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Abstract

In this paper, a hybrid fractal zerotree wavelet (FZW) image coding algorithm is
proposed. The algorithm couples a zerotree-based encoder, such as the embedded
zerotree wavelet (EZW) coder or set partitioning in hierarchical trees, and a fracta
image coder; this coupling is done in the wavelet domain. Based on perceptually-
weighted distortion-rate calculations, a fractal method is adaptively applied to the parts
of an image that can be encoded more efficiently relative to an EZW coder at a given
rate. In addition to improving compression performance, the proposed algorithm also
allows one to impose desirable properties from each type of image coder, such as

progressive transmission, the zerotree structure, and range-domain block decoding.



I. INTRODUCTION

A. Image compression in the wavelet domain

Subband coding [27], based on the wavelet theory, provides a multi-resolution
decomposition of images. The discrete wavelet transform exhibits strong decorrelating
properties such as space-frequency localization, spatial clustering of significant
structures within each subband, and clustering of similar structures across subbands [1].
These statistical properties of subbands [2] have been studied extensively and have been
exploited by wavelet image coders. In particular, the pyramidal, or dyadic, wavelet
decomposition has shown excellent energy compaction. To efficiently encode the
subbands, Shapiro [24] introduced the EZW encoder, which uses both bit-plane coding
and the zerotree structure. An alternative algorithm, set partitioning in hierarchical trees
(SPIHT), was proposed by Said and Pearlman [22]. These EZW coders have shown
excellent distortion-rate (D-R) performance with low computational complexity, while
generating an embedded bit stream. This latter property enables one to send imagesin a
progressive manner and to encode images at any target bit rate. Xiong et al. [29] utilized
the zerotree in an adaptive manner and showed, perhaps, the best results among the
zerotree-based image coders; however, the computational complexity of their method is
quite high and their method is not progressive.

While EZW coders exploit the inter-subband correlation through a tree, some other
coders exploit either intra-subband or inter-subband correlation through structures
closely related to trees. Taubman and Zakhor [25] proposed layered zero coding (LZC)
for still images and video. This coder uses adaptive arithmetic coding [26] more
efficiently than other methods, but requires some amount of side information. Servetto
et al. [23] suggested a morphological representation of the wavelet data. The clustering
property of significant coefficients within and between subbands was also exploited by
Cha et al. [3]. The last two encoders emphasized the morphologically significant
structures among subbands, and they showed comparable results to zerotree-based
encoders. Recently, other adaptive image coding algorithms, based on the use of side
information, have shown promising results. Joshi et al. [11] investigated classification
of image subbands. Their algorithm is a forward adaptive technique. There have been
other types of coders that treat overhead information differently, called backward



adaptive techniques. These methods utilize the causal (received) data to estimate the
statistical properties of coefficients in the subbands [17][4][30]. By eliminating
overhead, backward adaptive techniques have better distortion-rate performance than
forward adaptive ones, at the cost of computational complexity at the decoder.

Fractal image compression has been shown to be very effective in exploiting the self-
similarity in the spatial image domain [9][6][18]. Recently, the self-similarity in a
subband decomposition has also been studied by using fractal coding methods. Pentland
and Horowitz [20] first suggested the possible link. Rinaldo and Calvagno [21]
proposed this type of agorithm for image coding. Davis [5] and Krupnik et al. [14]
independently introduced wavelet-based fractal image coders that are generalizations of
fractal block coding in the spatial domain. Davis showed that a total tree-based fractal
compression method is very efficient in representing zerotree-like structures and straight
edges that have self-similarity. Li and Kuo [15] proposed a hybrid wavelet-fractal image
coder and showed good distortion-rate performance. In fact, fractal coding in the
wavelet domain can be viewed as a technique for block prediction from the lower
resolution subbands to the higher resolution ones.

