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We consider a phase field model that includes a stress field during nonisothermal phase transformation of a
single-component system. The model is applied to the solidification and melting of confined spherical volumes,
where sharp interface solutions can be obtained and compared with the results of the phase field simulations.
Numerical solutions to the phase field model for a spherically symmetric geometry have been obtained, with
particular emphasis on the computation of surface energy, surface stress, and surface strain. The analysis of the
equilibrium states for the phase field model allows us to obtain the value of the surface energy in the presence
of stress, which can then be compared to the analogous calculation of the energy of a planar liquid-solid
interface. It is also demonstrated that modeling the liquid as a solid with zero shear modulus is realistic by
comparing the long-range stress fields in phase field calculations with those calculated using sharp interface

models of either a coherent or a relaxed liquid-solid interface.
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I. INTRODUCTION

Transformations between crystalline and amorphous
states in nanovolumes are basic mechanisms of modern
phase-change recording technology. This process exploits an
amorphous-to-crystalline phase change to record information
onto electronic media such as DVDs. Due to the density
difference between phases, transformations in confined vol-
umes are accompanied by internal stresses; thus, it is neces-
sary to take into account the effect of internal stress during
phase-change recording. In this paper we propose to study
this “writing” process by drawing an analogy to the related
process of melting and solidification in a confined volume.
We employ a phase field model, which is an effective ap-
proach for the analysis and prediction of the evolution of
complex microstructures during phase transformations. This
approach has been particularly successful when it has been
applied to solidification problems (see, e.g., Refs. 1-4). For a
single-component system the phase field method requires
solving two equations: the time-dependent Ginsburg-Landau
phase field equation and the equation of heat transfer.

Another area of the successful application of phase field
modeling is solid-solid phase transformations. In this case
isothermal conditions are usually considered, and the prob-
lem is reduced to solving the phase field equation together
with equations of elasticity for the strain and stress fields.
Most of the published work in this area considers a homoge-
neous solid, neglecting the difference between the elastic
properties of the phases (see, e.g., Refs. 5-7). Including elas-
tic inhomogeneity in a phase field model presents an addi-
tional challenge. In Ref. 8 this was accomplished for systems
in which the elastic inhomogeneity does not evolve with
time.

The main goal of this paper is to study a phase field model
that includes a stress field to describe the nonisothermal so-
lidification of a single-component system. The stresses can
be external or internal, i.e., they can arise as a result of
boundary conditions at the external surface or they can be
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the result of elastic interactions between the phases. Thus,
the phase field model should take into account the simulta-
neous evolution of three fields: a phase field (or an order
parameter), a temperature field, and a stress-strain field. We
place particular emphasis on the formulations of surface en-
ergy, surface stress, and surface strain that arise in phase field
models of this type.

To demonstrate this approach we consider the solidifica-
tion and melting of a confined sphere. For this simple system
complete numerical solutions taking into account the time-
space evolution of temperature, order parameter, and stress-
strain field are obtained. The simulations show that, for some
initial conditions and boundary conditions, the evolution of a
spherically symmetric system results in a steady state corre-
sponding to a uniform temperature and a time-independent
distribution of the order parameter. Comparison of the results
of the phase field model to the thermodynamic analysis of a
sharp interface model shows that these steady states are equi-
libria representing phase transformations in a system with
fixed volume. The analysis of these equilibrium states allows
us to estimate the value of surface energy, which is then
verified by a phase field calculation of the energy of a planar
liquid-solid interface. The model represents the liquid-solid
system as a coherent mixture, with the liquid phase approxi-
mated as an elastic solid with zero shear modulus. This type
of treatment has been used before,’”'! but here we provide an
additional justification: we argue that the liquid in a two-
phase solid-liquid system may be modeled as a solid with
complete relaxation of shear stresses. A sharp interface
model of a completely relaxed solid inclusion has been con-
sidered by Nabarro!> and Kroner.!? In recent work Hoyt'#
considers the related problem of the effects of stress on the
equilibrium melting point of liquids confined to nanosized
pores. Using a sharp interface model, he considers a hydro-
static state consisting of a liquid pore that also contains a
spherical solid inclusion, and demonstrates that an elevation
of melting point can be obtained that is consistent with re-
cent experimental observations. The effect of plastic relax-
ation on the stress state and equilibrium of an incoherent

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.74.014103

SLUTSKER et al.

solid inclusion was considered in Refs. 15 and 16 and it has
been demonstrated that these characteristics are different
from those of a coherent one.!” The treatment of a liquid-
solid system as a coherent mixture assumes that the stress
fields in a coherent system and in a relaxed system are the
same if the shear modulus of the liquid phase in the coherent
system approaches zero. Consideration of the solidification
and melting of a confined spherical volume with a sharp
interface between the phases allows us to validate this as-
sumption. We also verify that modeling the liquid as a co-
herent solid with zero shear modulus is reasonable by com-
paring the long-range stress fields in phase field calculations
with those calculated using sharp interface models of either a
coherent or a relaxed liquid-solid interface.

The plan of the paper is as follows. In the next section we
give the general development of the phase field model. In
Sec. III we describe the planar equilibrium state for our
model and define appropriate surface quantities. The formu-
lation of the model in a spherical geometry is given in Sec.
IV. Numerical solutions for the spherical geometry are pre-
sented in Sec. V. A discussion is provided in Sec. VI, with
concluding comments in Sec. VII. The sharp interface ver-
sion of the spherical problem is summarized in the Appendix
for comparison with the phase field approach.

