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Abstract 
 
 
   In this paper, a hybrid fractal zerotree wavelet (FZW) image coding algorithm is 

proposed. The algorithm couples a zerotree-based encoder, such as the embedded 

zerotree wavelet (EZW) coder or set partitioning in hierarchical trees, and a fractal 

image coder; this coupling is done in the wavelet domain. Based on perceptually-

weighted distortion-rate calculations, a fractal method is adaptively applied to the parts 

of an image that can be encoded more efficiently relative to an EZW coder at a given 

rate. In addition to improving compression performance, the proposed algorithm also 

allows one to impose desirable properties from each type of image coder, such as 

progressive transmission, the zerotree structure, and range-domain block decoding. 
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I. INTRODUCTION 
 

A. Image compression in the wavelet domain 

   Subband coding [27], based on the wavelet theory, provides a multi-resolution 

decomposition of images. The discrete wavelet transform exhibits strong decorrelating 

properties such as space-frequency localization, spatial clustering of significant 

structures within each subband, and clustering of similar structures across subbands [1]. 

These statistical properties of subbands [2] have been studied extensively and have been 

exploited by wavelet image coders. In particular, the pyramidal, or dyadic, wavelet 

decomposition has shown excellent energy compaction. To efficiently encode the 

subbands, Shapiro [24] introduced the EZW encoder, which uses both bit-plane coding 

and the zerotree structure. An alternative algorithm, set partitioning in hierarchical trees 

(SPIHT), was proposed by Said and Pearlman [22]. These EZW coders have shown 

excellent distortion-rate (D-R) performance with low computational complexity, while 

generating an embedded bit stream. This latter property enables one to send images in a 

progressive manner and to encode images at any target bit rate. Xiong et al. [29] utilized 

the zerotree in an adaptive manner and showed, perhaps, the best results among the 

zerotree-based image coders; however, the computational complexity of their method is 

quite high and their method is not progressive.  

While EZW coders exploit the inter-subband correlation through a tree, some other 

coders exploit either intra-subband or inter-subband correlation through structures 

closely related to trees. Taubman and Zakhor [25] proposed layered zero coding (LZC) 

for still images and video. This coder uses adaptive arithmetic coding [26] more 

efficiently than other methods, but requires some amount of side information. Servetto 

et al. [23] suggested a morphological representation of the wavelet data. The clustering 

property of significant coefficients within and between subbands was also exploited by 

Chai et al. [3]. The last two encoders emphasized the morphologically significant 

structures among subbands, and they showed comparable results to zerotree-based 

encoders. Recently, other adaptive image coding algorithms, based on the use of side 

information, have shown promising results. Joshi et al. [11] investigated classification 

of image subbands. Their algorithm is a forward adaptive technique. There have been 

other types of coders that treat overhead information differently, called backward 
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adaptive techniques. These methods utilize the causal (received) data to estimate the 

statistical properties of coefficients in the subbands [17][4][30]. By eliminating 

overhead, backward adaptive techniques have better distortion-rate performance than 

forward adaptive ones, at the cost of computational complexity at the decoder. 

Fractal image compression has been shown to be very effective in exploiting the self-

similarity in the spatial image domain [9][6][18]. Recently, the self-similarity in a 

subband decomposition has also been studied by using fractal coding methods. Pentland 

and Horowitz [20] first suggested the possible link. Rinaldo and Calvagno [21] 

proposed this type of algorithm for image coding. Davis [5] and Krupnik et al. [14] 

independently introduced wavelet-based fractal image coders that are generalizations of 

fractal block coding in the spatial domain. Davis showed that a total tree-based fractal 

compression method is very efficient in representing zerotree-like structures and straight 

edges that have self-similarity. Li and Kuo [15] proposed a hybrid wavelet-fractal image 

coder and showed good distortion-rate performance. In fact, fractal coding in the 

wavelet domain can be viewed as a technique for block prediction from the lower 

resolution subbands to the higher resolution ones. 