In this paper, we propose hybrid fractal zerotree wavelet coding, yielding a coder we
cal afractal zerotree wavelet (FZW) coder. The basic idea is to choose between the
similar wavelet-domain structures that occur in EZW and tree-based fractal encoders by
utilizing locally optimal, distortion-rate calculations. A fracta method is adaptively
applied to the parts of an image that can be encoded perceptually losslessly and more
efficiently than with an EZW coder; this usually corresponds to edges and texture areas
of an image. In our previous work based on the MPEG-4 still image coding algorithm
[12], the fractal coding method in the wavelet domain saved significant bits without
perceptual image degradation. By basing FZW on the SPIHT coder, it can outperform
SPIHT. Moreover, FZW shows one of the best distortion-rate performances in the class

of fractal image coders.

B. Paper organization
General EZW coders and fractal image coding methods are briefly reviewed in

Section Il. The FZW agorithm is proposed in Section 111, and simulation results with
FZW are provided in Section IV. Conclusions are presented in Section V.
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Fig. 1 Hierarchica structuresin the dyadic (pyramidal) decomposed wavelet domain. A tree is composed
of a wavelet coefficient (node) and al its descendents. Trees are formed from coefficients of the same
orientation (indicated by small boxes of the same style). The union of three trees of different orientations
is called atotal tree. A tota tree plus one coefficient in the LFS (star mark), comprises a square tree. A
sguare tree corresponds to a square block in the image domain (white block in the right figure). The
corresponding blocks in the wavelet and image domains are shown on top of the figure

SPr e renresents a subband at the Iy, decomposition level and at one of three orientations (LH, HL,
HH).



1. BACKGROUND

A. EZW Image Coding
There have been many versions of EZW coders since Shapiro introduced his

algorithm in 1993 [24]. The SPIHT agorithm [22] shows excellent results in this class
of coders. Here, we briefly explain the general procedures of EZW image coders. For
the following review, it is important to define and understand the hierarchical structures
in the wavelet domain. The tree structure, called simply a tree, is a set of wavelet
coefficients corresponding to the same spatial location and orientation (see Fig. 1.). The
assembly of three trees, which specify the same spatial location, is caled a total tree.
The union of three trees (a total tree) and one coefficient in the LFS, called a square
tree, corresponds to a square block in the image domain. In other words, a square tree
has complete information about the corresponding square block. It is noted that most
EZW coders could be modified to encode each square tree, total tree, or tree,
independently. The basic assumption in zerotree-based image coders is that if there are
insignificant coefficients in low frequency subbands in a tree, then the corresponding
coefficients in the higher frequency subbands are likely also insignificant. A tree with
all coefficients insignificant with respect to a given threshold is called a zerotree. While
zerotrees can be very efficiently coded, a substantial number of bits is required to
specify non-zerotree structures.

Although there are some minor differences among the EZW image coders, their
encoding procedures can be summarized by three operations: (1) the significance map
pass, (2) the zerotree map pass, and (3) the refinement pass. In the significance map
pass, the significance function, with respect to a given threshold, is applied to each
wavelet coefficient using a predefined scanning order. The two possible results for each
coefficient are significant (1 symbol) or insignificant (O symbol). This is a form of
simple binary quantization. Usually, the initial threshold Ty is given by the following

formula.

& N
§l0g 2 (max \C(I,J)\)E

T0:2 b

where c(i,j) is the wavelet coefficient at location (i,j), and &l chooses the largest integer

less than x. In the next pass, the threshold is generally decreased to To/2. In the zerotree



map pass, the zerotree function, which aso has two possible outputs with respect to a
given threshold, is applied to the trees. If there are no significant coefficients in atree,
the zerotree function outputs the ‘insignificant’ symbol. Otherwise, this function outputs
the ‘significant’ symbol, and the positions of the significant coefficients in the tree
should be specified by an appropriate method for a given threshold. The choice of this
specifying method determines the computational efficiency and distortion-rate
performance of an EZW coder. In the refinement pass, each coefficient that turned out
to be significant is given a refined quantized representation. One bit is given for each

coefficient. The algorithm can stop at any time, coding in an embedded and progressive
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Fig. 2 Procedure of approximating a range tree using adomain tree. A domain tree (D) that has its node
in the third decomposition leve is subsampled by truncating al the coefficients in the highest frequency
subbands. The size of a subsampled domain tree S(D,) is the same as that of a range tree (R;). The
orientation consists of isometry operations within subbands, and a switch of HL and LH subbands in a
tree.