II. GENERAL DEVELOPMENT
OF THE PHASE FIELD MODEL

In this section we develop and discuss a phase field model
describing the solidification and melting of a single-
component system in the presence of stress. The system is
characterized by an order parameter 7(x;,f), temperature
T(x;,1), and displacement field u;(x;,t), which are functions
of the spatial coordinates x; and time 7, for i=1,2,3. The free
energy of the two-phase system is given by the functional

f: f (f(’r’(xi’t)’T(xi’t)) + g[v n(xi’t)]Z
v
+e(Vuy(x,1), n(xi,t))>dV. (1)

Here f(7,T) is a double-well free-energy density with two
minima at =0 and 1 corresponding to the bulk liquid and
solid phases, respectively. The difference in energy between
the two minima, Af, depends on temperature, and vanishes at
the equilibrium temperature T, defined by the state f(0,T)
=f(1,T,) (see Fig. 1). Note that, due to the presence of
stress, T will in general be different from the stress-free
bulk melting temperature. The second term in Eq. (1) is the
gradient energy, associated with interfaces, where B is
termed the gradient energy coefficient. The third term is an
elastic energy density of the two-phase system, depending on
7 and the gradient of the displacement field u;.

The order parameter is assumed to satisfy the time-
dependent Ginsburg-Landau equation (relaxational dynam-
ics)
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FIG. 1. Dependence of the free energy on temperature. If the
temperature T differs from the equilibrium phase temperature 7Y,
the free energies of the initial phase at 7](1) and the product phase at
7;6 are unequal. For T=T,, the difference in free energies vanishes,

Af=0.
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where M, is a mobility coefficient. The temperature field
satisfies the equation of heat conduction with a source term'

Ly o

oT
—=V-(kVTD+
ot c ot

(3)

where k is the thermal diffusivity coefficient, Ly is the latent
heat per unit volume, and c is the heat capacity.

For simplicity we assume that elastic equilibrium is main-
tained during the evolution of the order parameter. However,
we note that the mobility M, can be related to interface
attachment kinetics, which is often estimated to be on the
order of the speed of sound in the material, so the approxi-
mation of elastic equilibrium may be inapplicable in some
cases. Nevertheless, with this assumption, the displacement
field is determined by the equations of mechanical equilib-
rium,

OF 9 O6F do;;
ou; 0x;0e;;  Ox;

where g;; is the total strain tensor, and o;; is the stress tensor,
defined by

1/ ou:  du; oF
Sij=—<ﬁ+_ul>, O'l-j:_. (5)

The stress and strain are related though a constitutive law,
typically Hooke’s law:

O-ij = Cijlm( 7])l:{':lm - 8271( 77)] > (6)

where C;j,,(7) is the elastic modulus tensor. In general C;,,
will be different in the two phases and is thus a function of
7. Here, €!) (7) is the stress-free strain tensor associated with
the phase transition, and therefore [& ,m—s?m(r])] is the elastic
strain tensor. The elastic energy density e,; can be expressed
through the strains as
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For an isotropic material C;j,, depends solely on the bulk
modulus K and shear modulus u, so we can write

1 2
Col = g[su - 8?;( 77)]2 + M([sik - E?k( 7])] - gé}k[sll - 8?;( 77)]) .

(8)

Solving Egs. (2)—(4) with appropriate boundary and initial
conditions, one can find the evolution of the order parameter,
temperature, and stress-strain during the transformation.

To apply this model we chose the following form for the
bulk free-energy density:

fn D=+ A, A=Y (9)
0
where
(m) =16fy7*(1 - n)?, (10)
p(np)=7(10-157+677). (11)

Here T is the bulk melting temperature of the unstressed
material, g is the latent heat of solidification per unit volume,
fo characterizes the height of the energy barrier between lig-
uid and solid for T=T,, and p(7) is a smooth interpolation
function with p(0)=0 and p(1)=1. The specific form of the
function p(7) ensures that the positions of the minima re-
main at =0 and 1 for all temperatures.'

To model the effects of stress on liquid-solid coexistence,
we assume the shear modulus of the liquid is equal to zero,
ie., w(m)=usp(7), where wg is the shear modulus of the
solid with the function p(7) used to preserve the location of
the minima at =0 and 1 for all stresses as well as all tem-
peratures. The bulk modulus K is assumed to be equal in the
liquid and solid. The stress-free strain, which arises when the
volume changes during the phase transition, is modeled as a
pure dilatation,

eh(m) = e"() 8= eol 1 - p(7)15y, (12)

so that the stress-free strain is isotropic, vanishes in the solid,
and is g in the liquid. The unstressed solid phase is taken as
the reference state.

Having specified our model, we now examine its proper-
ties in one-dimensional geometries. First, we analytically
compute steady-state solutions for a planar geometry, and
then examine the problem of solidification and melting of a
confined sphere. The time-dependent phase field model is
used to find the steady states (i.e., as #—©0), which are then
compared with sharp interface results of the same system.

III. PLANAR EQUILIBRIUM
AND SURFACE QUANTITIES

We first consider the phase field description of a station-
ary planar interface described by the one-dimensional
phase field profile 7= 7(z), where the bulk liquid region with
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n=0 corresponds to z— % and the solid region with =1
corresponds to z— —; the interfacial region where 7(z) var-
ies between zero and unity is assumed to be localized near
z=0.