In this paper, we propose hybrid fractal zerotree wavelet coding, yielding a coder we 

call a fractal zerotree wavelet (FZW) coder. The basic idea is to choose between the 

similar wavelet-domain structures that occur in EZW and tree-based fractal encoders by 

utilizing locally optimal, distortion-rate calculations. A fractal method is adaptively 

applied to the parts of an image that can be encoded perceptually losslessly and more 

efficiently than with an EZW coder; this usually corresponds to edges and texture areas 

of an image. In our previous work based on the MPEG-4 still image coding algorithm 

[12], the fractal coding method in the wavelet domain saved significant bits without 

perceptual image degradation. By basing FZW on the SPIHT coder, it can outperform 

SPIHT. Moreover, FZW shows one of the best distortion-rate performances in the class 

of fractal image coders. 

B. Paper organization 
General EZW coders and fractal image coding methods are briefly reviewed in 

Section II. The FZW algorithm is proposed in Section III, and simulation results with 

FZW are provided in Section IV. Conclusions are presented in Section V. 
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Fig. 1 Hierarchical structures in the dyadic (pyramidal) decomposed wavelet domain. A tree is composed 
of a wavelet coefficient (node) and all its descendents. Trees are formed from coefficients of the same 
orientation (indicated by small boxes of the same style). The union of three trees of different orientations 
is called a total tree. A total tree plus one coefficient in the LFS (star mark), comprises a square tree. A 
square tree corresponds to a square block in the image domain (white block in the right figure). The 
corresponding blocks in the wavelet and image domains are shown on top of the figure. 

nOrientatio
lS represents a subband at the lth decomposition level and at one of three orientations (LH, HL, 

HH).  
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II. BACKGROUND 
 

A. EZW Image Coding 
There have been many versions of EZW coders since Shapiro introduced his 

algorithm in 1993 [24]. The SPIHT algorithm [22] shows excellent results in this class 

of coders. Here, we briefly explain the general procedures of EZW image coders. For 

the following review, it is important to define and understand the hierarchical structures 

in the wavelet domain. The tree structure, called simply a tree, is a set of wavelet 

coefficients corresponding to the same spatial location and orientation (see Fig. 1.). The 

assembly of three trees, which specify the same spatial location, is called a total tree. 

The union of three trees (a total tree) and one coefficient in the LFS, called a square 

tree, corresponds to a square block in the image domain. In other words, a square tree 

has complete information about the corresponding square block. It is noted that most 

EZW coders could be modified to encode each square tree, total tree, or tree, 

independently.  The basic assumption in zerotree-based image coders is that if there are 

insignificant coefficients in low frequency subbands in a tree, then the corresponding 

coefficients in the higher frequency subbands are likely also insignificant. A tree with 

all coefficients insignificant with respect to a given threshold is called a zerotree. While 

zerotrees can be very efficiently coded, a substantial number of bits is required to 

specify non-zerotree structures. 

Although there are some minor differences among the EZW image coders, their 

encoding procedures can be summarized by three operations: (1) the significance map 

pass, (2) the zerotree map pass, and (3) the refinement pass. In the significance map 

pass, the significance function, with respect to a given threshold, is applied to each 

wavelet coefficient using a predefined scanning order. The two possible results for each 

coefficient are significant (1 symbol) or insignificant (0 symbol). This is a form of 

simple binary quantization. Usually, the initial threshold T0 is given by the following 

formula. 

 






=
)),(max(log

0

,
2

2
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jiT , 
 

where c(i,j) is the wavelet coefficient at location (i,j), and x chooses the largest integer 

less than x. In the next pass, the threshold is generally decreased to T0/2. In the zerotree 
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map pass, the zerotree function, which also has two possible outputs with respect to a 

given threshold, is applied to the trees. If there are no significant coefficients in a tree, 

the zerotree function outputs the ‘insignificant’ symbol. Otherwise, this function outputs 

the ‘significant’ symbol, and the positions of the significant coefficients in the tree 

should be specified by an appropriate method for a given threshold. The choice of this 

specifying method determines the computational efficiency and distortion-rate 

performance of an EZW coder. In the refinement pass, each coefficient that turned out 

to be significant is given a refined quantized representation. One bit is given for each 

coefficient. The algorithm can stop at any time, coding in an embedded and progressive 

manner. 

 

 

4D )( 4DS 34 ))(( RDSO =

S O

 
 

Fig. 2 Procedure of approximating a range tree using a domain tree. A domain tree ( 4D ) that has its node 
in the third decomposition level is subsampled by truncating all the coefficients in the highest frequency 
subbands. The size of a subsampled domain tree )( 4DS  is the same as that of a range tree ( 3R ). The 
orientation consists of isometry operations within subbands, and a switch of HL and LH subbands in a 
tree. 
 

