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Abstract  
 
We have calculated dynamic susceptibility of patterned 
cobalt and Permalloy pillars with a diameter of 50 nm 
and different pillar heights using micromagnetic 
simulations.   The resonance modes obtained from these 
simulations are compared to the results obtained from 
analytical solution of Kittel’s equation for spheroids.  We 
also compared directly to Kittel’s equation with the 
simulation of cobalt spheroids.  
 
1. Introduction 
 

 
 

The rapid development of magnetic elements for data 
storage and MRAM devices with reduced dimensions has 
led to increased interest in dynamic properties of 
nanoshaped magnetic elements. Dynamic switching has 
been studied [1-4] and addressed the suppression of ringing 
[5-7].  With the aim of engineering high-speed magnetic 
devices, numerical calculations on different magnetic 
materials have also been reported [8-10].                                                                                                                           
Understanding spatial spin distribution in a particle also 
helps its dynamic reversal.  Micromagnetic simulations can 
identify those non-homogeneous regions of spins.  In this 
paper, we will discuss two theoretical calculations of the 
dynamic susceptibility in cobalt and Permalloy nanopillars. 

 
2. Procedure 

 
Three-dimensional Object-Oriented MicroMagnetic 

Framework (OOMMF) [11] was used for our calculations 
by solving the Landau-Lifshitz-Gilbert equation as a 
function of time: 
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γ of 2.21x105 m/A·s is the Gilbert gyromagnetic ratio.  The 
damping constant, α, was 0.015, which is less than 0.2 for a 
dynamic study [12].  The effective field, Heff, (equation 1) 
includes anisotropy (the first term on the right-hand side), 
exchange (the second term), and self-magnetostatic (the last 
term) interactions.  No thermal fluctuation field was added, 
so all of these calculations were performed at 0 K.  û is the 
unit anisotropy axis.  N is the demagnetizing tensor [13] 
and has been numerically addressed [14].  The anisotropy 
constants, K1, of 4.5x105 J/m3 for cobalt [15] and of –500 
J/m3 for Permalloy (Ni80Fe20) [16] were used for these 
calculations, in which the [0 0 1] direction is the easy axis 
for cobalt and the hard axis for Permalloy.  The exchange 
stiffness constants, A, were 30 pJ/m for cobalt and 13 pJ/m 
for Permalloy.  These exchange constants were only 
approximate for cobalt and Permalloy, respectively.  
Saturation magnetizations, Ms, of 1.4x106 A/m for cobalt 
and of 8.6x105 A/m for Permalloy were also used.  A cubic 
cell size of 5 nm was taken, which is approximately the 

same as the exchange length, 2
sM2A/ oµ , for each 

material.  
A range of pillars with aspect ratios (height/width) from 

1 to 20 was simulated via micromagnetics.  The diameter 
was 50 nm.  The equilibrium configuration for three 
sections of the pillar is shown in figure 1.  After the 



equilibrium magnetization was obtained, a small external 
pulse H(t)=1000exp(-109t) (t ≥  0) was applied 
perpendicular to the long axis of the pillar (z-direction).  
Here, H(t) is in A/m and t is in seconds.   The amplitude of 
the pulse field was small enough to remain in the linear 
response region.  The corresponding H(ω) was obtained by 
using Fast Fourier Transform or analytically as 
H(ω)=1000/(109+2πiω).  The imaginary part of 
susceptibility was computed by dividing the Fourier 
transform of the response (M(ω)) by the Fourier transform 
of the excitation (H(ω)).   

The susceptibility was also calculated using Kittel’s 
equation for elongated ellipsoids [17]. For a general 
ellipsoid, a homogeneous external magnetic field produces 
a homogeneous magnetization in the sample. The 
demagnetizing factor depends on the ratio of ellipsoidal 
axis, a , b , c . For a prolate spheroid, with ba =  and 

ac > , using the notation acq /=  we have: 
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For a uniformly magnetized sample, with magnetization 

zM , the resonance frequency has the form: 
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where H0  is the external static field.   Inserting equation (2) 
into equation  (5), we have: 
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In the case when 1=q , )2/(0 πγω Hr = which is 
applicable to spheres and when ∞→q , 

)2/()2/( 0 πγω zr MH +=  for infinite cylinders (pillars). 
 
3. Results 

 
The dynamic susceptibility obtained from the simulation 

is shown in figure 2 for cobalt and in figure 3 for Permalloy 
at two different aspect ratios, AS=3 and 6.  For both aspect 
ratios, there are two resonance modes.  One peak is due to 
the spins at the ends (bottom and top) of the pillars.  The 
other mode is due to the spins in the middle of the pillar.  
The domain patterns shown in figure 1 can be used to 
understand this result.  Near the end of the pillar, the self-
magnetostatic field is large and opposes the exchange field 
(and for cobalt, the anisotropy field).  This decreases the 
effective field near the ends, which reduces the resonance 
frequency in this region as compared to the middle of the 
pillar.  This effect has been observed previously in 
simulations of rectangular stripes [9].   We can therefore 
identify the low frequency peak in figures 2 and 3 with the 
regions near the ends of the pillars.   

