 1 – P(F), where P(F) = (ΣiΣj (one if Ri,j 
equals 0 and zero otherwise))/O and where i = 1...X and j = 1...N. 

4.5.3 Update Efficiency 
Given a specific service-discovery topology, examination of the 
available architectures (two-party and three-party) and 
consistency-maintenance mechanisms (polling and notification) 
reveals a minimum number of messages, M, that must be sent to 
propagate a change to all SUs. In our topology, M (M = 7) occurs 
when using notification to propagate information in a three-party 
architecture with one SCM. Update Efficiency, E, can be defined 
as the ratio of M to the actual number of messages observed. More 
formally, let S be the number of messages sent while attempting to 
propagate a change from a SM to SUs in a given run. Define 
average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X. 

5. RESULTS AND DISCUSSION 
In this section, after showing results from our experiments, we 
consider the relative performance of our models. We propose 
reasons for performance differences, subject to further analysis 
and verification by on-going research. We also use Rapide to 
examine selected saw-tooth behaviors, and we outline suggestions 
for improving ADLs (based on our experiences with Rapide). 

5.1 Results 
In a series of six graphs, which have identical abscissas (interface-
failure rate, increasing from 0% to 75% in increments of 5%) and 
ordinates (one of the three metrics ranging between 0 and 1), we 
plot selected measurements generated from our models. Each 
graph compares four of the configurations in Table 3 against one 
of the metrics: update responsiveness (median), effectiveness, or 
efficiency (average). We choose the median as a measure of 
update responsiveness because the measured data tend to clump in 
distinct concentrations. Averages proved less representative of the 
data. Figure 4(a) compares responsiveness from our two-party 
model against that from our single-SCM, three-party model, for 
both polling and notification. Figure 4(b) provides a similar 
comparison, but substitutes the results from our dual-SCM, three-
party model in place of results from our one-SCM, three-party 
model. Figures 4(c) and 4(d) compare update effectiveness using 

Rate - 5
Run number - 21

SM 1 OUT Interface       down 365, up 635

SCM 1 OUT Interface       down 2417, up 2687
SCM 2 IN & OUT Interface  down 519, up 789

SU 1  IN Interface     down 2238, up 2508
SU 2  IN Interface    down 3256, up 3526
SU 3  IN Interface   down 207,  up 477
SU 4  OUT Interface down 2876, up 3146
SU 5  IN Interface down 4478, up 4748

Performance:

SM  1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU  1 346.00000 346.00109 0 11
SU  2 346.00000 346.00109 0 11
SU  3 346.00000 5400.00000 4 11
SU  4 346.00000 346.00109 0 11
SU  5 346.00000 346.00114 0 11

Figure 3. Console output from a sample run: three-party, 
two SCMs, notification, F = 5%, Q =100 s, and D = 5400 s. 
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100 us for cache items
10 us for other items

Per-item processing 
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission 
delay

Transmission and 
processing delays

5% increments of 5400 s 
from 0 to 75%

Failure duration

Transmitter, receiver, or 
both with equal likelihood

Failure scope

Once per run for each nodeFailure incidence

Interface failure 
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific 
behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both 
two- and three-
party architectures

ValueParameter

Table 4. Values for relevant parameters. 



vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

 U
p

d
at

e 
R

es
p

o
n

si
ve

n
es

s

Two-Party
Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-Party Single-
SCM Polling
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Table 5. Summary statistics (mean across all interface-failure 
rates) computed for each curve given in the graphs shown in 
Figures 4(a) through 4(f). 