 

B. Fractal Image Coding 
Generalizations of fractal block coding from the image domain to the wavelet domain 

have been proposed in recent years [20][21][5][14]. The motivation for these methods 

stems from the existence of self-similarities in the multiresolutional wavelet 

representation. In fact, fractal image coding in the wavelet domain has quite different 
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characteristics from the spatial domain coders and can be interpreted as the prediction of 

a set of wavelet coefficients in the higher frequency subbands from those in the lower 

ones. A contractive mapping associates a domain tree of wavelet coefficients with a 

range tree that it approximates. Various structures have been used for the domain to 

range mappings [21][5][15]. A fractal coding method that uses total trees for the range 

and domain trees is briefly reviewed for understanding the proposed algorithm. 

A range tree is fractally encoded by a bigger domain tree. The approximating 

procedure is very similar to that in the spatial domain: subsampling and determining the 

orientation and scaling factor. Note that one does not need an additive constant because 

the wavelet tree does not have a constant offset. Subsampling matches the size of a 

domain tree with that of a range tree by truncating all coefficients in the highest 

subbands of the domain tree. The orientation operation consists of a combination of a 90 

degree rotation and a flip, and it is done within each subband. A switch of HL and LH 

subbands is the next step. The scale factor is then multiplied with each wavelet 

coefficient in the tree. Figure 2 shows some of these steps. 

Let lD  denote the domain tree, which has its coarsest coefficients in decomposition 

level l, and let 1−lR  denote the range tree, which has its coarsest coefficients in 

decomposition level l-1. The contractive transformation (T ) from domain tree lD  to 

range tree 1−lR , is given by 

 
where S  denotes subsampling, O  is the orientation operation, and α  is the scaling 

factor. Let ),....,,( 21 nxxxx =  be the ordered set of coefficients of a range tree and 

),....,,( 21 nyyyy =  the ordered set of coefficients of a subsampled domain tree isometry. 

Then, the mean squared error is 
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We search over all eight orientations and all trees in the domain pool to find the best-

matching domain tree for a given range tree. The encoded parameters are the position of 

the domain tree, index of orientation, and the scaling factor. The bits for the position of 

a domain tree vary according to the dimension of the domain pool. In practice, we store 

the position of either the range or the domain tree, 5 bits for the quantized scale factor, 

and 3 bits for specifying the orientation.  

 
 

III. FRACTAL ZEROTREE WAVELET IMAGE CODING 
 

The FZW algorithm is based on the observation that in some cases, the use of an 

explicit zerotree structure for a given bit plane can cost a substantial number of bits with 

very little contribution to image quality. That is, the basic assumptions underlying EZW 

coders can be broken in practice. This occurs when there are a number of trees in an 

image that have isolated zeros in low frequency subbands. These trees typically 

correspond to highly textured areas and edges. For these parts of the image, a 

substantial number of bits can be saved if the coding method is altered. While in general, 

fractal compression methods have not been as effective as the state-of-the-art image 

coders, they do encode certain parts of images quite efficiently. Specifically, wavelet 

domain fractal encoders are good at representing constant gradients, textured areas, and 

straight edges that have self-similarity. In other words, by selectively replacing the 

EZW coding trees by a fractal encoding method, it is possible to obtain distortion-rate 

points for the hybrid coder that are below the EZW coder’s operational distortion-rate 

curve. 

In contrast to EZW encoders, fractal coding methods in the wavelet domain usually do 

not generate an embedded bit stream. Moreover, fractal coding methods cannot be 

easily applied to the coefficients in the lowest four subbands. Despite these differences, 

fractal and EZW encoding can be combined. The proposed fractal coding algorithm, 

FZW, is based on the EZW algorithm. As in EZW, the encoding and decoding are done 

in the wavelet domain. However, in FZW, the regions of the image are either coded by a 

fractal or by an EZW method, selected according to a distortion-rate criterion.  
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A. Encoding Procedure 
 

The fundamental concept of fractal encoding is to find the best matching domain tree 

for each range tree, in the sense of minimizing a chosen distance metric. Often, both the 

range and domain trees consist of uncompressed wavelet coefficients. However, if one 

considers both rate and distortion when choosing the matching domain tree for a given 

range tree, then the chosen domain tree may depend on the encoding rate of the system. 

