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THE EFFECT OF CONTACT LINES ON THE RAYLEIGH
INSTABILITY WITH ANISOTROPIC SURFACE ENERGY∗
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Abstract. We determine the linear stability of a rod or wire on a substrate subject to capillary
forces arising from an anisotropic surface energy for a range of contact angles between −π/2 and
π/2. The unperturbed rod is assumed to have infinite length with a uniform cross-section given by a
portion of the two-dimensional equilibrium shape. We examine the effect of surface perturbations on
the total energy. The stability of the equilibrium interface is reduced to determining the eigenvalues
of a coupled system of ordinary differential equations. This system is solved both asymptotically and
numerically for several types of anisotropic surface energies. We find that, in general, the presence
of the substrate tends to stabilize the rod.
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1. Introduction. While stability studies of cylindrical rods have a long history,
they are still a subject of current interest. For example, nanowires (alternatively called
nanorods or quantum wires) are nanoscale crystal structures that are formed by de-
position on a substrate, typically with a high lattice-mismatch that tends to produce
aligned crystals on the substrate. The processing parameters that govern the growth
and stability of the wires are of intense interest. Here we focus on two important is-
sues surrounding nanowire stability: anisotropic surface tension and the contact angle
between the rod and substrate.

The analysis of capillary driven instabilities spurring cylindrical rods to break up
into droplets was initiated in 1873 by Plateau [27], who showed that breakup will occur
when the rod, with isotropic surface energy, is subject to axisymmetric perturbations
whose wavelength exceeds the circumference of the cylinder. Lord Rayleigh [28] deter-
mined that the length scale of the instability is controlled by the perturbations having
the fastest temporal growth rate. The tendency for preferential beading has subse-
quently become known as the Rayleigh instability. A nice review by Michael may be
found in [22]. Molares et al. [23] recently performed an experimental demonstration
using the Rayleigh instability of a nanowire to produce long chains of nanospheres.

The surface energy of a liquid-solid or vapor-solid interface is generally anisotropic
due to the underlying crystal lattice and depends on the orientation of the local normal
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vector at each point of the interface [12, 25, 30]. As a first step in applying the analysis
of Plateau to a nanowire, the effects of the substrate may be ignored, and the stability
of the isolated rod determined strictly by the consideration of anisotropic surface
energy. The experimental studies of Kondo and Takayanagi [18] show an apparent
stability of elongated nanowires that are grown in a bridge configuration, in contrast
to the expected nanoislands or quantum dots predicted by the Rayleigh instability for
the isotropic case.

Cahn [2] studied the effect of anisotropic surface energy on the Rayleigh insta-
bility for isolated rods with circular cross-sections that are subject to axisymmetric
perturbations; the underlying surface free energy was assumed to have transverse
isotropy, resulting in closed-form solutions to the stability problem. Glaeser and
Stölken [9, 32] extended Cahn’s analysis and evaluated the effect of the axisymmetric
surface energy anisotropy on evolution kinetics. Gurski and McFadden [10] considered
general anisotropic surface energies by computing the second variation of the surface
free energy of a freestanding rod whose cross-section is smooth and given by a two-
dimensional equilibrium shape. The analysis was applied to examples with uniaxial or
cubic anisotropy, which illustrated that anisotropic surface energy plays a significant
role in establishing the stability of the rod. It was found that both the magnitude and
sign of the anisotropy determine whether the contribution stabilizes or destabilizes
the system relative to the case of isotropic surface energy.

Previous theoretical studies of the relationship between the morphological insta-
bility of a cylinder that is in contact with a substrate have concentrated on cylinders
with isotropic surface energy. McCallum et al. [19] investigated the linear instability
of a line of film on a substrate. The unperturbed film state was a cylinder of infinite
length with a cross-sectional shape of a segment of a circle. Mass was allowed to flow
by diffusion along the film surface. The results of the study found that the substrate
presence was a stabilizing influence. Roy and Schwartz [31] studied the stability of
liquid ridges on a substrate in the absence of gravity. In this problem the liquid re-
gion had a boundary composed of a free surface with a circular arc for a cross-section
and a solid cylindrical substrate of arbitrary shape. Their results show that when a
particular relationship between the curvatures of the liquid and solid interfaces and
the contact angle is satisfied, the infinite liquid ridge is stable with respect to sinuous
transverse modes, unlike an infinite cylindrical jet.

For an isotropic surface energy, the base state of the system is relatively simple
to describe: the cross-section of the ridge is a circular arc that is determined by the
equilibrium contact angles with the substrate. With surface tension anisotropy, the
situation is more complicated in several respects. The axis of the nanowire relative
to its underlying crystalline axes is a variable to be considered. Once the preferred
orientation of the wire axis is established and the wire is assumed to be in contact
with the substrate, there remains a geometrical degree of freedom represented by a
rotation of the wire about its axis. This rotation exposes different sets of orientations
on the crystal-vapor interface, which in turn affects the total energy of the system.
Therefore, before the stability to axial perturbations of a nanowire on a substrate is
addressed, the selection of the orientation of the wire relative to the substrate must
be considered.

During the deposition process, various wire orientations are observed experimen-
tally, depending on the processing conditions and the composition of the deposited
crystal and substrate [6, 7, 8, 24, 26, 29]. In particular, for a given set of mate-
rial parameters, it is argued that the observed orientations depend on kinetics of
the (nonequilibrium) deposition process as well as on the effects of surface energy and
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surface stress of the crystal-substrate interface [4, 5, 6, 11, 15]. In our simplified model,
we consider an inert (nondeforming) substrate with an isotropic crystal-substrate sur-
face energy and ignore kinetic effects by focusing on equilibrium states.

Even with these simplifying assumptions, the identification of the lowest energy
orientation of a nanowire on a substrate is more complicated than the simpler prob-
lem of determining the lowest energy crystalline orientation of a planar epitaxial
layer deposited on a substrate [5, 15, 29], since a nonfacetted nanowire contains a
range of crystal-vapor surface orientations instead of the single orientation of a planar
film. Within our model, we are able to investigate the low energy orientations of
the nanowire on a substrate and perform a stability analysis to axial perturbations
(Rayleigh instability).

Our results depend in detail on the anisotropy of the crystal-vapor surface energy.
Experimental measurements of this anisotropy for metallic systems are uncommon,
although there has been considerable progress recently in atomic-scale simulations of
the surface energy anisotropy, specifically for crystal-melt interfaces [1, 14]. Here we
adopt a simple one-parameter model for the surface energy anisotropy of the cubic
material with a form that is often used to fit the simulation results [1, 14].

In this paper we examine how both the anisotropy of the surface energy of the wire
and the interaction of the rod with a substrate affect the stability of the rod. As in the
work of Roy and Schwartz [31] on the stability of liquid ridges, we use a variational
approach using an energy functional and constant volume condition. Using general
anisotropic surface energies, we derive an associated eigenproblem. The eigenproblem
is described by a pair of coupled second-order ordinary differential equations with
periodic boundary conditions along the axis of the rod and boundary conditions arising
from the contact angles between the rod and substrate. We consider the effects of
the overall orientation of the crystal relative to the substrate and examine a range of
contact angles. The substrate is assumed to be rigid with an isotropic surface energy.
We apply the analysis to a number of examples, including the case of a cubic material,
and compute the stability of the rod to perturbations when the axis of the rod is
aligned parallel to the high symmetry orientations [001], [011], and [111]. When the
anisotropy is sufficiently small, the stability of the rod can be computed approximately
with asymptotics. For larger levels of anisotropy, the solution is computed numerically.