A. Axial stress and biaxial strain

Elastic equilibrium solutions can be found by assuming a
uniform axial stress field o,,= 7, and a uniform biaxial strain
field e,,=¢,,=€g, where 7, and &g are constants. This state is
useful for making comparisons with more general curved
geometries, where the local axial stress and biaxial strain
relative to the interface normal can be used to define surface
excess quantities such as surface energy and surface strain.

In the planar geometry, the transverse coordinates x
and y and the axial coordinate z are principal axes of
the system. By examining the stress-strain relation
op=Nm)eydu+2u(n)e;—[3Nn)+2u(7)]1e’(7) 5y,  where
N7)=K-2u(n)/3 and w(n) are the Lamé coefficients, the
remaining components of the stress and strain fields are
given by
T+ Y(eg—€), (13)

T, =0

=TT vt 2]

1 [3A+2u] , 2\
€, = To+ - eg  (14)
[N +2u] [N +2u] [N +2u]
where Y=Y(7) is given by
B 2u(BN +2u) _ 18uk (15)
N+2u) BK+4u)

The corresponding elastic energy density e,; is given by

e(m) = 1+ Y(nles— (. (16)

2[N () +2u(n)]

To describe the phase equilibrium of the planar elastic
system considered here, we consider the thermodynamic po-
tential defined by'®

b=(f+ey) — 08, (17)
This potential satisfies
dip=-s5dT + o de, + 0,de,, — & do_, (18)

and is therefore the appropriate choice for the conditions of
uniform axial stress and biaxial strain; this potential is uni-
form at equilibrium in the situation we consider here. The
relation 5 =y!Y for our model leads to the equation

LUT-Ty) | =7 o2 BA+20)

T, ‘L(MZM)”(SS_ S e
o } (1)
2w ST

where [Bli=B,—By is the jump from liquid to solid bulk
values. This expression gives the change in equilibrium tem-
perature due to the various elastic effects.
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The surface energy can be viewed as a surface excess of
the potential ¢, and is defined by

y:f_ (gng"'[(f"‘ eq) = (fr+en)]-ofe, ¢ e, )dz

(20)

The surface energy is a function of the control parameters 7,
75, and eg. These parameters are not all independent, but are
related by the equilibrium condition /=", which leads
to the relation

0=—[s% - sD]sT + 2[0')(;) - g)]é‘ss - [sg) - sg)] 87p.

(21)

Following the procedures by Cahn ef al. in Refs. 19-21, we
can derive an expression for the variation of surface energy
with the applied axial stress and biaxial strain,

(L)
)[s(z) - S(L)]:|dZ

o ey
dy=2assf [[%@ - ((5)—")
L 8(S) (L)
- 67, f [[szgz) e~ ( )[s<z>—s ]}dz,
0

(22)

in which we have eliminated the thermal variation 6T by
using Eq. (21). The coefficients that multiply 2 e and 87, in
Eq. (22) are the appropriate definitions of the surface excess
biaxial stress and the surface excess axial strain for our case,
which are independent of dividing surface conventions.

B. Biaxial strain with no axial stress

We next consider in more detail the case with no axial
stress, 7,=0; the elastic energy is then due solely to the ap-
plied biaxial strain. The stress is then given by

Oxx =0y = Y( 77)[85 - 80( 77)]a (23)
and the elastic energy density becomes
e=Y(nes— %] (24)
The surface energy reduces to
" 1 (dn)\?
y= f {F(W,T) - —ﬁ(—") }dx, (25)
—» 2" \dx

where F, the bulk free energy density including elastic con-
tributions, is given by

(T-T,)
F(.1)= () + Ly———"p(7) + Y(5)[e5~ ().
0
(26)
The equilibrium equation
SF dF 4
0=—="—_p=7 27)
on d7] dx

then admits a first integral,
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1 (dn)\?
F(n,T)--p|\ | =F(1,T)=F(0,7), (28)

2" \dx
where the integration constant is given by either of the far-
field values of F(#,T), which must therefore be equal. Since
in our model we have f,(0)=p(0)=Y(0)=0, we have
F(0,7)=0. The equilibrium temperature in the presence of
biaxial strain then satisfies

(T-Ty) _ 18psKsg
Ty (3K +4puy)

Ly (29)
where we have used €°(1)=0 and the definition of Y(1)
given by Eq. (15). Using the first integral in Eq. (28) with
F(0,T)=0, the surface energy is then given explicitly by

> [dn\? S ——
y= f B(-) dx=p" f V2F(9,T)dn,  (30)
o \dx 0

and the solution for the phase field reduces to quadrature,
7 dn

12
x—xy=p8 e
12 N2F(n,T)

(31

By using Eq. (22) with 7,=0, or directly by differentiating
Eq. (30), we find that

D o[ o -

; ou(Dp(mldr.  (32)
€s —oo

This integral is the appropriate definition of surface stress in
our case and is independent of a dividing surface convention.