This fact forces us to perform EZW encoding and decoding (called trial-encoding and 

trial-decoding) for a given bit rate before fractal encoding in FZW starts. The FZW 

encoding method works as follows: (1) EZW trial encoding and decoding are performed 

to a rate near (and slightly above) a target rate. (2) Then, the instantaneous slope of the 

D-R curve of EZW near the given bit rate is calculated. (3) In this EZW decoded 

wavelet domain, a range-domain search is performed, with the D-R slope value for 

adopting the fractal coding method for each range tree calculated and compared to the 

D-R slope of EZW. If this alternative fractal coding yields a superior D-R characteristic, 

the range tree is fractally encoded. (4) The fractal encoding information is side 

information, which is placed before the EZW bit stream. Then, the bits that specify the 

EZW coding for these fractally encoded parts are eliminated from the EZW bit stream.  

To both retain and enhance the progressive property of EZW coders, the FZW 

decoder applies the fractal decoding process at each bit-plane threshold, i.e., improved 

fractal range tree estimates are formed based on the refined domain trees obtained at 

each bit plane threshold. Note that this decoding is not an exact inverse of the FZW 

encoding. An alternative decoding approach (where the decoder is an exact inverse of 

the encoder) would first entirely EZW decode the image (to the target rate) and only 

then apply fractal decoding to the appropriate range trees. This would reduce 

computational complexity, since the fractal decoding is then done only once, instead of 

at each bit plane. There would still be some progressiveness, obtained by use of the 

EZW algorithm. However, our proposed approach of doing fractal decoding at each bit 

plane is supported from three standpoints: (1) The increase in computational complexity 

is not that large, since only one fractal iteration is done for each bit plane. This fact 

should be contrasted with typical block-based fractal decoders that perform a number of 

iterations. (2) There is no degradation in performance at the target rate compared to the 

alternative decoding approach, because the final fractal decoding uses the entire EZW 
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decoded image in both cases (The fractal decoded range trees are overwritten from one 

bit plane to the next.). 3) Most importantly, we have found that, although our method is 

optimized for a target rate, it achieves gains in progressive performance (attributable to 

fractal decoding at each bit plane) not only in comparison with the alternative decoding 

approach, but also in comparison with standard SPIHT. Thus, the proposed progressive 

fractal decoding makes FZW an even more progressive scheme. Further discussion on 

progressive decoding, including performance results, is given in the Experimental 

Results section. 

   Initially, as some trees are selected for fractal coding, the distortion-rate gain over the 

EZW coder grows. However, as more and more trees are fractally encoded, further 

reducing the rate, the gains over EZW shrink. This occurs because the FZW method 

seeks improvements via fractal coding starting from an EZW coder at a specified rate. 

Thus, improvement can only be achieved over a region of rates less than (but in the 

vicinity of) the target rate. To summarize, the proposed method seeks improvement over 

EZW coders in a local region near (and below) the initial (pure EZW coder) rate. This 

characteristic of FZW is shown in Fig. 3. This figure also indicates the rate at which the 

FZW method achieves its maximum gain over EZW.   
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Fig. 3 Distortion-rate curves of SPIHT and FZW on the Lena image for encoding rates near 0.170 bpp. 
Using a distortion-rate selection of trees to be fractally encoded, FZW approaches its optimal gain at a 
rate slightly above 0.15 bpp. As more range trees are adopted beyond this point, the gain of FZW is 
reduced. The distortion measure is a weighted MSE measure (described in Section IV).   
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B.  FZW algorithm 
 
   Encoder 
 

Step 1 (discrete wavelet transformation): transform an image into a pyramid form for 
a given number of decomposition levels. 

 
Step 2 (trial-encoding): encode an image using an EZW coder at a given bit rate, and 

generate Count_map and the EZW bit stream. Count_map is a square matrix 
whose elements hold the number of bits and encoding information of range 
trees for the square trees. The matrix dimension is the same as the size of the 
lowest frequency subband. 

 
Step 3 (trial-decoding): decode an image using the bit stream, and calculate the mean 

squared error (MSE) distortion1 between the original and reconstructed images 
at the encoding bit rate, aR , and at a bit rate slightly less than the decoding 
rate, bR . Denote these MSE values as aMSE  and bMSE , respectively.  Next, 
determine the instantaneous slope of the distortion-rate curve for the image at 
this bit rate using 

 
)(/)( baba RRMSEMSEslopeRD −−=− . 