Table 6. Depicts upper and lower bounds of the 95% C.I., 
computed using appropriate statistical techniques, for each 
metric and all experiment combinations at selected interface-
failure rates. 

the same combinations. Figures 4(e) and 4(f) use the same 
combinations, but compare update efficiency. The graphs 
reporting measures of responsiveness and effectiveness depict a 
system undergoing a phase-transition from peak performance 
(where changes propagate quickly) to non-performance (where 
changes fail to propagate). Regarding efficiency, the graphs show 
a system that begins at its best efficiency (without interfering 
failures) and then asymptotically approaches zero efficiency as the 
failure rate increases toward 100%. The graphs (particularly those 
showing update effectiveness) also depict several eccentricities, in 
the form of saw-tooth behaviors. Using the analysis and 
visualization tools provided by Rapide, we were able to 
investigate the causes underlying these eccentricities (see 5.3). 
Because the graphs can be difficult to interpret, we compute 
summary statistics (see Table 5) for each of our six combinations. 
Each summary statistic reflects the mean of a particular metric, 
when averaged across all interface-failure rates, for a specified 
configuration. To indicate the uncertainty associated with our 
measurements, we also give (see Table 6) the upper and lower 
bounds (computed using an appropriate standard error formula for 
each metric) associated with selected interface-failure rates (5%, 
40%, and 75%) for each of our curves. 

5.2 Understanding Relative Performance 
Below, we discuss the results for each of our three metrics. The 
reader should note that engineering trade-offs exist among these 
metrics: responsiveness, effectiveness, and efficiency. 

5.2.1 Responsiveness 
Results in Figs. 4(a) and 4(b) and the first column of Table 5 
show that the various combinations of architecture and behavior 
exhibit similar responsiveness, where the mean median ranges 
between 0.663 and 0.530. Table 6, which reports uncertainty in 
the results, confirms a rough similarity in responsiveness. 
Similarity arises because interface failures interfere with both 
polling and notification, requiring nodes to rely on recovery 
mechanisms in the underlying discovery protocols to restore 
consistency. Absent failures, notification proves more responsive 
because change notices are issued to interested parties 
immediately after a change occurs, while polling incurs some lag 
time. The presence of interface failures complicates the situation. 
First, if a required interface is not operating when a notification is 
issued, then an update will be lost. Second, when polls fail for an 
extended period (likely during high interface-failure rates), then 
polling ceases and updates can be missed. Under both (polling 

and notification) mechanisms, restoring consistency depends upon 
the recovery mechanisms in the discovery protocol. 

The recovery mechanisms, as implemented in our models, exhibit 
similar responsiveness: rediscovery of lost nodes will occur within 
120 s after restoration of a failed interface. In the three-party case, 
periodic (120 s) announcements by each SCM (lazy-discovery 
procedures) ensure rediscovery. Similarly, in the two-party model, 
the periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) also ensure rediscovery. In this way, 
restoration of a failed interface leads to rediscovery of lost nodes, 
and to restoration of consistency in cached copies of SDs. As the 
interface-failure rate increases beyond 30%, the rediscovery 
machinery tends to dominate the responsiveness results (see 5.4 
for further discussion of recovery mechanisms). 

5.2.2 Effectiveness 
Results in Figs. 4(c) and 4(d) and the second column of Table 5 
show that certain combinations lead to better update effectiveness, 
and Table 6 suggests that these differences could be significant. 
Differences in effectiveness may be partly attributed to 
architecture and topology. For example, each SD copy must 
propagate over either one link (two-party case) or two links 
(three-party case). For this reason, the three-party architecture 
(single SCM) can prove more vulnerable to interface failures (two 
links must be operational). This suggests that a two-party 
architecture will be more effective under severe interface failures, 
and our results support this. On the other hand, the three-party 
architecture allows replication of SCMs, which provides a greater 
number of paths through which information can propagate. This 
suggests (and our results agree) that the three-party architecture 
with the dual SCM should provide superior effectiveness over the 
single-SCM, three-party architecture. Our results also indicate that 
the dual-SCM three-party architecture yields effectiveness close to 
that of the two-party architecture. Adding SCMs will likely 
improve the effectiveness of the three-party architecture by 
increasing path redundancy in the topology. 