B. Fractal Image Coding
Generalizations of fractal block coding from the image domain to the wavelet domain

have been proposed in recent years [20][21][5][14]. The motivation for these methods
stems from the existence of self-similarities in the multiresolutional wavelet

representation. In fact, fractal image coding in the wavelet domain has quite different



characteristics from the spatial domain coders and can be interpreted as the prediction of
a set of wavelet coefficients in the higher frequency subbands from those in the lower
ones. A contractive mapping associates a domain tree of wavelet coefficients with a
range tree that it approximates. Various structures have been used for the domain to
range mappings [21][5][15]. A fractal coding method that uses total trees for the range
and domain treesis briefly reviewed for understanding the proposed algorithm.

A range tree is fractally encoded by a bigger domain tree. The approximating
procedure is very similar to that in the spatial domain: subsampling and determining the
orientation and scaling factor. Note that one does not need an additive constant because
the wavelet tree does not have a constant offset. Subsampling matches the size of a
domain tree with that of a range tree by truncating al coefficients in the highest
subbands of the domain tree. The orientation operation consists of a combination of a 90
degree rotation and a flip, and it is done within each subband. A switch of HL and LH
subbands is the next step. The scale factor is then multiplied with each wavelet
coefficient in the tree. Figure 2 shows some of these steps.

Let D, denote the domain tree, which has its coarsest coefficients in decomposition
level |, and let R_, denote the range tree, which has its coarsest coefficients in
decomposition level 1-1. The contractive transformation (T ) from domain tree D, to

rangetree R ., isgiven by

T(D) =a*0($(D,)),

where S denotes subsampling, O is the orientation operation, and a is the scaling

factor. Let x=(X,X,,....,X,) be the ordered set of coefficients of a range tree and
Y =(Y;, Y5, Y,) the ordered set of coefficients of a subsampled domain tree isometry.

Then, the mean squared error is

MSE=|R.,- T(D): =4 (x - a*y,)?.
i=1

The optimala isthen



We search over all eight orientations and all trees in the domain pool to find the best-
matching domain tree for a given range tree. The encoded parameters are the position of
the domain tree, index of orientation, and the scaling factor. The bits for the position of
adomain tree vary according to the dimension of the domain pool. In practice, we store
the position of either the range or the domain tree, 5 hits for the quantized scale factor,
and 3 bits for specifying the orientation.

I1l. FRACTAL ZEROTREE WAVELET IMAGE CODING

The FZW algorithm is based on the observation that in some cases, the use of an
explicit zerotree structure for agiven bit plane can cost a substantial number of bits with
very little contribution to image quality. That is, the basic assumptions underlying EZW
coders can be broken in practice. This occurs when there are a number of trees in an
image that have isolated zeros in low frequency subbands. These trees typically
correspond to highly textured areas and edges. For these parts of the image, a
substantial number of bits can be saved if the coding method is altered. While in general,
fractal compression methods have not been as effective as the state-of-the-art image
coders, they do encode certain pats of images quite efficiently. Specifically, wavelet
domain fractal encoders are good at representing constant gradients, textured areas, and
straight edges that have self-similarity. In other words, by selectively replacing the
EZW coding trees by a fractal encoding method, it is possible to obtain distortion-rate
points for the hybrid coder that are below the EZW coder’s operational distortion-rate
curve.

In contrast to EZW encoders, fractal coding methods in the wavelet domain usually do
not generate an embedded bit stream. Moreover, fractal coding methods cannot be
easily applied to the coefficients in the lowest four subbands. Despite these differences,
fractal and EZW encoding can be combined. The proposed fractal coding algorithm,
FZW, is based on the EZW agorithm. Asin EZW, the encoding and decoding are done
in the wavelet domain. However, in FZW, the regions of the image are either coded by a
fractal or by an EZW method, selected according to a distortion-rate criterion.
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A. Encoding Procedure