 
  Without loss of generality, we assume that this value is always negative. 

 
Step 4 (fractal range-domain search): find the best matching domain tree for each 

range tree; save the fractal coding parameters and the distortion value fMSE  
between the original range and fractal encoded range trees. The fractal coding 
parameters include the position of the domain tree, orientation, and the scaling 
factor. The fractal coding rate, fR , is fixed, i.e. the fractal coding cost is a 
constant number of bits.  

 
 
Step 5 (distortion-rate comparison): compute the number of encoded bits when a 

range tree, among the four range trees in a total tree, is eliminated from the 
EZW coding process. Denote this value as RTTTR − . The new rate nR  is   

 
fRTTTn RRR += −  . 

 
   The D-R slope value for adopting the fractal coding method (D-R fractal) is 

then 
 

                                                
1 We describe the FZW algorithm with the mean square error as the distortion measure. However, other 
distortion measures can also be used – we will introduce a perceptual distortion measure in the results 
section. 
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fractalRD
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 where fMSE  is the mean squared error when using this combined fractal 

method. Without loss of generality, fa MSEMSE −  is assumed to be negative. 
By comparing D-R slope and D-R fractal, we determine if fractal coding is 
applied to a range tree or not. When na RR −  is positive and the following 
condition is satisfied, then fractal coding is adopted: 

 
fractalRDslopeRD −≥− . 

 
 This step is repeated for the other three range trees in the total tree. Apply Step 

5 for every total tree. 
 

Step 6 (encoding): send side information for each square tree first. This includes one 
bit to specify if fractal coding is applied to at least one range tree and four bits 
to specify the positions of the fractal encoded range trees. The fractal coding 
parameters follow. Using information in Count_map, the encoded bits for 
these fractally encoded parts are eliminated from the EZW bit stream.  A 
further discussion of the bits used for fractal encoding is provided in the 
Experimental Results section. 

             
            
  

   Decoder 
 
Step 1 (side information): read side information of image size, decomposition level, 

initial threshold, and fractal coding for each total tree. 
 
Step 2 (EZW decoding): decode using the EZW coder starting from the initial 

threshold. Apply EZW decoding to the parts of the image EZW-encoded at 
this threshold. After this step, make the threshold half. 

 
Step 3 (fractal decoding): apply fractal decoding for the fractal encoded parts of the 

image using both side information and the decoded image in Step 2. These 
decoded parts are overwritten (at every threshold, fractal decoding is 
performed and overwritten). Due to this step, FZW is more progressive in 
transmission.  

 
Step 4 (iteration): repeat Steps 2 & 3 until the EZW bit stream ends. 
 
Step 5 (inverse discrete wavelet transformation): perform inverse transformation. 
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IV. EXPERIMENTAL RESULTS 
 

A. Results with the mean square error distortion  
   For our experiments, we chose the set partitioning in hierarchical tree (SPIHT) 

algorithm [22] as our EZW image coder. This algorithm shows excellent performance 

without iterative computations. The biorthogonal 9/7 filter bank [1] and 512 × 512 gray 

scale images with 8 bits per pixel are used for the experiments. Six-level 

decompositions are constructed by a symmetric extension at the image edges. The 

domain tree is a total tree that has the lowest frequency coefficients in the fifth 

decomposition level. That is, the domain trees, 5D , are used, and they form disjoint 

domain pools. The corresponding range trees, 4R , are total trees in the fourth 

decomposition level. Eight bits are needed to select from the domain pool of size 16 × 

16. Five bits are used for the scale factor and three bits for the orientation. So, the fractal 

coding costs are fixed at 16 bits per total tree (range tree). Additionally, an overhead of 

256 bits per image is required to indicate whether fractal coding is applied to any range 

trees in each domain tree in D5.  If fractal coding is used in a domain (square) tree, then 

4 additional bits are needed to specify the 15 possible combinations of 4 range trees. 

Table I compares the D-R performance of FZW versus SPIHT and other image coders 

including: (1) fractal block coding in the spatial domain (FRAC) [8], (2) a predictive 

pyramid coder (PPC) [21], (3) self-quantization of subtrees (SQS) [5], and (4) a hybrid 

wavelet-fractal coder (WFC) [15]. The PPC and SQS algorithms encode the image 

using only a fractal method. WFC combines the layered zero coder (LZC) [25] and a 

fractal coding method. The two hybrid coders, WFC and FZW, demonstrate excellent 

performance compared to other fractal coding methods, and they achieve performance 

comparable to state-of-the-art wavelet image coders. A D-R comparison of just the 

fractal coders is plotted in Fig. 4. 