C. No biaxial strain or axial stress

In the absence of axial stress (7,=0) and biaxial strain
(£4=0), and with no stress-free stain (g,=0), the elastic en-
ergy vanishes and the phase field, surface energy, and inter-
face width € reduce to the forms

1 Z
n(z)=5(1 —tanh[ED, (33)
2 —
Y= g\f'ZBfo, (34)
1 ——
= Zv’Zﬁ/fo- (35)

IV. PHASE FIELD MODEL
IN A SPHERICAL GEOMETRY

With spherical symmetry the displacement has only a ra-
dial component. In spherical coordinates the equations of
equilibrium do;/ dx;=0 reduce to

1d 2

d ( 0',,)—;0' =0. (36)

(22

Using the relationships
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_du
" dr

u
€ , 8W=899=;, (37)

where u is the radial displacement, the constitutive law for
stress in the isotropic case takes the form

4
0= Kley = ea(m]+ s p(nle, — &),

2
U(pga =0gg= K[Sll - 8?[( 77)] - gﬂ( 77)[8rr - 8go¢]' (38)

The equilibrium stress equation (36) can therefore be rewrit-
ten in terms of the displacement:

<K+ ilu(n)>i(d_u+2ﬁ> +idﬂ(ﬂ)(ﬂ_g): ds?l(n)'
3 dr\dr r) 3 dr \dr r dr
(39)

This equation coincides with the equilibrium equation used
in Ref. 14, where the radially stressed sphere was considered
in the case that the shear modulus does not depend on the
order parameter.

By using Egs. (1), (8), and (37), the free energy for the
spherical solid-liquid system including elastic energy can be
written as

R dn\* K(du 2 2
F=47Tfo {f(n,THg(d—f) +5<d—t+7”—s?,(7])>

2 d 2
+§,u(77)(d—b:—%) ]rzdr. (40)

Here, we are assuming that no external work is done at the
surface r=R.

The order parameter 7 should satisfy the time-dependent
Ginsburg-Landau evolution equation (2):

m__ [ﬁ_éi( d_n)K(d_z_
7

= r
dr

ot g rdr dr r
dej(n)  2du(n)(du u)?
—8?[(77)) P —==] ] D
dny 3 dnp \dr r

while the temperature field should satisfy the equation of
heat conduction, which in spherical coordinates with con-
stant conductivity becomes

aT (&ZT 2aT>
P k_ —_—

Lyo
=k 55+ ~van
ot ar ror

c ot (“42)

V. NUMERICAL RESULTS

We next present some numerical solutions for Egs. (39),
(41), and (42), corresponding to the problems of solidifica-
tion or melting of a confined sphere from the outer surface.

A. Kinetics of the solidification or melting
of a confined sphere

We consider the solidification or melting of a confined
sphere with zero displacement specified at the outer surface

PHYSICAL REVIEW B 74, 014103 (2006)

r=R. To initiate the transition we fix values of the tempera-
ture Tg=T(R) and the order parameter 7= 7(R). Imposing
the fixed-order-parameter boundary condition directly allows
us to avoid the issue of inducing nucleation of one phase
within the other. This restriction, however, may prevent the
system from reaching a lower-energy state that does not con-
tain any of the phase imposed by the boundary condition.
This will be discussed later in more detail.

The calculations were performed using a time-dependent
finite-difference method with 1000 mesh points in the radial
direction. The dimensionless gradient coefficient is given by
BI(R*f,)=0.002, and with the following elastic properties:
dimensionless bulk modulus in both phases, Ks(z)/ f0=0.22;
Poisson ratio in the solid phase, v=1/3; latent heat Ly/f,
=2.5, Ly/(cTy)=0.3. The simulations were performed with a
time step of 107, and relaxation time parameter M=0.01.
For these parameters the planar interface width given by Eq.
(35) is €=0.016R, so that the interface is well resolved by
1000 mesh points.

We first consider the melting of a solid sphere. The
boundary conditions imposed at the surface are 73=0 (lig-
uid) and a surface temperature 75> T,. The initial tempera-
ture of the sphere is 7,;,<7T,. We analyze the process of
melting for different choices of the surface temperature T'.
At each temperature, the numerical solutions of Egs. (41)
and (42) describe the time evolution of the order parameter
and temperature in each point of the sphere. The location of
the solid-liquid interface is determined as the radius where
n=1/2.

Two cases with a fixed T},;,/ Ty=0.7 are shown in Figs. 2
and 3. At Tg/Ty=1.3, melting occurs, and a two-phase coex-
istence is established at late times. At the higher surface tem-
perature T¢/Ty=1.75, the final state is all liquid. Our simu-
lations show that two-phase equilibria can be found up to the
temperature T/T,=~1.65. The fraction of the liquid phase,
oy, gradually increases with temperature from O to 0.84 as
T¢/Ty— 1.65, whereafter a; jumps discontinuously to unity
(Fig. 4).