2. The model. We consider the stability of an infinite rod deposited on a pla-
nar substrate below a vapor phase. The rod extends uniformly in the z direction of
a Cartesian coordinate system (x, y, z) with the y direction normal to the plane of
the substrate. The cross-section of the rod is uniform in z and defined by a two-
dimensional equilibrium shape which is determined by surface energy considerations
and the angle of contact between crystal and substrate. The vapor-substrate sur-
face energy is denoted by γV and the crystal-substrate surface energy is denoted by
γS . In this model we assume that both γV and γS are isotropic (constants that are
independent of orientation).

Since we will be considering the stability of the rod under an arbitrary shape
perturbation, we need to consider the three-dimensional crystal-vapor surface energy
for general orientations. The crystal-vapor surface energy will be expressed in terms
of the local normal vector to the crystal-vapor interface written in terms of spherical
coordinates (ρ, θ, φ) in which z is the polar axis, ρ =

√
x2 + y2 + z2 is the radius,

θ the polar angle, and φ the azimuthal angle as shown in Figure 2.1. The crystal-
vapor surface energy is assumed to be anisotropic (orientation-dependent) and is
denoted by γ = γ(φ, θ). The unit normal to the unperturbed rod lies in the plane
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Fig. 2.1. Schematic diagram of the spherical coordinate system (ρ, θ, φ) used for the definition
of the surface energy γ(φ, θ).

θ = π/2 and is given by ρ̂(φ, θ = π/2) = r̂(φ) = (cosφ, sinφ, 0), with θ̂ = −ẑ and

φ̂(φ, θ = π/2) = (− sinφ, cosφ, 0). The axis of the unperturbed rod is parallel to
the plane of constant y which represents the substrate. Variables with hats are unit
vectors in their corresponding directions.

We restrict our consideration to differentiable surface energies with anisotropies
that are mild enough that the surface of the rod is smooth and does not exhibit any
missing orientations.

2.1. Three-dimensional surface energy: General formulation. In order
to examine the stability of the rod using a variational approach, we will need the
general energy functional. This formula and the constant volume condition will be
perturbed about the equilibrium rod. The higher order terms in this perturbation
expansion will produce a condition for stability. Simply put, for constant volume, if
the perturbation increases the energy, the equilibrium state is stable; otherwise it is
unstable. This approach parallels the method used by Gurski and McFadden [10], who
study the stability of a free rod, but here it is necessary to account for the presence
of the substrate.

We will consider the stability of the rod to small amplitude disturbances in the
z direction of wavelength λ = 2π/k, where k is the axial wave number. Hence, only
the energy and the volume of a portion of the rod of length λ need to be determined.
The effect of the substrate on the stability of the rod is local, so only a finite section
of the substrate large enough to contain the perturbed rod needs to be examined. In
particular, we will consider a rectangular section of the substrate of length λ in the z
direction and width 2LR in the x direction.

The total energy of our rod-substrate system, E, can be written as

E = ECV + EV S + ECS ,(2.1)

where ECV is the energy of the crystal-vapor interface, EV S is the energy of the vapor-
substrate system, and ECS is the energy of the crystal-substrate system. Letting ACS

be the surface area of the crystal-substrate interface, we have that ECS = γSACS and
EV S = γV (2λLR −ACS).
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The energy of the crystal-vapor interface, ECV , is equal to the surface integral
of γ along this interface. If γ is constant, the energy equals γ times the surface
area of the crystal-vapor interface. We wish to consider the anisotropic case, so
the integral will depend on the orientation of the unit normal to the interface. To
compute the associated surface integral, it is helpful to introduce some notation. Let
�X = �X(u, v) be the position vector of a point along the surface of the rod, where u
and v denote surface coordinates. The normal vector field to the rod interface is given
by �P = �Xu × �Xv.

Following Gurski and McFadden [10], it is convenient to introduce a generalized
surface energy function defined by

Γ(�P ) = |�P |γ(Φ,Θ),(2.2)

where

Θ = tan−1
(√

P 2
x + P 2

y /Pz

)
, Φ = tan−1 (Py/Px)(2.3)

are the corresponding spherical angles based on the normal vector �P .
A formula for the surface energy can now be obtained by noting that γ(Φ,Θ)dA =

Γ(�P )du dv. The surface energy ECV can therefore be written as

ECV =

∫ ∫
Γ(�P )du dv.(2.4)

The total energy E is then obtained by substituting (2.4) into (2.1).
It should be noted that the generalized surface energy Γ is closely related to the

three-dimensional Cahn–Hoffmann vector [3, 13], ξ = ∇ [ργ(φ, θ)]; in fact,

ξj(�P ) =
∂Γ(�P )

∂Pj
.(2.5)

The dimensionless three-dimensional equilibrium shape of a solid particle in a vapor
is given by �ξ(φ, θ) for 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π, and its normal is ρ̂(φ, θ). In the
plane θ = π/2, this relation reduces to

�ξ(φ, π/2) = γ(φ, π/2) r̂(φ) + γφ(φ, π/2) φ̂(φ) − γθ(φ, π/2) ẑ,(2.6)

where we have used r̂(φ) = (cosφ, sinφ, 0), φ̂(φ) = (− sinφ, cosφ, 0), and θ̂ = −ẑ in
the plane θ = π/2. Note that here partial derivatives are denoted by subscripts, e.g.,
γφ = ∂γ/∂φ. If γθ(φ, π/2) = 0, then the two-dimensional equilibrium shape defined
by (2.6) is characterized by a constant weighted mean curvature [γ + γφφ]K [33].
Missing orientations can occur if γ+γφφ < 0 [35]; here we will assume γ+γφφ > 0. If

γθ(φ, π/2) �= 0, then the curve �ξ(φ, π/2) is out of the plane z = 0, but its projection
onto the plane represents the two-dimensional equilibrium shape corresponding to
γ = γ(φ). These two-dimensional shapes define the cross-sections of our rod. We will
choose the surface coordinates (u, v) = (φ, z), which is a natural choice for studying
the stability of the equilibrium rod along a substrate to small perturbations.