   The fractal encoded parts of the Lena image are indicated by square boxes in Fig. 5. 

As we expect, most of the boxes are related to edges and texture areas, and FZW 

encodes these parts efficiently without image degradation. Note that only a handful of 

the boxes are fractal encoded, and this is why the increase in PSNR is only 0.02 dB.  

Moreover, there are other edges in the image that are not fractal encoded, suggesting 
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that further performance improvements are possible. This topic is addressed in the next 

subsection, where a perceptually-based distortion measure is used. 

   One of the most noticeable results of this experiment is that the fractal range-domain 

relation pattern in FZW is quite different from that in fractal coders that are based in the 

spatial domain. In spatial domain fractal coders, a range block tends to be spatially close 

to its matching domain block – the distribution of spatial distances between range and 

domain blocks is highly peaked at zero distance [10][28]. In other words, a range block 

is likely to be encoded by a domain block that includes the range one. This tendency 

enables one to design a domain pool that is spatially restricted to a range block, which 

can speed up the encoding time. The range-domain relation patterns on the Lena image 

for FZW are shown in Fig. 6 (at given rates). The histogram counts in Fig. 6. are nearly 

uniform for different values of the range-domain distance. Furthermore, these figures 

show that there are few range trees that have a matching tree that is in the same square 

tree. These characteristics of fractal coding in FZW have been exploited by an error 

resilient variant of the FZW algorithm [13], although this robust algorithm is not 

included in this paper. 

 
 
 
 

Table I 
Rate-PSNR performance of various image coders on the Lena image. 

 
 Rate 

(bpp) 
PSNR 

(dB) 
Rate 
(bpp) 

PSNR 
(dB) 

Rate 
(bpp) 

PSNR 
(dB) 

Rate 
(bpp) 

PSNR 
(dB) 

Rate 
(bpp) 

PSNR 
(dB) 

FRAC [8]     0.218 30.71 0.448 33.40 0.763 35.92 
PPC [21]   0.18 31.20 0.26 32.78 0.37 34.00   
SQS [5] 0.036 25.86 0.080 28.55 0.180 31.80 0.366 34.92 0.767 38.14 

WFC [15] 0.036 26.42 0.083 29.41 0.182 32.68 0.369 35.84 0.758 39.02 
SPIHT[22] 0.036 26.49 0.083 29.47 0.189 32.90 0.386 36.08 0.787 39.25 

FZW 0.036 26.49 0.083 29.48 0.189 32.92 0.386 36.11 0.787 39.28 
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Fig. 4 Distortion-rate comparison of fractal image coders for the Lena image. 

 
 
 
 
 
 

          
                                        (a)                                                                            (b) 
 

Fig. 5 The SPIHT (a) and FZW (b) images encoded at 0.189 (bpp). (a) PSNR is 32.90 (dB). (b) PSNR is 
32.92 (dB). The parts of the image encoded with the fractal method are marked by white boxes. These 
areas are highly textured or constant regions.  
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(b) D istance histogram  for the Lena
im age encoded w ith threshold 16
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                          (a) Threshold 32                                                         (b) Threshold 16 
 

 

(c) D istance histogram  for the Lena
im age encoded w ith threshold 8
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(d) D istance histogram  for the Lena
im age w ithout quantization
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                          (c) Threshold 8                                                         (d) Without quantization 
 
 
Fig. 6 Distance distribution of the range-domain relation at various encoding rates for the Lena image. 
The distance is measured between the matching domain tree and the domain tree that includes a range tree. 
The 16 x 16 disjoint domain pool is used in the experiment. The distance is based on the coordinates of 
two domain trees and ranges from 0 to 21. For example, distance 0 means that the two domain trees are 
identical and distance 1 means that the matching domain is one of the four nearest domain trees. The 
range tree that consists of all zero coefficients is called zero-range, and this is excluded in this 
measurement.  
 