The fundamental concept of fractal encoding is to find the best matching domain tree
for each range tree, in the sense of minimizing a chosen distance metric. Often, both the
range and domain trees consist of uncompressed wavelet coefficients. However, if one
considers both rate and distortion when choosing the matching domain tree for a given
range tree, then the chosen domain tree may depend on the encoding rate of the system.
This fact forces us to perform EZW encoding and decoding (called trial-encoding and
trial-decoding) for a given bit rate before fractal encoding in FZW starts. The FZW
encoding method works as follows: (1) EZW trial encoding and decoding are performed
to arate near (and dlightly above) atarget rate. (2) Then, the instantaneous slope of the
D-R curve of EZW near the given bit rate is calculated. (3) In this EZW decoded
wavelet domain, a range-domain search is performed, with the D-R slope value for
adopting the fractal coding method for each range tree calculated and compared to the
D-R slope of EZW. If this alternative fractal coding yields a superior D-R characteristic,
the range tree is fractally encoded. (4) The fractal encoding information is side
information, which is placed before the EZW bit stream. Then, the bits that specify the
EZW coding for these fractally encoded parts are eliminated from the EZW bit stream.

To both retain and enhance the progressive property of EZW coders, the FZW
decoder applies the fractal decoding process at each bit-plane threshold, i.e., improved
fractal range tree estimates are formed based on the refined domain trees obtained at
each bit plane threshold. Note that this decoding is not an exact inverse of the FZW
encoding. An alternative decoding approach (where the decoder is an exact inverse of
the encoder) would first entirely EZW decode the image (to the target rate) and only
then apply fractal decoding to the appropriate range trees. This would reduce
computational complexity, since the fractal decoding is then done only once, instead of
at each bit plane. There would still be some progressiveness, obtained by use of the
EZW agorithm. However, our proposed approach of doing fractal decoding at each bit
plane is supported from three standpoints: (1) The increase in computational complexity
is not that large, since only one fractal iteration is done for each bit plane. This fact
should be contrasted with typical block-based fractal decoders that perform a number of
iterations. (2) There is no degradation in performance at the target rate compared to the

alternative decoding approach, because the final fractal decoding uses the entire EZW
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decoded image in both cases (The fractal decoded range trees are overwritten from one
bit plane to the next.). 3) Most importantly, we have found that, although our method is
optimized for atarget rate, it achieves gains in progressive performance (attributable to
fractal decoding at each bit plane) not only in comparison with the alternative decoding
approach, but also in comparison with standard SPIHT. Thus, the proposed progressive
fractal decoding makes FZW an even more progressive scheme. Further discussion on
progressive decoding, including performance results, is given in the Experimental
Results section.

Initially, as some trees are selected for fractal coding, the distortion-rate gain over the
EZW coder grows. However, as more and more trees are fractally encoded, further
reducing the rate, the gains over EZW shrink. This occurs because the FZW method
seeks improvements via fractal coding starting from an EZW coder at a specified rate.
Thus, improvement can only be achieved over a region of rates less than (but in the
vicinity of) the target rate. To summarize, the proposed method seeks improvement over
EZW coders in alocal region near (and below) the initial (pure EZW coder) rate. This
characteristic of FZW is shown in Fig. 3. This figure also indicates the rate at which the

FZW method achieves its maximum gain over EZW.

—&— D-R curve of SPIHT
<} -0 D-R curve of FZW

WMSE

15 16 17

Rate (bpp)
Fig. 3 Distortion-rate curves of SPIHT and FZW on the Lena image for encoding rates near 0.170 bpp.
Using a distortion-rate selection of trees to be fractally encoded, FZW approaches its optimal gain a a

rate dightly above 0.15 bpp. As more range trees are adopted beyond this point, the gain of FZW is
reduced. The distortion measure is a weighted M SE measure (described in Section 1V).
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B. FZW algorithm
Encoder

Step 1 (discrete wavelet transformation): transform an image into a pyramid form for
agiven number of decomposition levels.

Step 2 (trial-encoding): encode an image using an EZW coder at a given bit rate, and
generate Count_map and the EZW bit stream. Count_map is a square matrix
whose elements hold the number of bits and encoding information of range
trees for the gquare trees. The matrix dimension is the same as the size of the
lowest frequency subband.