2.2. The equilibrium rod. The cross-section of the unperturbed rod is a por-
tion of a two-dimensional equilibrium shape parameterized by the vector �X(0)(φ) =
(X(0)(φ), Y (0)(φ)), where

X(0)(φ) =
�

γ0

[
γ

(
φ,

π

2

)
cosφ− γφ

(
φ,

π

2

)
sinφ

]
(2.7)
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Fig. 2.2. Ellipse rotated an angle of φ′ about the original axes. Contact angles between the
ellipse and substrate are ψR and ψL.

and

Y (0)(φ) =
�

γ0

[
γ

(
φ,

π

2

)
sinφ + γφ

(
φ,

π

2

)
cosφ

]
(2.8)

for ψR ≤ φ ≤ ψL, where γ(φ, θ) is the surface energy, � is a characteristic length
scale, and γ0 is a characteristic surface energy (see, e.g., [35]). Anticipating the
subsequent perturbation expansion, we associate variables having a superscript (0)
with the equilibrium rod. The rod is in contact with the substrate over the range
X(0)(ψL) ≤ x ≤ X(0)(ψR), and the surface of the substrate in this coordinate system
is y = W0 = Y (0)(ψR) = Y (0)(ψL). The contact angle that the rod makes with the
substrate thus is described by ψR and ψL, as illustrated in Figure 2.2. Winterbottom
[36] (see also [3]) shows that the conditions for equilibrium at the contact line are
satisfied for the choice W0 = (�/γ0)[γV − γS ]; we also derive this result below in the
course of the energy minimization. Unless otherwise noted, we will henceforth assume
that all variables are dimensionless, based on the units of length � and energy γ0.

3. Stability under perturbations. We determine the stability of the rod by
computing the total energy of a volume-preserving perturbation to the rod. The
unperturbed interface can be written in the form �X(0)(φ) + z ẑ. As in our previous
development (see [10]), we then consider a perturbed interface of the form

�X(φ, z) = �X(0)(φ) + z ẑ + εh(φ, z)r̂(φ) +
ε2

2
h2r̂(φ) + · · · ,(3.1)

where ε is a small parameter, h(φ, z) is the height of the perturbation along the normal
r̂ to the unperturbed shape, and the constant h2 is a second-order shape correction
introduced to satisfy the volume constraint at O(ε2). The domain of φ is given by
ψR(z) ≤ φ ≤ ψL(z). Note that the contact angles depend on both z and ε since the
contact angles are determined by the boundary conditions at the contact point. In
particular, we will assume that ψi has a regular expansion in ε of the form

ψi(z) = ψ
(0)
i + εψ

(1)
i (z) +

ε2

2
ψ

(2)
i (z) + · · ·(3.2)
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for i = L,R. At the substrate we have

Y (ψi, z) = W0,(3.3)

so that at leading order we have

W0 = Y (0)(ψ
(0)
i ) = γ(ψ

(0)
i , π/2) sinψ

(0)
i + γφ(ψ

(0)
i , π/2) cosψ

(0)
i(3.4)

for i = L,R. The case W0 = 0, ψ
(0)
R = 0, ψ

(0)
L = π represents a contact line at

the orientation of an equatorial plane of symmetry of the equilibrium shape and also
corresponds to the upper half of a freely suspended rod [10].

At the contact line the variables X, Y , h, and ψ are related through (3.1)–(3.3).
Expanding (3.3) to first order yields

Y
(0)
φ (ψ

(0)
i )ψ

(1)
i + Y (1)(ψ

(0)
i , z) = 0,(3.5)

where from (3.1) the first-order shape change is given by

X(1)(φ, z) = h(φ, z) cosφ, Y (1)(φ, z) = h(φ, z) sinφ.(3.6)

Since X
(0)
φ (ψ

(0)
i ) = −(γ+γφφ) sinψ

(0)
i and Y

(0)
φ (ψ

(0)
i ) = (γ+γφφ) cosψ

(0)
i , (3.5) yields

ψ
(1)
i (z) =

−h(ψ
(0)
i , z) sinψ

(0)
i

(γ + γφφ) cosψ
(0)
i

,(3.7)

which relates h and ψ(1) at the contact line.
The geometry of the perturbed rod is determined by the two tangent vectors �Xφ

and �Xz, and their cross product, �P = �Xφ × �Xz, which is normal to the interface.

The area element on the interface is given by dA = |�P | dφ dz. Evaluating the tangent
vectors by using (3.1) and taking their cross product, we find that the interface normal
has the expansion

�P (φ, z) = �P (0)(φ) + ε �P (1)(φ, z) +
ε2

2
�P (2)(φ, z) + O(ε3),(3.8)

where

�P (0) = (γ + γφφ) r̂,(3.9)

�P (1) = h r̂ − hφ φ̂− (γ + γφφ)hz ẑ,(3.10)

�P (2) = h2 r̂ − 2hhz ẑ.(3.11)

3.1. Volume. The shape perturbation (3.1) is required to preserve the volume
of the rod over a given length with a period of the perturbation equal to λ = 2π/k.
As in Gurski and McFadden [10], we can write the volume as a surface integral by
using the divergence theorem. Then using the expansion (3.1), we find that to O(ε2)
the volume is given by

(3.12)

V =
1

2

∫ ∫ ∫
∇ · (x, y, 0) dV

=
1

2

∫ 2π/k

0

∫ ψL(z)

ψR(z)

�P (φ, z) · [ �X(φ, z) − z ẑ] dφ dz
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−1

2

∫ 2π/k

0

W0 [X(ψR(z), z) −X(ψL(z), z)] dz

=
1

2

∫ 2π/k

0

∫ ψL(z)

ψR(z)

{[
γ + εh +

ε2

2
h2

][
(γ + γφφ) + εh +

ε2

2
h2

]
− εγφhφ

}
dφ dz

−1

2

∫ 2π/k

0

W0 [X(ψR(z), z) −X(ψL(z), z)] dz.

Expanding in ε then gives

V = V (0) + εV (1) +
ε2

2
V (2) + O(ε3) + · · · ,(3.13)

where

V (0) =
λ

2

∫ ψ
(0)
L

ψ
(0)
R

γ (γ + γφφ) dφ− λ

2
W0[X

(0)(ψ
(0)
R ) −X(0)(ψ

(0)
L )],(3.14)

V (1) =

∫ 2π/k

0

∫ ψ
(0)
L

ψ
(0)
R

h (γ + γφφ) dφ dz,(3.15)

V (2) =

∫ 2π/k

0

∫ ψ
(0)
L

ψ
(0)
R

{h2 + h2 (γ + γφφ)} dφ dz −
∫ 2π/k

0

h2 tanφ
∣∣∣ψ(0)

L

ψ
(0)
R

dz.(3.16)

A perturbation h(φ, z) that is periodic in z with mean zero makes V (1) = 0, and
the condition V (2) = 0 then determines the appropriate value of the constant h2.
A perturbation h(φ) that is independent of z does not automatically make V (1) =
0. This represents a special case for the stability calculation that is treated in the
appendix.

3.2. Energy. The stability of the rod is determined by expanding the total
energy through O(ε2) for |ε| � 1, and, for a given volume, examining whether the
shape perturbation, constrained to maintain constant volume of the rod, raises or
lowers the energy of the rod. Since the rod is assumed to be infinite in the z direction,
an analysis in terms of Fourier components allows us to consider shape perturbations
that are periodic in z. The contact angle is now a function of z as well, ψi = ψi(z)
for both i = L,R, and the energy E in the region −L < x < L and 0 < z < 2π/k
from (2.1) is given by

E =

∫ 2π/k

0

dz

∫ ψL(z)

ψR(z)

Γ(�P (φ, z)) dφ +
4πγV LR

k
(3.17)

− (γV − γS)

∫ 2π/k

0

[X(ψR(z), z) −X(ψL(z), z)] dz.