 
 
 
 
 
 
 
 



 19

B. Results with a weighted mean square error distortion 
While FZW shows superior performance to other fractal coders, it does not 

significantly improve on the performance of SPIHT. The reason is that the parts of the 

image that can be encoded more efficiently with fractal coding than with SPIHT are 

relatively few. There are two factors contributing to this phenomenon. Firstly, the 

normalization unit of SPIHT is multiplied successively to coefficients in the same 

decomposition level. Secondly, fractal coding is better suited for a perceptually-tuned 

distortion measure, rather than MSE. The first factor, the normalization unit operating in 

the wavelet domain, emphasizes the coefficients in low frequency subbands more than 

ones in high frequency subbands. In other words, this unit usually forces hierarchical 

structures to be zerotree-like. In general, EZW coding is more efficient for these 

structures than fractal coding. More seriously, fractal coding in the wavelet domain does 

not match well with the MSE measure, and this problem limits the performance of FZW. 

Instead of coding each coefficient in a total tree as in SPIHT, fractal coding predicts a 

block of coefficients as a whole. This coding often causes significant MSE distortion for 

some coefficients in the higher frequency subbands, yet without much perceived image 

degradation.  

Recently, research on perceptual image coding has been done, including coders 

related to the EZW algorithm [19][7][16]. These coders are based on minimizing 

perceptual image distortion measures that are matched to the human visual system 

(HVS). The perceptual weightings for the subbands, which are based on the “just 

noticeable distortion” (JND), are used to increase perceptual image quality. A 

perceptual distortion measure that is commonly used is based on the Minkowski metric, 

and is called weighted mean square error (WMSE). This is given by  
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where ),( jiwk  is the coefficient of the coordinate (i,j) in the kth subband, ),(ˆ jiwk

 is the 

corresponding decoded coefficient, and 
kt  is the weighting value for the kth subband.    

   The order of subbands in an l-level decomposition is given by  
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where 13 += lM . In this experiment, the following set of weights is adopted for the six-
level decomposition [16]: 
 

.}0.5,6.3,6.3,3.3,6.2,6.2,2.2,88.1,88.1,5.1,37.1,37.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1{}{ == ktW
 
FZW is modified to use WMSE for the distortion measure instead of MSE, and the 
results are given in terms of perceptual PSNR (PPSNR), which is defined by  

.
255

log10
2

WMSE
PPSNR ×=  

 

   Tables II, III, and IV show the distortion-rate comparisons of FZW and SPIHT for the 

Lena, Barbara and Goldhill images, respectively. Note that for the Lena and Barbara 

images, the gain in PPSNR is higher at lower (target) bit rates. This suggests the fractal 

interpolation is able to give a reasonable approximation to the image, even at bit rates as 

low as 0.04 to 0.06 bpp. At the relatively high rates of 0.652 and 0.699 bpp, there are 

still noticeable gains of 0.21 and 0.16 dB. The Goldhill image is more complex, so it is 

difficult to obtain a large performance improvement at 0.028 bpp. Still, there is a gain of 

0.09 dB over SPIHT. This gain increases to 0.21 dB at 0.064 bpp, with gains also 

observed at the other rates. 

   Fig. 7 shows SPIHT and FZW decoded images of Lena at 0.158 bpp. The PPSNR is 

the same, and the perceptual image quality is almost the same2. A 3.8% savings in the 

encoding rate is achieved.    

 
 
 
 

Table II 
Distortion (PPSNR)-rate performances of SPIHT and FZW for the Lena image. 

 
Rate (bpp) 0.067 0.152 0.301 0.652 

SPIHT (PPSNR) 35.37 39.64 43.49 48.05 
FZW (PPSNR) 35.73 39.98 43.72 48.26 

Gain (dB) 0.36 0.34 0.23 0.21 
 
 
 
 

                                                
2 There are some minor perceptual differences, such as slightly more distortion in the edges of the hat.  
However, the perceptual quality of the two images is very close. 
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Table III 
Distortion (PPSNR)-rate performances of SPIHT and FZW for the Barbara image. 

 
Rate (bpp) 0.041 0.137 0.334 0.699 

SPIHT (PPSNR) 29.84 33.60 38.01 43.45 
FZW (PPSNR) 30.37 34.01 38.20 43.61 

Gain (dB) 0.51 0.41 0.19 0.16 
 
 

Table IV 
Distortion (PPSNR)-rate performances of SPIHT and FZW for the Goldhill image. 