Step 3 (trial-decoding): decode an image using the bit stream, and calculate the mean
squared error (MSE) distortion between the original and reconstructed images
at the encoding bit rate, R,, and at a bit rate slightly less than the decoding

rate, R,. Denote these MSE values as MSE, and MSE,, respectively. Next,

determine the instantaneous slope of the distortion-rate curve for the image at
this bit rate using

D- Rdlope=(MSE, - MSE|)/(R,- R)).
Without loss of generality, we assume that this value is always negative.

Step 4 (fractal range-domain search): find the best matching domain tree for each
range tree; save the fractal coding parameters and the distortion value MSE;

between the original range and fractal encoded range trees. The fractal coding
parameters include the position of the domain tree, orientation, and the scaling
factor. The fractal coding rate, R, , is fixed, i.e. the fractal coding cost is a

constant number of hits.

Step 5 (distortion-rate comparison): compute the number of encoded bits when a
range tree, among the four range trees in a total tree, is eliminated from the
EZW coding process. Denote thisvalue as R; . Thenew rate R, is

R, =Rr gr +R; .

The D-R slope value for adopting the fractal coding method (D-R fractal) is
then

! We describe the FZW algorithm with the mean square error as the distortion measure. However, other
distortion measures can aso be used — we will introduce a perceptual distortion measure in the results
section.

13



MSE. -
D - RfractaI:R—,

where MSE, is the mean sguared error when using this combined fractal
method. Without loss of generality, MSE, - MSE; is assumed to be negative.

By comparing D-R slope and D-R fractal, we determine if fractal coding is
applied to a range tree or not. When R, - R, is positive and the following

condition is satisfied, then fractal coding is adopted:
|D- Rslope| 3| D - Rfractal|.

This step is repeated for the other three range trees in the total tree. Apply Step
5for every tota tree.

Step 6 (encoding): send side information for each sgquare tree first. This includes one
bit to specify if fractal coding is applied to at least one range tree and four bits
to specify the positions of the fractal encoded range trees. The fractal coding
parameters follow. Using information in Count_map, the encoded bits for
these fractally encoded parts are eliminated from the EZW bit stream. A
further discussion of the bits used for fractal encoding is provided in the
Experimental Results section.

Decoder

Step 1 (side information): read side information of image size, decomposition level,
initial threshold, and fractal coding for each total tree.

Step 2 (EZW decoding): decode using the EZW coder starting from the initial
threshold. Apply EZW decoding to the parts of the image EZW-encoded at
this threshold. After this step, make the threshold half.

Step 3 (fractal decoding): apply fractal decoding for the fractal encoded parts of the
image using both side information and the decoded image in Step 2. These
decoded parts are overwritten (at every threshold, fractal decoding is
performed and overwritten). Due to this step, FZW is more progressive in
transmission.

Step 4 (iteration): repeat Steps 2 & 3 until the EZW bit stream ends.

Step 5 (inverse discrete wavelet transformation): perform inverse transformation.

14



V. EXPERIMENTAL RESULTS

A. Results with the mean square error distortion
For our experiments, we chose the set partitioning in hierarchical tree (SPIHT)

algorithm [22] as our EZW image coder. This algorithm shows excellent performance
without iterative computations. The biorthogonal 9/7 filter bank [1] and 512~ 512 gray
scale images with 8 bits per pixel are used for the experiments. Six-level
decompositions are constructed by a symmetric extension at the image edges. The
domain tree is a total tree that has the lowest frequency coefficients in the fifth

decomposition level. That is, the domain trees, D, are used, and they form digoint
domain pools. The corresponding range trees, R, , are total trees in the fourth

decomposition level. Eight bits are needed to select from the domain pool of size 16
16. Five bits are used for the scale factor and three bits for the orientation. So, the fracta
coding costs are fixed at 16 bits per total tree (range tree). Additionally, an overhead of
256 bits per image is required to indicate whether fractal coding is applied to any range
trees in each domain tree in Ds. If fractal coding is used in a domain (square) tree, then
4 additional bits are needed to specify the 15 possible combinations of 4 range trees.