Expanding in powers of ε, we find

E = E(0) + εE(1) +
ε2

2
E(2) + O(ε3),(3.18)
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where

E(0) =

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

γ (γ + γφφ) dφ +
4πγV L

k
(3.19)

+ (γV − γS)

∫ 2π/k

0

(γ cosφ− γφ sinφ)

∣∣∣∣
ψ

(0)
L

ψ
(0)
R

dz.

The first variation of the energy is

E(1)

2
=

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

{(γ + γφφ)h + γθ (γ + γφφ)hz} dφ

−
∫ 2π/k

0

dz

(
h(φ, z)

cosφ
{[γS − γV ] + [γ sinφ + γφ cosφ]}

) ∣∣∣∣
ψ

(0)
L

ψ
(0)
R

,(3.20)

where we used (3.7) to simplify the second integral.
The second variational term is

E(2)

2
=

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

[
h2
φ + (γ + γφφ)(γ + γθθ)h

2
z − 2γφθhφhz + γh2 + 2γθhhz

]
dφ

+

∫ 2π/k

0

{[
h2γφ(ψ

(0)
L ) − 2γθ(ψ

(0)
L )h(ψ

(0)
L , z)hz(ψ

(0)
L , z) tanψ

(0)
L

]
−
[
h2γφ(ψ

(0)
R ) − 2γθ(ψ

(0)
R )h(ψ

(0)
R , z)hz(ψ

(0)
R , z) tanψ

(0)
R

]}
dz.(3.21)

3.3. Three-dimensional eigenvalue problem. Our choice of h(φ, z) makes
the integral of the sum of the second and fourth terms in (3.21) identically zero.
Eliminating h2 from (3.21) by using the volume condition, V (2) = 0 in (3.16), and
integrating by parts, we find that

E(2)

2
= −

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

hLhdφ

+

∫ 2π/k

0

{[
h(ψ

(0)
L , z) tanψ

(0)
L + hφ(ψ

(0)
L , z) − γθφ(ψ

(0)
L )hz(ψ

(0)
L , z)

]
h(ψ

(0)
L , z)

−
[
h(ψ

(0)
R , z) tanψ

(0)
R + hφ(ψ

(0)
R , z) − γθφ(ψ

(0)
R )hz(ψ

(0)
R , z)

]
h(ψ

(0)
R , z)

}
dz,(3.22)

where

Lh = hφφ + (γ + γφφ)(γ + γθθ)hzz − γφθhφz − (γθφhz)φ + h.(3.23)

Recall that the aim of this calculation is to determine perturbations h such that
E(2) > 0. This condition can be satisfied if the eigenvalue problem

Lh = μh(3.24)

with boundary conditions

h(ψ
(0)
i , z) sinψ

(0)
i + hφ(ψ

(0)
i , z) cosψ

(0)
i − γθφ(ψ

(0)
i )hz(ψ

(0)
i , z) cosψ

(0)
i = 0(3.25)
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for i = L,R has only negative eigenvalues μ. The differential operator L is identical
to that for the isolated rod as given in [10], but instead of periodicity in φ we now

have boundary conditions that apply at ψ
(0)
R and ψ

(0)
L .

Assuming a discrete set of eigenvalues μn and eigenfunctions hn, for n = 0, 1, 2, . . . ,
we can rewrite the eigenvalue problem (3.24)–(3.25) as

∂φφhn + (γ + γφφ)(γ + γθθ)∂zzhn − γφθ∂φzhn − (γθφ∂zhn)φ + hn = μnhn,(3.26)

where the eigenfunctions hn satisfy the boundary conditions given by (3.25) for i =
L,R. Note that (3.26) must also satisfy periodicity in the z direction, which can be
satisfied by assuming the solution has the form hn(φ, z) = Hn(φ) sin kz+Gn(φ) cos kz.
Substituting this into (3.26) implies

d2Hn

dφ2
+ (1 − k2(γ + γφφ)(γ + γθθ))Hn + kγφθ

dGn

dφ
+ k (γθφGn)φ = μnHn,(3.27)

d2Gn

dφ2
+ (1 − k2(γ + γφφ)(γ + γθθ))Gn − kγφθ

dHn

dφ
− k (γθφHn)φ = μnGn(3.28)

with the boundary conditions

Hn sinψ
(0)
i +

dHn

dφ
cosψ

(0)
i + kγθφ(ψ

(0)
i )Gn cosψ

(0)
i = 0,(3.29)

Gn sinψ
(0)
i +

dGn

dφ
cosψ

(0)
i − kγθφ(ψ

(0)
i )Hn cosψ

(0)
i = 0(3.30)

for i = L,R. This coupled system of equations must be solved to determine the
eigenfunctions and eigenvalues. Note that if γ is independent of θ, the equations
decouple.

4. Rotation and contact angles. In the next two sections we consider two
related aspects of the stability of a two-dimensional rod on a substrate. We first
consider the preferred, low energy orientations of the two-dimensional rod neglecting
axial perturbations. For this evaluation, we fix the rod axis that lies parallel to the
substrate and compute the energy of the system as the rod is rotated about this axis.
Given the specification of the axis of the rod, we assume that preferred orientations
correspond to minima of the energy as a function of the rotation angle. Once the low
energy orientations are determined, we go on to consider the further effect of axial
perturbations on the stability of rods aligned in the preferred orientation.

4.1. Ellipse. Consider the special case of a rod whose cross-section is given by
a two-dimensional ellipse,

x2

a2
x

+
y2

a2
y

= 1.(4.1)

The major and minor axes of the ellipse are then rotated with respect to the x-axis
by an angle φ′, as shown in Figure 2.2. The corresponding surface free energy γ is
given by

γ(φ) =
√

a2
x cos2 (φ + φ′) + a2

y sin2 (φ + φ′).(4.2)
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Fig. 4.1. Scaled energy versus rotation angle for the ellipse. From the top at φ′ = 0 the curves
correspond to W̃0 = −1.0,−0.5, 0, 0.5, 0.75.