Differences in effectiveness may also be attributed in part to 
consistency-maintenance mechanism. In general, polling should 
lead to better effectiveness than notification. Our results support 
this for the two-party architecture and for the three-party 
architecture with a single SCM. Polling has built-in robustness 
from issuing periodic requests. On the contrary, in both two- and 
three-party architectures, each notification is issued only once 
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with no further action by the sender in response to a REX (recall 
Table 2). In two-party notification, effectiveness suffers from 
situations where the notice is lost but the SM is not lost (because 
announcements occur only every 1800 s and thus an interface 
failure can be restored before the next announcement). In these 
situations, rediscovery does not occur and the change will not be 
propagated (see 5.3). 

5.2.3 Efficiency 
For a given combination of architecture and topology, we expect 
that notification would be more efficient than polling. We also 
expect that the two-party architecture would be more efficient 
than the three-party architecture, and that the single-SCM 
topology would be more efficient than the dual-SCM topology. In 
general, our results support these expectations, but with a few 
twists. The three-party, single-SCM architecture with notification 
proves more efficient than the two-party architectures because in 
Jini the SD arrives with the notification, while in UPnP 
notifications indicate only that a change has occurred, requiring a 
SU to exchange a request-response message pair to obtain the 
updated SD. 

In notification, efficiency also decreases as the failure rate 
increases because SUs need to recover from REXs associated with 
refreshing remote registrations. Each SU must periodically refresh 
notification requests deposited on the SM (two-party case) or 
SCM (three-party case). Interface failures lead to REXs during 
refresh attempts. A REX invokes retry procedures: every 120 s 
until 540 s of continuous REX (three-party case) or every 120 s 
until a SM is purged (two-party case). 

5.3 Investigating Saw-Tooth Phenomena 
A number of the curves shown in Figures 4(a)-(f), exhibit saw-
tooth phenomena, most pronounced for update effectiveness, 
particularly for the two-party architecture with notification. Our 
uncertainty calculations suggest that at failure rates above 40% 
these spikes may be attributed to random variations, which might 
be reduced by increasing the number of runs at each failure rate 
(currently 30) and the corresponding number of data points 
(currently 5 SUs x 30 runs = 150). On the other hand, spikes at 
lower failure rates appear more likely due to causal behavior in 
our models. For example, the two-party architecture with 
notification exhibits a significant dip at 15% interface-failure rate. 

Using visualization and analysis tools included with Rapide, we 
examined the partially ordered sets of events (POSETs) that 
display the complete causal behavior of our model. The POSETs 
revealed that at the 15% interface-failure rate a large number of 
notifications were lost when either the SM transmitter was 
inoperable (causing notifications to all SUs to be lost) or when SU 
receivers were inoperable (causing lost notifications to individual 
SUs). Recovery from notification loss depends upon a SU 
discarding a SM, and then rediscovering the SM, and retrieving 
related SDs. A SU discards a SM when it fails to receive an 
announcement from the SM within the specified time. 
Unfortunately, in many cases, a failed interface that caused a 
notification loss was repaired prior to the next SM announcement 
(announcements come every 1800 s). In such cases, the SU does 
not purge the SM, and therefore there is no rediscovery. Without 
rediscovery, there is no mechanism to restore consistency; thus, 
lost notifications lead to inconsistencies that persist to the 
deadline (and beyond). 

Why does this behavior not appear with notification in the three-
party architecture? The three-party architecture requires a SM to 
first propagate a change to a SCM. The SCM then propagates the 
change on to SUs that requested notification. While notification 
from SCM to SU is unprotected, on failure a SM retries change 
propagation to a SCM. An inoperable SCM transmitter leads not 
only to failure to propagate notifications to SUs, but also to 
failure to confirm the change propagated by the SM. Absent 
confirmation, the SM retries the change for up to 540 s, during 
which time the SCM transmitter might be restored. Each repeated 
change that propagates to the SCM also causes notifications to be 
sent to the relevant SUs. Thus for SCM transmitter failures, we 
conclude that robustness in change propagation from SM to SCM 
compensates for lack of robustness in notifications from SCM to 
SU. No equivalent serendipity occurs in the two-party 
architecture. These cases suggest relationships between the timing 
and scope of failures and the role of recovery mechanisms in the 
different architectures. 