Table | compares the D-R performance of FZW versus SPIHT and other image coders
including: (1) fractal block coding in the spatial domain (FRAC) [8], (2) a predictive
pyramid coder (PPC) [21], (3) self-quantization of subtrees (SQS) [5], and (4) a hybrid
wavelet-fractal coder (WFC) [15]. The PPC and SQS algorithms encode the image
using only a fractal method. WFC combines the layered zero coder (LZC) [25] and a
fractal coding method. The two hybrid coders, WFC and FZW, demonstrate excellent
performance compared to other fractal coding methods, and they achieve performance
comparable to state-of-the-art wavelet image coders. A D-R comparison of just the
fractal codersis plotted in Fig. 4.

The fractal encoded parts of the Lena image are indicated by square boxes in Fig. 5.
As we expect, most of the boxes are related to edges and texture areas, and FZW
encodes these parts efficiently without image degradation. Note that only a handful of
the boxes are fractal encoded, and this is why the increase in PSNR is only 0.02 dB.

Moreover, there are other edges in the image that are not fractal encoded, suggesting
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that further performance improvements are possible. This topic is addressed in the next
subsection, where a perceptual ly-based distortion measure is used.

One of the most noticeable results of this experiment is that the fractal range-domain
relation pattern in FZW is quite different from that in fractal coders that are based in the
spatial domain. In spatial domain fractal coders, arange block tends to be spatially close
to its matching domain block — the distribution of spatia distances between range and
domain blocks is highly peaked at zero distance [10][28]. In other words, a range block
is likely to be encoded by a domain block that includes the range one. This tendency
enables one to design a domain pool that is spatially restricted to a range block, which
can speed up the encoding time. The range-domain relation patterns on the Lena image
for FZW are shown in Fig. 6 (at given rates). The histogram countsin Fig. 6. are nearly
uniform for different values of the range-domain distance. Furthermore, these figures
show that there are few range trees that have a matching tree that is in the same square
tree. These characteristics of fractal coding in FZW have been exploited by an error
resilient variant of the FZW algorithm [13], athough this robust algorithm is not
included in this paper.

Tablel|
Rate-PSNR performance of various image coders on the Lena image.

Rae PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

(bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB)
FRAC [8] 0.218 30.71 0.448 3340 0.763 3592
PPC [21] 018 3120 026 3278 037 34.00

SQS 5] 0.036 2586 0.080 2855 0.180 3180 0.366 3492 0.767 38.14
WFC[15] | 0.036 2642 0.083 2941 0.182 3268 0.369 3584 0.758 39.02
SPIHT[22] | 0.036 26.49 0.083 2947 0189 3290 0.386 36.08 0.787 39.25
FZW 0.036 26.49 0.083 2948 0.189 3292 0.386 36.11 0.787 39.28

16
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Fig. 4 Distortion-rate comparison of fractal image coders for the Lenaimage.

(b)

Fig. 5 The SPIHT (&) and FZW (b) images encoded at 0.189 (bpp). (8) PSNR is 32.90 (dB). (b) PSNR is
32.92 (dB). The parts of the image encoded with the fractal method are marked by white boxes. These

areas are highly textured or constant regions.
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Fig. 6 Distance distribution of the range-domain relation at various encoding rates for the Lena image.
The distance is measured between the matching domain tree and the domain tree that includes a range tree.
The 16 x 16 digoint domain pool is used in the experiment. The distance is based on the coordinates of
two domain trees and ranges from 0 to 21. For example, distance O means that the two domain trees are
identica and distance 1 means that the matching domain is one of the four nearest domain trees. The
range tree that consists of al zero coefficients is called zero-range, and this is excluded in this
measurement.