The surface of the substrate is the plane y = W0 = (γV − γS), and the ellipse makes
contact with the substrate with two angles ψR and ψL, which are roots of the equation

0 = W0 − [γ(φ) sinφ + γφ(φ) cosφ].(4.3)

If φ′ is zero or π/2, then ψL = π − ψR.
First, let us consider how the energy depends on the angle of rotation φ′ and the

parameter W0. Since the volume of a rod with an elliptical cross-section will vary as
W0 varies, we must find a normalization for the energy

E = λ

∫ ψL

ψR

γ (γ + γφφ) dφ− λW0 (X(ψR) −X(ψL)) + 2λLγV .(4.4)

The corresponding formula for the volume of the rod is

V =
λ

2

∫ 3π/2

−π/2

γ (γ + γφφ) dφ− λ

∫ ψR+2π

ψL

(W0 − Y )
∂X(φ)

∂φ
dφ.(4.5)

Using these definitions, we can define a normalized energy ES as

ES =
E − 2LγV√

2V λ
=

∫ ψL

ψR
γ (γ + γφφ) dφ−W0 (X(ψR) −X(ψL))√∫ 3π/2

−π/2
γ (γ + γφφ) dφ− 2

∫ ψR+2π

ψL
(W0 − Y ) ∂X(φ)

∂φ dφ
.(4.6)

For our numerical calculations we set ax = 1, ay = 2. Figure 4.1 shows that when
W0 > 0, the lowest scaled energy ES is attained when φ′ = 90 (i.e., the major axis
is horizontal) and the highest scaled energy is reached when φ′ = 0 degrees (i.e., the
major axis is vertical). Since W0 = γV − γS > 0, the lowest energy state of the ellipse
will be where contact between the crystal and the substrate is maximized and where
contact between the substrate and vapor is minimized, i.e., when the semimajor axis
is horizontal. The scaled energy is independent of φ′ when W0 is zero, showing that
when γV = γS , there is no preferred rod orientation. When W0 is negative, the scaled
energy is higher at φ′ = 90 degrees and lower at φ′ = 0 degrees as the crystal orients
itself to minimize the crystal-substrate interface.
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4.2. Cubic materials. A simple model of the surface energy anisotropy for a
cubic material is given by the dimensionless expression [20]

γ(n′
x, n

′
y, n

′
z) =

{
1 + 4ε4([n

′
x]4 + [n′

y]
4 + [n′

z]
4)
}
,(4.7)

where we employ a primed coordinate system that is attached to the crystal axes.
We will consider rod directions z that coincide with the high symmetry orientations
[001], a fourfold axis; [011], a twofold axis; and [111], a threefold axis. We will
use appropriate preliminary rotations of the crystal axes in each case to bring these
axes into alignment with the z-axis of the rod, which will be fixed in the unprimed
coordinate system.

The shapes are smooth for −1/18 < ε4 < 1/12 (see [20]). For ε4 < 0 the shapes
resemble rounded cubes, with [110] edges first forming at ε4 = −1/18 ≈ −0.0556. As
ε4 decreases below −1/18, the edges extend toward the [111] directions, merging to
form a corner for ε4 = −5/68 ≈ −0.07735. For ε4 > 0 the shapes are octahedral, with
[100] corners first forming at ε4 = 1/12 ≈ 0.0833.

4.2.1. Rod axis parallel to [001] orientation. If the axis of the rod is aligned
with the [001] orientation of the crystal, the dimensionless surface energy resulting
from (4.7) is given by [16, 17, 21]

γ(φ, θ) = 1 + ε4
[
4 cos4 θ + sin4 θ (3 + cos 4φ)

]
.(4.8)

In the plane θ = π/2,

γ = (1 + 3ε4) + ε4 cos 4φ.(4.9)

If we allow the crystal to rotate on the substrate, we must include the effect of
the rotation angle φ′,

γ = (1 + 3ε4) + ε4 cos 4 (φ + φ′).(4.10)

We can determine the scaled energies using (4.6). Results are shown in Figure 4.2 for
several values of ε4 in the range of −0.0556 to 0.0833. The two extreme heights of
W0 = ±WM , where

WM = min
(
0.95

√
X(0)2 + Y (0)2, 0.95

√
X(π/2)2 + Y (π/2)2

)
,(4.11)

are shown. When W0 is near −WM , i.e., the origin of the coordinate system is nearly
at a maximum height above the substrate surface, the effects of rotation are very
slight, with maxima at φ′ = 0, 90, 180, 270, and 360 degrees for negative ε4. When ε4
is positive, these maxima switch to minima. The plot of the scaled energy versus angle
of rotation for ε4 = −0.0556 has the largest oscillations with an amplitude of 0.001.
The fourfold symmetry of the [001] oriented crystal is responsible for the 90 degree
spacing. When W0 is near WM , the location of the maxima and minima reverse with
respect to their locations at W0 = −WM , and the effect of the rotation becomes more
pronounced.

4.2.2. Rod axis parallel to [011] orientation. If the axis of the rod is aligned
with the [011] orientation of the crystal, then an appropriate rotation of the crystal
axes relative to the rod axis is given by [20]⎛

⎝n′
x

n′
y

n′
z

⎞
⎠ =

⎛
⎝ 1 0 0

0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2

⎞
⎠

⎛
⎝nx

ny

nz

⎞
⎠.(4.12)
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Fig. 4.2. Scaled energy versus φ′ for the [001] cubic orientation. (a) From the bottom,
the curves are ε4 = −0.0556, −0.02778, 0.0, 0.02778, 0.0556, 0.0833. W0 = −WM . (b) From
the top, the two dashed curves are ε4 = −0.0556 and −0.02778, and the solid curves are ε4 =
0.0, 0.02778, 0.0556, 0.0833. W0 = WM .

This rotation gives

γ = 1 + 4ε4

(
n4
x +

n4
y

2
+

n4
z

2
+ 3n2

yn
2
z

)
,(4.13)

which reduces to

γ = 1 + 2ε4
(
cos4 θ + 6 cos2 θ sin2 θ sin2 φ + 2 sin4 θ cos4 φ + sin4 θ sin4 φ

)
.(4.14)

When θ = π/2 and rotation of the crystal about the substrate is included, then

γ = 1 + ε4

[
9

4
+ cos 2 (φ + φ′) +

3

4
cos 4 (φ + φ′)

]
.(4.15)

The rod is smooth for −5/68 ≤ ε4 ≤ 1/12, which is a larger range than the [001] case.



1176 K. F. GURSKI, G. B. MCFADDEN, AND M. J. MIKSIS

(a)
0 90 180 270 360

2.5

3

φ′

E
S

(b)
0 90 180 270 360

0.2

0.3

0.4

0.5

φ′

E
S

Fig. 4.3. Scaled energy versus θ′ for the [011] cubic orientation. (a) From the bottom, the
curves are ε4 = −0.0556, −0.02778, 0.0, 0.02778, 0.0556, 0.0833. W̃0 = −WM′ . (b) At θ′ = 0 from
the bottom, the two dashed curves correspond to ε4 = −0.0556 and −0.02778, and the solid curves
correspond to ε4 = 0.0, 0.02778, 0.0556, 0.0833. W̃0 = WM .

We can determine the scaled energies using (4.6). Results are shown in Figure
4.3 for several values of ε4 in the range of −0.0556 to 0.0833 for the two extreme
heights of W0 = ±WM . The twofold symmetry of the [011] crystal is apparent in
the spacing of maxima and minima shown in Figure 4.3. When ε4 is negative, the
minima (maxima) are located at 0, 180, and 360 degrees for W0 = −WM (+WM ).
When ε4 is positive, the minima are located at 90 and 270 degrees for W0 = −WM .
At W0 = WM , maxima are maintained at 90 and 270 degrees for positive ε4. We see
that secondary local maxima form at φ′ = 0, 180, 360 for positive ε4 at W0 = WM .