We now consider the converse problem of solidification
from the outer surface. Because the displacement at the sur-
face is zero, the liquid will be under stress. We thus set g
=1, and the results are shown in Figs. 5 and 6. For these
cases the initial temperature is set above T, specifically
T,./Ty=1.8, for two different surface temperatures of
T¢/Ty=1.5 and 1.2. For the case T5/Ty=1.5, the final state
exhibits two-phase coexistence (Fig. 5), while for Tg/T,
=1.2 the sphere is solidified completely (Fig. 6). Two-phase
states exist at temperatures lower than T¢/Ty= 1.7, and the
fraction of the liquid phase decreases to «=0.1 at a tempera-
ture T/ Ty=1.25. For lower temperatures the sphere solidi-
fies completely (a=0) as can be seen in Fig. 4. While the
states obtained at long times appear to be equilibria, there is
no direct means to demonstrate that other, lower-energy
states do not exist. We can establish, however, that these
states are truly the steady state by solving Egs. (41) and (42)
with the assumption that the thermal conductivity is infi-
nitely large. These simulations lead to the same steady states,
which have been obtained as a result of the nonisothermal
transformation. These steady states are determined by the
temperature and order parameter at the surface and do not
depend on the initial temperature.
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parameter # and the temperature
T/T, during melting of the sphere.
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These simulations illustrate the significant effect that
stress can have on two-phase systems in a confined geom-
etry. In the absence of stress, there are unstable two-phase
isothermal states that represent critical nuclei of either solid
inclusions (with T<<T) or liquid inclusions (with 7> T).
Perturbations of these unstable two-phase states generally
lead to single-phase equilibria consistent with the specified
wall temperature. Moreover, the unstable two-phase states do
not coexist at a given temperature. In contrast, if stress is
taken into account then (1) there is a temperature interval
where equilibrium two-phase states exist during the solidifi-
cation or melting of a confined sphere; (2) melting or solidi-
fication from the surface can lead to different equilibrium
states at the same temperature; and (3) for either solid or
liquid inclusions, as the temperature of the outer boundary is

! ing to the solid curves).
1000

r

Yoo 00 a0

varied the two-phase states lose stability at finite phase frac-
tions, leading to single-phase equilibria.

B. Analysis of equilibrium: Comparison of phase field
calculations with a sharp interface model

We now develop a sharp interface model of a two-phase
elastic system for comparison with our phase field model.
This sharp interface model contains the equilibrium solutions
equivalent to the two cases considered using phase field
modeling in the previous section. The first problem describes
the equilibrium states reachable during the melting from the
surface. It considers the two-phase equilibrium in the sphere
with zero displacements at the surface if the outer phase is a
liquid and the inner phase is a solid. The second problem

T/Ty

1.6

it
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FIG. 3. Evolution of order pa-

rameter 7 and temperature 7/7
during melting of the sphere. The

temperature at the surface is fixed
at T,/Ty=1.75. The initial tem-
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r
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FIG. 4. The dependence of the
equilibrium fraction of liquid on
A temperature  following  from
: steady-state results of phase field
/ simulation. Solid line and solid
A circles: melting of the sphere from
O // K the surface. Dashed line and solid
i squares: solidification of the
/ ’ sphere from the surface.
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describes the equilibrium states reachable during solidifica-
tion from the outer surface of a confined sphere of liquid.

By minimizing the free energy in both cases the tempera-
ture dependence of the equilibrium fraction of liquid phase
can be found and compared with the temperature dependence
following from results of the phase field model. The sharp
interface problem is a free-boundary problem, and posing the
problem in the form of a variational principle provides the
appropriate interface boundary conditions through the inde-
pendent variations of the displacement field and the interface
location in the reference state.

In a sharp interface model, surface energy effects are in-
cluded explicitly by writing the total energy F as the sum of
bulk energy and surface energy contributions, that is, F
=Fp+Fs. The bulk free energy Fp of the two-phase system

T/T,

for either a liquid or a solid inclusion can be written in the
form

Ry
Fg= 477J rzfl)(r,T,u(]),ugl))dr
0

R
+dr f P, T,u®,ul?)dr (43)

Ry

where u(r“):ﬁu“/ﬁr, and the superscripts (1) and (2) refer to

the inclusion phase and surrounding phase, respectively.
Here R is the outer radius of the sphere, R; is the radius at the
interface in the reference state (see Fig. 7), and, for a=1,2,

T/T, ° L
1.8
g e

1.4 FIG. 5. Evolution of the order

parameter 7 and temperature 7/7

12 during solidification of a sphere.

i The temperature at the surface is

fixed, T\/Ty=1.5. The initial tem-

77 0s perature of the sphere is T;,;,/T

' =1.8. In the steady state (solid

06 black lines), the temperature

reaches the fixed temperature at

04 the surface, 7,/T,, and the two-

J phase state exists.
0z
0
1] 100 200 300 400 500 500 oo o0 00 1000
r
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FIG. 6. Evolution of the order parameter 7

12

and temperature 7/7 during solidification of a
sphere. The temperature at the surface is fixed,

.

T,/Ty=1.2. The initial temperature of the sphere

is T,/ To=1.8. In the steady state (solid black
lines), the temperature reaches the fixed tempera-

0.a

[
I
|

ture on the outside surface, 7,/T|, and there is no

04

two-phase state.

I
02z ?
g o 20 b a0 sbo slo 7o sl

+2u' Dy — 8?,(”)]2

1
£9= (5" 1) + EK[uia’

—,u,(“)[uia) —u 9P (44)

0 w@¥=0, and 80( )—380, and the

0(”‘)—0 In this nota—
(a)

The liquid phase has 7*
solid phase has 7]("‘)—1 w =y, and &
tion, the radial stress field in each phase is given by o,
— &f(a) / (3’14(&)

Followmg the development in Ref. 19, we let ¥ denote the
interfacial energy per unit area in the reference state, so that
the surface energy contribution is given by ]—'S=47TR?'§/. In
order to include the effects of surface stress, the surface en-
ergy is generally assumed to depend on the tangential strain
components gg and &4, i.€., ¥=Wegpg. £44); since these
components of strain are continuous across the interface the
argument of ¥ is unambiguous. The surface stresses tangen-
tial to the interface are then given by'® &yy=0d9/de 4y and
G pp=0Y/ Je 44 For the case of a spherical geometry with

FIG. 7. The spherical inclusion in the sharp interface approxi-
mation. R is the outer radius of the spherical system, and R; is the
radius of the interface.