18



B. Results with a weighted mean square error distortion
While FZW shows superior performance to other fractal coders, it does not

significantly improve on the performance of SPIHT. The reason is that the parts of the
image that can be encoded more efficiently with fractal coding than with SPIHT are
relatively few. There are two factors contributing to this phenomenon. Firstly, the
normalization unit of SPIHT is multiplied successively to coefficients in the same
decomposition level. Secondly, fractal coding is better suited for a perceptually-tuned
distortion measure, rather than MSE. The first factor, the normalization unit operating in
the wavelet domain, emphasizes the coefficients in low frequency subbands more than
ones in high frequency subbands. In other words, this unit usualy forces hierarchical
structures to be zerotree-like. In general, EZW coding is more efficient for these
structures than fractal coding. More seriously, fractal coding in the wavelet domain does
not match well with the MSE measure, and this problem limits the performance of FZW.
Instead of coding each coefficient in a total tree as in SPIHT, fractal coding predicts a
block of coefficients as awhole. This coding often causes significant MSE distortion for
some coefficients in the higher frequency subbands, yet without much perceived image
degradation.

Recently, research on perceptual image coding has been done, including coders
related to the EZW algorithm [19][7][16]. These coders are based on minimizing
perceptual image distortion measures that are matched to the human visual system
(HVS). The perceptua weightings for the subbands, which are based on the “just
noticeable distortion” (JND), are used to increase perceptual image quality. A
perceptual distortion measure that is commonly used is based on the Minkowski metric,
and is called weighted mean square error (WMSE). This is given by

w (i, J) - Wk(i’j)]z
tk

WMSE= =& & [
N kK i,j

where w (i, j) is the coefficient of the coordinate (i,j) in the ki, subband, W, (i, j) isthe
corresponding decoded coefficient, and t, is the weighting value for the ki subband.

The order of subbandsin an I-level decomposition is given by

{1,2,,M} ={SiLL,SIHL,SiLH,SHH,SHL SLH ,SlHH}

1-191 -1
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where M =3I +1. In this experiment, the following set of weightsis adopted for the six-
level decomposition [16]:

w ={t,} ={1.0101.010,10101.0,1371.37,151.881.88 2.2,2.6,2.6,3.3 3.6,3.6,5.0} .

FZW is modified to use WMSE for the distortion measure instead of MSE, and the
results are given in terms of perceptual PSNR (PPSNR), which is defined by

2
PPSNR=10" log—222_.
WMSE

Tables 1, 111, and IV show the distortion-rate comparisons of FZW and SPIHT for the
Lena, Barbara and Goldhill images, respectively. Note that for the Lena and Barbara
images, the gain in PPSNR is higher at lower (target) bit rates. This suggests the fractal
interpolation is able to give a reasonable approximation to the image, even at bit rates as
low as 0.04 to 0.06 bpp. At the relatively high rates of 0.652 and 0.699 bpp, there are
still noticeable gains of 0.21 and 0.16 dB. The Goldhill image is more complex, so it is
difficult to obtain alarge performance improvement at 0.028 bpp. Still, thereisa gain of
0.09 dB over SPIHT. This gain increases to 0.21 dB at 0.064 bpp, with gains also
observed at the other rates.

Fig. 7 shows SPIHT and FZW decoded images of Lena at 0.158 bpp. The PPSNR is
the same, and the perceptual image quality is almost the same?. A 3.8% savings in the

encoding rate is achieved.

Tablell
Distortion (PPSNR)-rate performances of SPIHT and FZW for the Lenaimage.

Rate (bpp) 0.067 0.152 0.301 0.652
SPIHT (PPS\R) 35.37 39.64 43.49 48.05
FZW (PPS\R) 35.73 39.98 43.72 48.26
Gain (dB) 0.36 0.34 0.23 0.21

2 There are some minor perceptual differences, such as dightly more distortion in the edges of the hat.
However, the perceptua quality of the two imagesiis very close.
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Tablelll
Distortion (PPSNR)-rate performances of SPIHT and FZW for the Barbaraimage.

Rate (bpp) 0.041 0.137 0.334 0.699

SPIHT (PPS\R) 29.84 33.60 38.01 43.45

FZW (PPS\R) 30.37 34.01 38.20 4361

Gain (dB) 0.51 0.41 0.19 0.16
Table IV

Distortion (PPSNR)-rate performances of SPIHT and FZW for the Goldhill image.