4.2.3. Rod axis parallel to [111] orientation. If the axis of the rod is aligned
with the [111] orientation of the crystal, then an appropriate rotation of the crystal
axes relative to the rod axis is given by [20]⎛

⎝n′
x

n′
y

n′
z

⎞
⎠ =

⎛
⎝

√
2/
√

3 0 1/
√

3

−1/
√

6 1/
√

2 1/
√

3

−1/
√

6 −1/
√

2 1/
√

3

⎞
⎠

⎛
⎝nx

ny

nz

⎞
⎠.(4.16)
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This leads to the form

γ = 1 + 4ε4

(
n4
x

2
+

n4
y

2
+

n4
z

3
+ n2

xn
2
y + 2n2

xn
2
z + 2n2

yn
2
z(4.17)

+
2
√

2

3
n3
xnz − 2

√
2nxn

2
ynz

)
,

which reduces to

γ = 1 + 4ε4

(
1

3
cos4 θ + 2 cos2 θ sin2 θ +

1

2
sin4 θ +

2
√

2

3
cos θ sin3 θ cos 3φ

)
.(4.18)

Although the [111] orientation is not isotropic, in the θ = π/2 plane,

γ = 1 + 2ε4.(4.19)

Therefore, the effect of the φ dependence is lost and the surface energy for the [111]
orientation is unchanged by a rotation of φ′ about the substrate.

5. Linear stability calculations. Next we investigate the linear stability of
the system by examining the eigenvalue problem associated with diagonalizing the
second variation of the energy for a fixed orientation of the rod on the substrate.
We consider a number of examples, including an ellipsoidal surface energy anisotropy
and several variants of cubic anisotropy. The three-dimensional study includes both
numerical and asymptotic results. A discussion on the effect of rotation on stability
is covered in the appendix.

5.1. Ellipsoidal anisotropy. We first discuss an anisotropic surface energy that
leads to an ellipsoidal equilibrium shape described by

x2

a2
x

+
y2

a2
y

+
z2

a2
z

= 1.(5.1)

We consider an axisymmetric shape with ax = ay = 1. The corresponding surface

free energy is given by γ(φ, θ) =
√

sin2 θ + a2
z cos2 θ, and in the plane θ = π/2 we

have γ = 1, γφφ = 0, γθφ = 0, and γθθ = a2
z−1. The eigenvalue problem (3.27)–(3.28)

decouples, leading to the single equation

∂2Hn

∂φ2
+ (1 −K2)Hn = μnHn,(5.2)

where K = azk. The boundary conditions for i = L,R are

Hn(ψ
(0)
i ) sinψ

(0)
i + Hnφ(ψ

(0)
i ) cosψ

(0)
i = 0.(5.3)

We solve this problem numerically using a pseudospectral Chebyshev method for
a range of contact angles determined by solutions to (4.3), where −1 ≤ W0 ≤ 1. To
eliminate the change in length scale with the contact angle, we define κ = KRe as the
dimensionless axial wave number based on the effective radius of the cross-section.

In Figure 5.1(a) we show the most unstable mode μ0 for a range of contact angles
ψR as a function of κ. The results indicate that the ellipsoid is stabilized with respect
to long wavelengths for large ψR. In Figure 5.1(b) we plot the square of the critical
wavenumber κC , which corresponds to the transition between stable and unstable
behavior, as a function of the contact angle ψR.
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Fig. 5.1. (a) Eigenvalues for n = 0 versus κ = ReK for the ellipsoid case. From the lower

curve at κ = 0: ψ
(0)
R = −89, 0, 30, 60, 75 degrees. (b) The square of the rescaled wave number, κ2

C ,
versus ψR for the ellipsoid.

5.2. Cubic materials. For numerical determination of the eigenvalues we used
a pseudospectral Chebyshev discretization of the (3.27), (3.28) with boundary condi-
tions from (3.25) for contact angles, where −π ≤ ψR ≤ π. For this problem we may
choose a value ψR, thereby fixing the value of W0. If we restrict ψR between −π/2
and π/2, then ψL is the solution to

W0 − (γ(φ) sinφ + γφ(φ) cosφ) = 0(5.4)

for a value of φ between π/2 and 3π/2. Therefore, fixing the value of ψR determines
the value of ψL.

Since γ varies with respect to ε4 for each of the three high symmetry cubic orienta-
tions [001], [011], and [111], we must determine the effective radius of the cross-section
Re. To eliminate the change in length scale with ε4, we set κ = kRe, which is the
dimensionless axial wave number based on the effective radius of the cross-section.

In addition, we performed an asymptotic expansion of the problem with a plane
of symmetry at φ = π/2, i.e., when ψL = π − ψR. The results for the numerical cal-
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culation will be compared to the results for the asymptotic expansion in the following
sections.

5.2.1. Rod axis parallel to [001] orientation. The dimensionless surface
energy is given by (4.8) for the [001] orientation. In the plane θ = π/2, we then have
γθφ = 0, and

γ = (1 + 3ε4) + ε4 cos 4φ,(5.5)

(γ + γφφ) (γ + γθθ) =

(
1 − 6ε4 −

9

2
ε24

)
− (18ε4 − 126ε24) cos 4φ +

45

2
ε24 cos 8φ.(5.6)

The rod is smooth for −1/18 ≤ ε4 ≤ 1/12.
For this orientation, γθφ(φ, π/2) vanishes, leading to a decoupling of (3.27), (3.28)

that leaves a single equation,

∂Hn

∂φφ
+
(
1 − k2

[
1 + ε4A1(φ) + ε24A2(φ)

])
Hn = μnHn,(5.7)

where

A1 = −6[1 + 3 cos 4φ], A2 = −9

2
[1 − 28 cos 4φ− 5 cos 8φ].(5.8)

For the asymptotics, we assume a symmetry condition about φ = π/2. If −π/2 ≤
ψR ≤ π/2, then ψL = π − ψR. Then the boundary conditions become

Hn(ψR) sinψR + Hnφ(ψR) cosψR = 0,(5.9)

Hnφ(π/2) = 0.(5.10)

We take the simple expansions of Hn and μn in terms of small ε4:

Hn(φ) = H(0)
n (φ) + ε4H

(1)
n (φ) + O

(
ε24
)
,(5.11)

μn = μ(0)
n + ε4μ

(1)
n + O(ε24).(5.12)

The formal asymptotic expansion gives

Hn(φ) = C1 cosβn (π/2 − φ) + O(ε4),(5.13)

μn = 1 − k2 − β2
n + ε4

{
6k2 − 9k2βn

(ηn + sin ηn)

[
sin 4ψ

(0)
R +

sin(4ψ
(0)
R − ηn)

(βn + 2)
(5.14)

− sin(4ψ
(0)
R + ηn)

(βn − 2)

]}
+ O(ε24),

where ηn = 2βn(π/2 − ψ
(0)
R ) and the value of βn must satisfy

cosβn(π/2 − ψR) sinψR + βn sinβn(π/2 − ψR) cos(ψR) = 0.