-—

isotropic material properties, we have ggp=¢,44=u(R;)/Ry,
and Ggy=044 A model with constant surface stress oy is
therefore given by

Y= Yo+ Osegg+ OsE gy = Yo+ 205es, (45)

where we have introduced the surface strain eg=u(R;)/R;.
More generally, for the case of spherical symmetry we write
y=%(eg), and let ogg=2d%¥/des denote the surface stress,
which will be strain dependent if 9(eg) is nonlinear.

The equilibrium stress equation can be found by taking
the variation of the total free energy F with respect to the
displacement fields u(® in each phase, assuming the interface
is coherent, uV(R;)=u®(R,). This leads to bulk versions of
the stress equation (39),

d (du(“) u(“)>
+2— |,
dr dr r

(46)
which states that the dilation 85,”)=
each phase.

To find the equilibrium position of an interface, the addi-
tional variation of the free energy with respect to R; and
uD(R)=u®(R)) leads to generalized versions of the
Weierstrass-Erdmann conditions at the interface,?

0=[/" w1 -[/* -

u(ra)+2u(“)/r is uniform in

(2) (2)]"‘_[7 oses],
(47)

20'5

0= O'(rl) — 0P+

. 43
rr RI ( )

The first condition relates the jump in the potential ¢ in Eq.
(17) across the interface to the interface curvature 2/R;, with
a coefficient that depends on the free energy ¥ and the work
done by surface stress (see, e.g., Ref. 23). This condition is
the analog of the equilibrium Gibbs-Thomson equation in
solidification theory. The appearance of the coefficient ¥
—0ogeg is consistent with the interfacial Eshelby relation, as
discussed by Gurtin.?* The second condition expresses me-
chanical equilibrium, and relates the jump in the normal
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solid curve shows the phase field

results, and the lower thin solid
curve shows the sharp interface
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phase is solid, the lower dashed
curve shows the phase field re-
sults, and the upper dot-dashed

curve shows the sharp interface
results. Here the effects of capil-
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stress to the force due to surface stress; it is analogous to the
Laplace-Young equation in fluid systems.

From the equation of interface equilibrium (47), we deter-
mine the temperature dependence of the equilibrium fraction
of liquid, «, and compare it with the results of the phase field
model. The calculation is outlined in the Appendix. The nu-
merical results for the phase field model show a small jump
in the radial component of the bulk stress, indicating the
presence of surface stress in the model. Since the effect is
small, however, we neglect it in comparison with the sharp
interface model to simplify the presentation, and assume the
surface energy is constant.

If liquid is the outer phase, the free energy of the two-
phase sphere is

NS N INe]

f= L Kega? + Af(1 - a) + 3—)/(1 —w)??  (49)
Vv R

where « is the fraction of liquid, a=1 —R; /R3. The first term

represents the elastic energy of the two-phase sphere, the

second term represents the internal energy, and the last term

is the surface energy. If the solid is an outer phase the free

energy is

_E_ 2 2 2 i ) 3_’/)} 2/3
f= V—Ka‘o(za +2a(1 a) | +Af(1 —a)+ R @
(50)

where the liquid fraction is now given by a=R;/R>.

1. Comparison with y=0

We first compare the phase field results to the sharp inter-
face results with ¥=0. If liquid is the outer phase, the stress
states in the inner and outer phases are hydrostatic,

pV=p?=p=-3¢Ka. (51)
(Hereafter we use the Poisson ratio v=1/3 and u/K=0.375.)
The equilibrium fraction of liquid is

larity are neglected in the sharp
interface results.

148
T/T,
_AF Ly (T-TY)
" 9Kel 9Kep T

ap (52)

The liquid phase grows from =0 at temperature 7, to «
=1 at temperature 7/ T0=1—K8%/ q. The dependence of the
equilibrium fraction of liquid on temperature corresponds to
the Clausius-Clapeyron temperature dependence on pressure
in a system with fixed volume:

dp dag/dT Ly

where p is the pressure in the inner and outer phases given in
Eq. (51).

If the inner phase is liquid and the outer phase is solid,
there is a hydrostatic stress state in the liquid and a nonhy-
drostatic stress state in the solid. The pressures in the inner
and outer phases are uniform,

p(inxide) — 2ng(a _ 1), p(outside) — K8(2)(3 + 2a) . (54)

The equilibrium fraction of liquid is

Af

) qT-Ty) 1
6K8(2)

1
4 6T,Ksy 4

(55)

ag

The liquid fraction decreases from a=1 at temperature
T/T0=l+15Ks%/2q to a=0 at temperature 7/T)=1
+3K8%/ 2q. Thus, the liquid disappears at a temperature
higher than 7y,

The dependence of the equilibrium fraction of liquid on
temperature obtained from a sharp interface model together
with the dependence following from the results of the phase
field model are shown in Fig. 8. The difference in tempera-
ture dependence for the two configurations (the outer phase
is either liquid or solid) is a result of elastic interactions
between the phases in the case when the liquid is formed
inside the solid phase. The sharp interface limit without cap-
illarity qualitatively explains the coexistence of the two equi-
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v/ (Rfy)=0.053 (thicker curve),
v/ (Rf,)=0.043, and y=0.
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librium liquid-solid phase states over a range of tempera-
tures, but does not show the loss of the two-phase stability
demonstrated by the phase field model.