Rate (bpp) 0.028 0.064 0.203 0.499
SPIHT (PPS\R) 31.30 34.00 38.84 42.30
FZW (PPSNR) 31.39 34.21 38.99 42.41
Gain (dB) 0.09 0.21 0.15 0.11

C. Progressiveness of the FZW Algorithm

The fact that the FZW algorithm maintains significant progressiveness is one of its
key benefits. Table V shows the progressive performance of standard SPIHT, FZW, and
alower complexity variant of FZW, denoted FZW_alt, which does the fractal decoding
only once, after completing the SPIHT decoding up to the target rate. In this experiment,
the target rate is set at 0.652 bpp, and the image is encoded at this bit rate by al three
encoders. During the progressive decoding process, the PPSNR is computed at three
intermediate bit rates, 0.071, 0.153, and 0.302 bpp. Over this entire range, FZW is able
to outperform standard SPIHT. A gain of 0.45 dB is achieved at the lowest bit rate. Fig.
8 shows the images corresponding to Table V.

A few comments are in order. Firstly, the use of fractal decoding at each bit plane
leads to a substantial increase in the progressive decoding performance. Thisis seen by
comparing the results of FZW and FZW_alt. At 0.302 bpp, there isa gain of over 3 dB.
At the target rate of 0.652 bpp, this gain increases to almost 7 dB before FZW_alt does
its single fractal decoding pass. However, after FZW_alt fractal decodes, at the target
rate, its performance is the same as that of FZW.

Note that the substantial progressive gains of FZW over FZW_at come essentialy
“for free”, i.e. without any increase in rate. Secondly, comparing Tables Il and V, one

sees that the progressive FZW performance achieved at 0.153 bpp (based on a target
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rate of 0.652 bpp) is higher than the performance of FZW when the target rate is
directly set at 0.152 bpp. This result is somewhat surprising. However, there are a
couple of possible explanations. Firstly, the range trees that are chosen for fractal
encoding are different for different target rates. In this case, there are more trees
fractally encoded at the higher target rate of 0.652 bpp than at 0.152 bpp. Second, since
the fractally-encoded range trees are different, the SPIHT-decoded domain trees
(available for fractal interpolation) are not identical. Both of these factors may be
contributing. We conjecture that this phenomenon will not hold in generd, i.e. for

arbitrary higher and lower target rates.
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(8) encoded by SPIHT at 0.158 (bpp)

(b) encoded with FZW at 0.152 (bpp)

Fig. 7 Lenaimages coded by SPIHT and FZW. Both images have the same WM SE (6.54).
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TableV
Comparison of the progressiveness of SPIHT and the two FZW decoding al gorithms for the Lenaimage.
FZW applies fractal coding at each coding pass, while FZW_alt applies fractal encoding only once at the
very end. The Lenaimage is encoded at 0.652 bpp.

Rate (bpp) 0.071 0.153 0.302 0.652 0.652
SPIHT (PPSNR) 35.48 39.73 43.52 48.05 48.05
FZW (PPINR) 35.93 40.13 43.79 48.26 48.26
FZW_at (PPSNR) 34.95 38.70 40.56 41.44 48.26

34.95 dB 38.70dB 40.56 dB 48.26 dB
(a) Decoded images by FZW_alt (ppsnr)

35.93dB 40.13 dB 43.79 dB
(b) Decoded images by FZW (ppsnr)

48.26 dB

43.52 dB 48.05 dB

35.48 dB 39.73 dB
(c) Decoded images by SPIHT (ppsnr)

Fig.8 Comparison of the degree of progressiveness of FZW_alt, FZW, and SPIHT.
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V. CONCLUSIONS

While extensive research has been done on fractal image compression, fractal encoders

are generally not competitive with state-of-the-art image coders. Likewise, significant

bits can be saved if we modify some coding schemes in EZW coders. In this paper, we

proposed a hybrid fractal zerotree wavelet image coding algorithm that couples EZW

and fractal image coding. This new algorithm reduces the bit rate required to achieve a

given level of perceptual image quality (as measured by WMSE). It also keeps desirable

properties from both types of coders, including progressive transmission, the zerotree

structure, and range-domain block decoding.
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