In Figure 5.2, the first two terms of the asymptotic expansion for the most unsta-
ble mode, μ0, are compared against the numerical value for several choices of contact

angle, ψ
(0)
R , for ε4 = 0.20. The asymptotic results, shown by the dashed curves, are
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Fig. 5.2. Eigenvalues for n = 0 versus the rescaled wave number κ = Rek for the [001] orienta-
tion. Reading from the solid lower curve to the solid upper curve at κ = 0, the corresponding values
of ψR are −90, 0, 45, 63 degrees as indicated. The solid curve represents the numerical solution, and
the dashed curve represents the asymptotic solution for ε4 = 0.020.

close to the numerical results represented by the solid curves. These results show
that the larger contact angles are more stable with respect to large dimensionless
axial wave numbers. In addition, the [001] orientation is more stable with respect to
the isotropic case for negative ε4 and destabilized for positive ε4. The ψR = 0 case
corresponds to the free rod discussed in [10].

The corresponding critical wave number κC , defined where μ0 is zero, as a function

of ε4 has the form κC = Rek. If we define σ
(1)
n = k2τ , then the critical dimensionless

wave number is as follows:

κ2
C = R2

e(1 − β2
n)(1 + ε4τ) + O(ε24).(5.15)

Figure 5.3 shows the results for the square of the rescaled critical wave number versus
the contact angle ψR. The isotropic case, where ε4 is zero, matches the results found
in McCallum et al. [19] for the isotropic rod in contact with a substrate. It is clear
from Figure 5.3 that the negative values of ε4 stabilize the rod for all contact angles
with respect to the isotropic rod, while the positive values of ε4 destabilize the rod.
This behavior also was observed for the freestanding rod [10].

5.2.2. Rod axis parallel to [011] orientation. The dimensionless surface
energy, γ, for the [011] orientation is given by (4.15). In the plane θ = π/2, we then
have γθφ = 0, and

γ =

(
1 +

9

4
ε4

)
+ ε4 cos 2φ +

3

4
ε4 cos 4φ,(5.16)

(5.17)

(γ + γφφ) (γ + γθθ) =

(
1 +

3

2
ε4[5 − 12 cos 2φ− 9 cos 4φ]

+
9

32
ε24[167 + 136 cos 2φ− 148 cos 4φ+ 312 cos 6φ+ 45 cos 8φ]

)
.
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Fig. 5.3. The square of the critical rescaled wavenumber, κ2
C , versus ψR for the [001] orientation

for ε4 = −0.0556,−0.02, 0, 0.02, 0.05, 0.0833. The solid curves represent the numerical solutions
and the dashed curves the asymptotic solutions. The asymptotic solutions are given only for ε4 =
−0.02, 0.0.02.

The asymptotic expansion for the [011] orientation is similar to the [001] orienta-
tion. Therefore, we merely state the results for the first two terms of the eigenvalue
expansion:

μ(0)
n = 1 − k2 − β2

n,(5.18)

μ(1)
n = −15

2
k2 − 9k2βn

(ηn + sin ηn)

[
2 sin 2ψ

(0)
R +

3

4
sin 4ψ

(0)
R

−
(

2 sin 2ψ
(0)
R

β2
n − 1

+
3 sin 4ψ

(0)
R

β2
n − 4

)
cos ηn

−
(

2βn cos 2ψ
(0)
R

β2
n − 1

+
3βn cos 4ψ

(0)
R

2(β2
n − 4)

)
sin ηn

]
,(5.19)

where ηn and βn are as defined for the [001] orientation. Figure 5.4(a) shows nu-
merical results for the range −0.05 ≤ ε4 ≤ 0.08 and the asymptotic results for
ε4 = −0.02, 0, 0.02. The extreme ends of the smooth ε4 range present some nu-
merical difficulties and are therefore not shown. Likewise the extreme case, where
ψR is approaching 90 degrees and the cross-sectional area of the rod is approaching
zero, prevents us from calculating over the entire range of ψR. The curve ε4 = 0
corresponds to the isotropic case. The substrate acts as a stabilizing influence on the
rod; even the negative ε4 case, while less stable than the positive ε4 case, is less un-
stable than it is for a freestanding rod. The large wave number instability associated
with negative values of (γ + γθθ) seen in the freestanding rod [10] when ε4 is in the
range −5/68 ≤ ε4 ≤ −1/18 is possibly related to the growing κ2

C values observed for
ε4 = −0.05 over a positive range of ψR.

5.2.3. Rod axis parallel to [111] orientation. If the axis of the rod is aligned
with the [111] orientation of the crystal axes relative to the rod axis, then γ is given
by the following in the plane θ = π/2:

γ = 1 + 2ε4,(5.20)

(γ + γφφ)(γ + γθθ) = 1 + 12ε4 + 20ε24.(5.21)
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Fig. 5.4. The square of the critical rescaled wave number, κ2
C , versus ψR for ε4 =

−0.05,−0.02, 0, 0.02, 0.08 for (a) the [011] orientation and (b) the [111] orientation. The solid curves
represent the numerical solutions, and the dashed curves represent the asymptotic solutions. The
asymptotic solutions are given only for ε4 = −0.02, 0.0.02.

The asymptotic expansion for this orientation differs from the expansions for the
[001] and [011] orientations since in the [111] orientation (3.27) and (3.28) are coupled
through the nonzero term

γθφ = 8
√

2ε4 sin 3φ.(5.22)

The zeroth-order conditions and results are the same as those for the [001] and [011]
orientations, as expected, so only the details for the first-order terms are shown here.

We begin with the equations that must be solved to determine μ
(1)
n :

−H
(1)
nφ (ψ0)u(ψ0) + H(1)

n (ψ0)uφ(ψ0)(5.23)

−
∫ π/2

ψ
(0)
R

[(μ(1)
n + 12k2)H(0)

n − kγθφ(φ)G
(0)
nφ − k(γθφ(φ)G(0)

n )φ]u dφ = 0
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and

−G
(1)
nφ(ψ

(0)
R )u(ψ

(0)
R ) + G(1)

n (ψ
(0)
R )uφ(ψ

(0)
R )(5.24)

−
∫ π/2

ψ
(0)
R

[(μ(1)
n + 12k2)G(0)

n + kγθφ(φ)H
(0)
nφ + k(γθφ(φ)H(0)

n )φ]u dφ = 0

with the boundary conditions

H
(1)
nφ (π/2) = 0,(5.25)

G
(1)
nφ(π/2) = 0,(5.26)

H(1)
n (ψ

(0)
R ) sinψ

(0)
R + H

(1)
nφ (ψ

(0)
R ) cosψ

(0)
R + kγθφ(ψ

(0)
R )G(0)

n cosψ
(0)
R = 0,(5.27)

G(1)
n (ψ

(0)
R ) sinψ

(0)
R + G

(1)
nφ(ψ

(0)
R ) cosψ

(0)
R − kγθφ(ψ

(0)
R )H(0)

n cosψ
(0)
R = 0.(5.28)

Concentrating on (5.23), one sees that the equation can be rewritten as

−
(
H

(1)
nφ (ψ

(0)
R ) + kγθφ(ψ

(0)
R )G(0)

n (ψ
(0)
R )

)
u(ψ

(0)
R ) + H(1)

n (ψ
(0)
R )uφ(ψ

(0)
R )(5.29)

−(μ(1)
n + 12k2)

∫ π/2

ψ
(0)
R

H(0)
n u dφ + k

∫ π/2

ψ
(0)
R

[γθφ(φ)G
(0)
nφu(φ) − γθφ(φ)G(0)

n uφ(φ)] dφ = 0.