5.4 Role of Recovery Mechanisms 
Under hostile conditions, such as those in our experiments, 
recovery mechanisms play a key role in consistency maintenance. 
For example, a detailed analysis of results from our two-party 
architectural model show that at 30% failure rate and below, 
interface failures tend to be restored more frequently within the 
REX retry period associated with HTTP Get requests; thus, 
application recovery contributes substantially to update 
effectiveness. Above 30% failure rate, application recovery tends 
to exhaust its allotted time, leading a SU to discard knowledge of 
the SM. In such cases, update effectiveness depends primarily on 
robustness mechanisms built into the discovery protocol. We plan 
additional analysis to establish the contribution to update 
effectiveness of various recovery strategies in both two- and three-
party architectures. 

5.5 Recommendations for Improving ADLs 
While the Rapide ADL provided useful abstractions to represent 
and analyze the structure and behavior of service-discovery 
protocols under failure, we recommend some improvements that 
apply generally to ADLs. First, this study reinforces our previous 
recommendations [4] that component states should be selectively 
exportable to allow data extraction and recording for analysis. 
Such an export mechanism would also assist in implementing 
techniques to evaluate consistency conditions that involve state 
variables from two or more components and that consider time, 
two important considerations when analyzing component 
interactions. We note that some ADLs include constraint-analysis 
engines that consider time [e.g., 15]. Second, ADLs, and 
especially their tools, must provide representations of behavior 
that can be evaluated efficiently. For example, to bound POSET 
size in this study, we were forced to substitute procedure calls in 
place of Rapide constraint evaluation. Third, we would find it 
convenient if ADL tools supported the same statistical techniques 
available from commercial simulation systems. For example, ADL 
tools might include mechanisms to track and summarize statistics 
about selected state variables. ADLs might also include machinery 
to apply statistical tests to selected variables across experiment 
runs in order to automate halting decisions. We expect to develop 
additional recommendations as our work proceeds. 



6. FUTURE WORK 
We envision future work along three general directions. First, we 
intend to complete our characterization of performance for various 
combinations of architecture, topology, and behavior during 
failures. We will model the effects of message loss, which appear 
likely to differ significantly from those described in this study, 
and we will assess the ramification of node failure on discovery 
and recovery mechanisms in various architectures and topologies. 
Second, we plan to model and evaluate selected changes to 
improve the performance of discovery architectures and protocols 
in response to failure. Here, our goal is to increase the fault-
tolerance of such systems. We intend to implement and evaluate 
our most promising suggested changes in publicly available 
service-discovery software. Third, we will expand our generic 
structural model of service-discovery architectures to include 
message exchanges and verifiable consistency conditions. 

Along a different dimension, we hope to improve methodologies 
available to design and engineer distributed software systems. At 
present, many publicly available specifications come with one or 
more reference implementations. We hope to demonstrate that 
architectural models lead to better understanding of the properties 
of distributed systems. In addition, we aim to improve ADLs, and 
associated tools, by providing recommendations based on our 
experience. We are also considering developing our own 
modeling and analysis tools especially designed for understanding 
collective behavior in multi-party distributed systems. 

7. CONCLUSIONS 
Emerging service-discovery protocols provide the foundation for 
software components to discover each other, to organize 
themselves into a system, and to adapt to changes in system 
topology. While likely suitable for small-scale commercial 
applications, questions remain regarding the performance of such 
protocols at large scale, and during periods of high volatility and 
duress, such as might exist in military and emergency-response 
applications.  In this paper, we used architectural models to 
characterize the performance of selected combinations of system 
topology and consistency-maintenance mechanism during 
catastrophic communication failure. Further, we used behavioral 
analysis to investigate causes underlying observed performance. 
Our initial investigations show significant differences in update 
effectiveness can be obtained by varying aspects of the design 
(architecture, topology, consistency-maintenance mechanism, and 
recovery strategies). Our results also suggest relationships among 
interface-failure rate, failure timing, and recovery strategies.  
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