 
Rate (bpp) 0.028 0.064 0.203 0.499 

SPIHT (PPSNR) 31.30 34.00 38.84 42.30 
FZW (PPSNR) 31.39 34.21 38.99 42.41 

Gain (dB) 0.09 0.21 0.15 0.11 
 
 
 
 
C. Progressiveness of the FZW Algorithm 

   The fact that the FZW algorithm maintains significant progressiveness is one of its 

key benefits. Table V shows the progressive performance of standard SPIHT, FZW, and 

a lower complexity variant of FZW, denoted FZW_alt, which does the fractal decoding 

only once, after completing the SPIHT decoding up to the target rate. In this experiment, 

the target rate is set at 0.652 bpp, and the image is encoded at this bit rate by all three 

encoders. During the progressive decoding process, the PPSNR is computed at three 

intermediate bit rates, 0.071, 0.153, and 0.302 bpp. Over this entire range, FZW is able 

to outperform standard SPIHT. A gain of 0.45 dB is achieved at the lowest bit rate. Fig. 

8 shows the images corresponding to Table V. 

   A few comments are in order. Firstly, the use of fractal decoding at each bit plane 

leads to a substantial increase in the progressive decoding performance. This is seen by 

comparing the results of FZW and FZW_alt. At 0.302 bpp, there is a gain of over 3 dB. 

At the target rate of 0.652 bpp, this gain increases to almost 7 dB before FZW_alt does 

its single fractal decoding pass. However, after FZW_alt fractal decodes, at the target 

rate, its performance is the same as that of FZW.   

   Note that the substantial progressive gains of FZW over FZW_alt come essentially 

“for free”, i.e. without any increase in rate. Secondly, comparing Tables II and V, one 

sees that the progressive FZW performance achieved at 0.153 bpp (based on a target 
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rate of 0.652 bpp) is higher than the performance of FZW when the target rate is 

directly set at 0.152 bpp. This result is somewhat surprising. However, there are a 

couple of possible explanations. Firstly, the range trees that are chosen for fractal 

encoding are different for different target rates. In this case, there are more trees 

fractally encoded at the higher target rate of 0.652 bpp than at 0.152 bpp. Second, since 

the fractally-encoded range trees are different, the SPIHT-decoded domain trees 

(available for fractal interpolation) are not  identical. Both of these factors may be 

contributing. We conjecture that this phenomenon will not hold in general, i.e. for 

arbitrary higher and lower target rates. 
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(a) encoded by SPIHT at 0.158 (bpp) 

                            
(b) encoded with FZW at 0.152 (bpp) 

 
Fig. 7 Lena images coded by SPIHT and FZW. Both images have the same WMSE (6.54). 
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Table V 
Comparison of the progressiveness of SPIHT and the two FZW decoding algorithms for the Lena image. 
FZW applies fractal coding at each coding pass, while FZW_alt applies fractal encoding only once at the 

very end. The Lena image is encoded at 0.652 bpp. 
 

Rate (bpp) 0.071 0.153 0.302 0.652 0.652 
SPIHT (PPSNR) 35.48 39.73 43.52 48.05 48.05 
FZW (PPSNR) 35.93 40.13 43.79 48.26 48.26 

FZW_alt (PPSNR) 34.95 38.70 40.56 41.44 48.26 
 
 
 
 
 
 

34.95 dB 38.70 dB 40.56 dB 48.26 dB
(a) Decoded images by FZW_alt (ppsnr)

35.93 dB 40.13 dB 43.79 dB 48.26 dB
(b) Decoded images by FZW (ppsnr)

35.48 dB 39.73 dB 43.52 dB 48.05 dB
(c) Decoded images by SPIHT (ppsnr)  

 
Fig.8 Comparison of the degree of progressiveness of FZW_alt, FZW, and SPIHT. 
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V. CONCLUSIONS 
 
  While extensive research has been done on fractal image compression, fractal encoders 

are generally not competitive with state-of-the-art image coders. Likewise, significant 

bits can be saved if we modify some coding schemes in EZW coders. In this paper, we 

proposed a hybrid fractal zerotree wavelet image coding algorithm that couples EZW 

and fractal image coding. This new algorithm reduces the bit rate required to achieve a 

given level of perceptual image quality (as measured by WMSE). It also keeps desirable 

properties from both types of coders, including progressive transmission, the zerotree 

structure, and range-domain block decoding.  
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