The boundary terms vanish since the operator is self-adjoint. In addition, since

G
(0)
n (φ) and u(φ) differ only by a constant, the second integral vanishes as well. Thus

one finds that

μ(1)
n = −12k2.(5.30)

Applying similar logic to (5.24), one finds the same result.
The numerical results for the [111] orientation for −0.05 ≤ ε4 ≤ 0.08 and the

asymptotic results for ε4 = −0.02, 0, 0.02 are shown in Figure 5.4(b). The extreme
ends of the smooth ε4 range present some numerical difficulties and are therefore
not shown. Figure 5.4(b) shows that for nonnegative ε4, the substrate is a stabilizing
presence, but even this added stability is unable to overcome the instability associated
with positive values of ε4.

6. Conclusion. We have examined rotation effects and the linear stability of
a rod on a substrate, in which the rod has a uniform cross-section given by a two-
dimensional equilibrium shape. This work extends our previous treatment of a free-
standing rod, where the stability analysis produces an associated eigenvalue problem
with periodic boundary conditions. The effect of the rod making contact with the
substrate involves instead mixed boundary conditions for the eigenvalue problem. The
eigenvalues are determined numerically with asymptotic solutions given for the limit-
ing case of small anisotropy. The eigenproblem is a coupled pair of second-order ordi-
nary differential equations with coefficients that are periodic along the axis of the rod
and depend on the second derivatives with respect to the orientation variables. We as-
sumed a weak anisotropic surface energy to eliminate missing orientations on the rod.

As was found in our previous exploration of the freestanding anisotropic rod, the
magnitude and the sign of the anisotropy determine the relative stability in com-
parison to the isotropic case. The overall effect of the substrate is stabilizing to
the anisotropic rod. In general, as the contact angle ψR tends to 90 degrees, the
rod on the substrate becomes more stable, which is analogous to the stability of a
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three-dimensional planar film, where the anisotropy is not strong enough to make the
problem ill-posed. In particular, the rod on a substrate with any of the high sym-
metry cubic orientations maintains the same relationship as the freestanding rods as
to whether or not a positive or negative anisotropy enhances or diminishes stability.
When the contact angle ψR between the rod and the substrate approaches −90 de-
grees, the stability does not revert to that of the freestanding rod. In this limiting
case, the rods are pinned to the surface at one point, and this single point of contact
increases the stability of the rod with respect to the unpinned case. This effect was
also seen by McCallum et al. [19] for the isotropic rod.

We have considered the effect of rotation on the stability of a two-dimensional rod
whose cross-section is either elliptical or a shape determined by one of the three high
symmetry cubic orientations. In order to describe these cross-sections, the coordinate
system is fixed to the center of the rod, thereby defining a substrate height above
this center. When the major axis of the ellipse is horizontal, the ellipse is most stable
with a positive substrate height (see Figure 2.2) and is least stable with a negative
substrate height. For this elliptical case, the observation is consistent with the remark
above that contact angles near 90 degrees are more stable than contact angles near
−90 degrees. But the observation concerning substrate height applies to more general
cases. In particular, the stability of rods whose cross-sections are determined by high
symmetry cubic orientations mimic this reversal of stability when the substrate height
is at a maximum over the coordinate axes in comparison to a minimum. Similar to
the linear stability results, the stability under rotation of these rods with the [001] and
[011] cubic orientations depends greatly on the sign and magnitude of the anisotropy.
Negative anisotropy corresponds to a rod with a cross-section of a rounded cube;
positive anisotropy corresponds to a rod with a smoothed octahedral cross-section.
In general we observe that for the [001] cubic orientation, the more negative the
anisotropy, the more unstable the rod. The situation is reversed for the [011] and
[111] cubic orientations.

The two- or fourfold symmetry of the orientations is reflected in the effect of
rotation of the rods on the stability. The stability of the rod with the [111] cubic
orientation is found to be unchanged by rotation.

These results may be potentially useful in the manufacture of stable long rods
or wires with an axis oriented along the high symmetry orientations [001], [011], and
[111].

Appendix. The effect of rotations on perturbation stability. In this
section we discuss the effect of rotating a crystal on the second variational energy
of the contact line problem. We start with a study of the two-dimensional shapes
from sections 4.1 and 4.2: an ellipse and three two-dimensional cubic crystals in high
symmetry orientations. For the ellipse, the major and minor axes are rotated with
respect to the x-axis at an angle of φ′. Additionally, the substrate may be moved
upwards from the original x-axis at a distance of W0. In this particular case the effect
of W0 will be seen indirectly, as it does not appear explicitly in the relevant equations.
However, W0 determines the contact angles ψR and ψL that the crystal makes with
the substrate.

In two dimensions the stability problem (i.e., the second variation of the energy)
reduces to the following:

E(2)

2
= −

∫ ψ
(0)
L

ψ
(0)
R

[hφφ(φ) + h(φ)]h(φ) dφ(A.1)
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with the boundary conditions

h(ψ
(0)
i ) sinψ

(0)
i + hφ(ψ

(0)
i ) cosψ

(0)
i = 0(A.2)

for i = L,R, subject to the constraints where

∫ ψ
(0)
L

ψ
(0)
R

h(φ) [γ(φ + φ′) + γφφ(φ + φ′)] dφ = 0,(A.3)

and where

∫ ψ
(0)
L

ψ
(0)
R

h2(φ) dφ(A.4)

is minimized.
Therefore we can formulate the problem as

hφφ(φ) + h(φ) = μh(φ) + τ [γ(φ + φ′) + γφφ(φ + φ′)](A.5)

with the boundary conditions given as above in (A.2). We solve this problem using two
different numerical techniques. The first uses a pseudospectral Chebyshev calculation
[34] to determine a basis of eigenvectors for the problem

hφφ(φ) + h(φ) = μh(φ),(A.6)

subject to the boundary conditions, that are orthogonal to the vector

γ(φ + φ′) + γφφ(φ + φ′).(A.7)

In addition, we can solve (A.2), (A.5) with a double shooting method.
The unstable eigenmodes are those where μn > 0. We find that the largest

eigenvalue, μ0, is zero to numerical accuracy for all cases, indicating that none of the
modes are unstable. Analytically we can obtain some insight by noting that (A.6)
admits solutions of the form

−n2 + 1 = μn,(A.8)

hn(φ) = An sin(nφ) + Bn cos(nφ).(A.9)

Note that μn is negative for n ≥ 2, resulting in stable shape perturbations. The
boundary conditions show that if n = 0, then h0 = 0. The next allowed n is n = 1,
which gives μ1 = 0 and h1 = B1 cosφ, an allowable solution. This is an eigenmode as
long as it satisfies the orthogonality constraint given in (A.3).
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