2. Comparison with y#0

With capillary effects included, Eqgs. (49) and (50) have
two extrema in «, one of them a minimum corresponding to
the equilibrium two-phase state, and the other one a maxi-
mum corresponding to a critical nucleus. The two-phase
equilibrium disappears at a critical temperature 7., where
the minimum of the free energy coincides with the maxi-
mum. The dependence of the equilibrium fraction of liquid
on temperature for various values of the surface energy is
shown in Fig. 9. With increasing surface energy, the critical
temperature where the two-phase state becomes unstable de-
creases in the case of a solid inner phase and increases in the
case of a liquid inner phase.

From the comparison of the free energies [Eqs. (49) and
(50)] it follows that the free energy in the problem where the
outer phase is a liquid is always lower than the free energy in
the problem where the outer phase is a solid. Thus, the equi-
libria reached when solidification starts from the surface are
metastable to interchanging the inner and outer phases.

To estimate the value of surface energy in terms of the
phase field parameters, we examine the surface energy’s de-
pendence on the equilibrium liquid fraction for phase field
calculations with equilibrium fractions given by minimiza-
tion of Egs. (49) and (50). In the sharp interface approxima-
tion the surface energy y/(Rf) does not depend on the frac-
tion of the equilibrium phase; thus, it can be used as a fitting
parameter. The value of y/(Rf;)=0.043 gives agreement be-
tween the sharp interface and phase field calculations for
both solidification and melting of the sphere.

Using the analytic result for the planar interface,

168 1.7 18 19

/T,

1
l=J |:2£<167]2(1—7])2
0

Rfy R*f,

Key 18uop(7)
fo 3+4up(n)

we can also compute the surface energy. With the parameters
used in the phase field calculations, B/(Rf,)=0.002 and
Ks%/ f0=0.22, we obtain the value y/(Rf;)=0.043 for the
surface energy, which coincides with the value obtained from
phase field calculations. As can be seen from Eq. (56) the
effect of elastic energy on surface energy is small [the sur-
face energy 7y/(Rf,) increases by about 0.001]. However,
even if the elastic energy affects the surface energy insignifi-
cantly, it significantly affects the equilibrium states. The
value of surface energy as well as surface stress increases
with increasing elastic energy, e.g., gy;. The value of the sur-
face stress is computed to be f../(Rfy)=f,,/(Rfp)=1.5
X 1073

In Fig. 10 the stress fields obtained by the phase field
calculations for solidification and melting of the sphere are
compared with Egs. (A13) and (A10) in the Appendix. The
phase field calculations coincide with the sharp interface
model away from the interface, while near the interface the
diffuse nature of the interface and the surface stresses influ-
ence the stress fields.

1/2
[1- p(n)]z) ] dn, (56)

VI. DISCUSSION

As shown above, the equilibrium two-phase states estab-
lished during phase field evolution are described adequately
in terms of the thermodynamics of two-phase systems with
sharp interfaces between phases. However, the phase field
approach imposed a special constraint on the system that
makes these equilibrium states dependent on the kinetic path
of a transformation.
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Assuming that the order parameter at the surface is fixed
(7=0 or 1), we have eliminated the necessity for nucleation
of a new phase, but simultaneously have introduced an addi-
tional condition for accessibility of the equilibrium state.
Thus, by requiring solidification to develop from the surface,
we keep the system in a metastable state (because its energy
is higher than the energy of the configuration with a solid
phase inside of a liquid phase). The complete solidification
under these conditions results in the formation of an un-
stressed solid at a temperature higher than the melting tem-
perature T,,. However, this contrived situation can correspond
to a realizable physical process if the solidification of a lig-
uid inclusion in the solid is considered. For example, the
inclusion can be the result of a local thermal heating (e.g.,
due to radiation). The kinetics of the solidification in this
case is adequately described by our phase field simulation,

r

and the final overheated solid state is stable with respect to
the internal melting.

This example shows that for analysis of a realistic pro-
cess, the boundary conditions at the surface in the phase field
equations should be based on consideration of surface prop-
erties, including the surface’s mechanical and thermody-
namic states. From this point of view, the surface boundary
conditions can be more complex during the melting of a
confined sphere than during solidification of a liquid inclu-
sion, because more information on the energy of an interface
between liquid and constraining walls is required. Thus, in
comparison with the classical problems of melting and so-
lidification, where only temperature conditions at the surface
are given (the so-called Stefan problems), the phase field
approach contains an additional degree of freedom (order
parameter at the surface), which needs to be specified. Com-
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parison of the phase field model and the sharp interface
model shows that the continuity of strain in the former and
compatibility of strain in the latter lead to the same stress
fields except in a small vicinity of the liquid-solid interface
(Fig. 10). Therefore, the validity of coherency (continuity of
displacement) of the liquid-solid mixture can be verified by
analysis of the stress fields in the sharp interface model. This
calculation is presented in the Appendix.

A system with a liquid inner phase is necessarily coherent
because the elastic solutions for coherent and incoherent in-
clusions for this case are the same: the stress state in the
inner phase is the hydrostatic pressure and this stress cannot
be relaxed for any shear modulus of the inner phase. On the
other hand, a system with a liquid outer phase that is consid-
ered to be coherent with the solid contains shear strains in
the liquid which do not create shear stress, because of the
zero shear modulus of a liquid. If we view this system as a
mixture of incoherent phases,'* then we should not employ
the assumption of continuity of displacement, but should in-
stead allow the shear strain in the liquid to relax by imposing
a conservation of volume constraint that the sum of the vol-
ume change of the liquid phase, AV}, and volume change of
the solid phase, AV, should be equal to zero. Since AV,
=aVye, and AV¢=(1-a)V,eq, where V) is the total volume
of the sphere, g; and &g are the total dilations in a liquid and
a solid, we come to the equation

P )4
V — l-a)Vy—=0, 57
a 0(80+3K>+( @) 03K (57)

where elastic dilations in the phases are determined by the
uniform hydrostatic pressure p. We then have

p=-3Kga, (58)

which coincides with the results following from a coherent
model [Eq. (29)]. Thus, in the problem under consideration
the coherent model of a liquid-solid system leads to the same
results as an incoherent one if the shear modulus of liquid is
assumed to be zero. The justification for treating the liquid as
a coherent phase in more general cases will be considered
elsewhere.

VII. CONCLUSIONS

A phase field model that incorporates the simultaneous
time evolution of the phase, temperature, and displacement
fields has been applied to the problem of solidification and
melting of a confined sphere. The simulations have demon-
strated that there are temperature intervals where equilibrium
states are established in a liquid-solid mixture. These equi-
librium states have also been obtained analytically using a
sharp interface model of the two-phase sphere. Comparing
the thermodynamic results of the two models allows one to
evaluate the relative stability of the equilibrium states during
both solidification and melting and estimate the surface en-
ergy. The resulting surface energy coincides with that calcu-
lated from the phase field model of a planar liquid-solid in-
terface. The long-range stress fields are identical in the sharp
interface and the phase field models. The sharp interface

PHYSICAL REVIEW B 74, 014103 (2006)

model has shown that the coherent and incoherent (relaxed)
states of spherical two-phase system have the same stress
fields. This identity of elastic fields justifies the assumption
of coherency between the phases for our calculation of long-
range elastic fields within the presented phase field modeling
of liquid-solid transformations.
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APPENDIX: SHARP INTERFACE CALCULATION

A sharp interface calculation for a spherically symmetric
two-phase system can be based on the thermodynamics of a
stressed solid.>>?® From the equilibrium equation in spherical
coordinates (r, ¢, #) and the symmetry of the model, it fol-
lows that the displacement has only a radial component u
=u(r) which, in the inner phase 1 and the outer phase 2, has
the form

= O_ el

u'=ayr, u —a2r+r2. (A1)

The reference stress-free state is the solid phase. The strains
and stresses are

0ol =s=a, a2)
2b b

Sg):az—?? 8%42::8592(3:(124-’,_’ (A3)

A e oK —s, (A

@ @ @b

o,/ =3Kla,—e5’]-4p 3 (AS)
@_ @) _ @ b

Tpp=0py = 3Kla, —e5’]+2u e (A6)

where #(2) is the shear modulus of phase 2, and sf)l) and sgl)

are the stress-free strains associated with volume change in
each phase. The bulk modulus K is assumed to be the same
in both phases, the shear modulus in the liquid is assumed to
vanish, and, since the stress-free solid phase is chosen as the
reference state, the stress-free strain in the solid vanishes as
well.

The coefficients ay, a,, and b are found from the boundary
conditions. Mechanical equilibrium at the phase interface r
=R, takes the form

o (R) = (R) (A7)

if we neglect the effects of surface stress. Continuity of dis-
placement at the phase interface and zero displacement at the
outer boundary r=R have the forms
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uP(R) =u(R), u?(R)=0. (A8)
If the outer phase is liquid, we find
R R
ay=-— I—F €0» aZZFSO’
b=- R?SO, (A9)

where 80=882) is the stress-free strain in the liquid. The stress

fields are given by

R3
(2)—0'(020)——31(80 1 —R—g .

(A10)

0'(1) = a'fplq), = 05910) =0, 2= o

The total energy is then given by Eq. (49), and the relation
between temperature and the radius R; is

—(T‘TO):—9K85<1-]§)—ﬁ<&)_1 (A11)
T, Ly R*) LyR\R) ~

If the outer phase is solid, we find

R R
a =k I—F gy r=—k g £0,

b=—-kR3s,, (A12)

where k=3K/(3K+4u), 80:882) is again the stress-free

strain in the liquid, and w is the shear modulus of the solid.
The stress fields are given by
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KR} -R%)
V=gl =0l) =—9Key— ——— Al13
Trr = T¢e= ORGK+4n) (AL3)
3KR? - 3KR} + 4uR® R}
o2 = 3K 5, OB = IKR, + 4R 1 ey
R°BK+4w) (BK+4u)r
(A14)
(3KR? - 3KR3 + 4uR’)
0¥ = ¢'2) = 3Ke il
gp T D00 TR0 RIBK +4p)
3
+6uKe—L Al5
FEOGK + 4 (A13)

The total energy is then given by Eq. (49), and the relation
between temperature and the radius R; is

T-T, 9Ke?  9Ke?
( 0): 0, 0(2 —1)k+—a‘”3,
T, 2LV 2Ly LyR

(A16)

where azRf/R3 is the liquid fraction. If u/K=3/8 (Poisson
ratio v=1/3), then k=2/3 and we have

T-T,) 15Ke2 6Ks? 23
( o)_ 0 0(a—1)+ Y

T, 2L, Ly L,R”

—1/3 (A17)
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