The spins in the middle of the pillar have a majority of 
spins on all sides and the exchange interaction tends to 
align these spins.  Also, the demagnetizing field (and 
anisotropy field for cobalt) tends to align the spins along 
the long axis of the pillar in this region, which is in the 
same direction.  Therefore, the spins in this region are 
under a favourable effective field, giving high frequency 
response.  The high frequency peak can be explained quite 
well by the theoretical predictions of Kittel’s equation for 
prolate spheroids.   In Kittel’s equation (equation 6), H0 is 
used to saturate spins in one direction, which is the 
characteristic of a single domain.  In our simulations, there 
was no external applied field; however, there was intrinsic 
anisotropy field.  We took the anisotropy field (2K1/µ0Ms 
(A/m)) for cobalt and Permalloy, respectively, as the 
exchange for H0 in Kittel’s equation.  Figure 4 displays the 
peak position of the high frequency mode from spins of the 
middle of a pillar along with the prediction from applying 
Kittel’s equation (solid line).  Clearly, the high frequency 
peak corresponds to the same trend as the results from 
Kittel’s.  The assignment of this high frequency mode in 
figures 2 and 3 should correspond to a single-domain like 
particle since the spins are aligned from the middle of the 
pillar.        

The relative magnitudes of the low and high frequency 
peaks can be explained by the relative volumes of the end 
and central regions of the pillars.  The extent of the end 
regions is determined primarily by the self-magnetostatic 
field at the pillar ends.  This field doesn’t depend 
significantly on the overall part geometry, and so the size of 
the end regions is relatively fixed irrespective of the length 
of the cylinder.  Conversely, the volume of the central 
region grows with the length of the cylinder.  Thus, we 
expect the magnitude of the high frequency peak to increase 
relative to the magnitude of the low frequency peak as the 
length of the cylinder is increased.  Indeed, a comparison of 
the AS=3 and AS=6 traces in figures 2 and 3 reveals this 
effect. 

For aspect ratios of AS=3 and 6 (see figures 2 and 3) as 
well as 4 and 10 (not shown), there appears additional fine 
structure in the high frequency peak.  This fine structure is 
due to spin configuration the magnetization in the pillars as 
shown in figure 5.  The convergence criterion in the 
simulation, a maximum torque for any spin of 0.12 deg/ns 
corresponding to a normalized torque of 10-5, was the same 
for all aspect ratios and is quite conservative.  The spin 
configuration is most likely not due to a lack of reaching an 
equilibrium structure prior to turning on the perturbing 
field.  The spins in the region with this configuration are 
not as aligned as those in the middle region of the pillar 
and, therefore, have a slightly lower ferromagnetic 
resonance (FMR) frequency.  The appearance of individual 
peaks (only two peaks for the AS of 6) in the fine structure 
could come from an artifact due to the discretization of the 
pillar into layers or due to an edge effect.  Experimentally, 
the fine structure was also observed and due to 
magnetostatic waves since the magnetic field can be 
spatially inhomogeneous [18].   

We can also examine the frequency for an infinite 
cylinder from Kittel’s equation and compare with the value 



of the frequency at the maximum aspect ratio obtained in 
the micromagnetic simulations.  Using γ and saturation 
magnetizations of cobalt and Permalloy, Kittel’s equation 
predicts 42.6 GHz for cobalt and 15.1 GHz for Permalloy, 
which agree well with the frequencies obtained from the 
micromagnetics simulation for the aspect ratio of 20 with 
42.2 GHz for cobalt and 14.8 GHz for Permalloy.  The 
difference between the results obtained from the simulation 
for an aspect ratio of 20 and an infinite cylinder from 
Kittel’s equation is relatively the same for cobalt and 
Permalloy.   

In order to get a better comparison between two 
calculation approaches, we also used a spheroid in the 
simulation.  Figure 6, which displays the simulation as well 
as analytical Kittel’s results for cobalt spheroids, shows that 
at higher aspect ratios, there is a nearly constant difference 
between the frequencies obtained from the simulation and 
those computed from Kittel’s equation.  This constant 
difference could be due to contributions from the surface 
effects.  First, the spins near the surface are less free to 
rotate than the spins in the center of the spheroid, because 
the demagnetizing field attempts to align the spins parallel 
to the surface.  Thus, we can envision a shell about the 
spheroid where the spins don't move as much.  If the shell is 
of uniform thickness, then removing the shell yields a part 
with bigger aspect ratio.  The remaining spins are those in 
the center of the spheroid, which have a greater freedom to 
rotate and, therefore, yield a lower frequency.  An 
alternative explanation for the constant difference between 
the simulated frequencies and those obtained from Kittel's 
equation is discretization errors.  The ideal spheroid has a 
smooth surface, but our computational cells are cubic, so 
the model has "stair-steps" on the surface.  This is a 
limitation of the model. We have tested the magnitude of 
the discretization errors by simulating a cobalt spheroid 
with an aspect ratio of 2 with cell sizes of 2.5 nm x 2.5 nm 
x 2.5 nm and 1.67 nm x 1.67 nm x 2 nm.  For both of these 

smaller cell sizes, the simulated frequency is 29.5 GHz 
compared to 29.1 GHz for the cell size of 5 nm. The 
frequency values for the smaller cell sizes are in closer 
agreement with Kittel's calculated value of 29.8 GHz, but 
not all of the difference can be explained in terms of 
discretization errors. It is possible to study a range of cell 
sizes, and extrapolate the frequencies obtained from the 
simulation to get a resonance frequency value, which is 
independent of discretization. However, the close 
agreement between the computed frequencies for the cobalt 
spheroid and the exact values from Kittel's equation is 
sufficient in this study. 
 
4. Conclusions 

 
By using a micromagnetic model together with the 

analytical method of Kittel’s equation, we have shown that 
there are two major resonance modes in non-uniform 
magnetization structure.  One mode represented the spins at 
the ends of a pillar, and the other mode was from the single-
domain like spins.  These characteristics have also been 
shown in rectangular Permalloy stripes [9].  The extension 
of this approach to calculation of multi-layer systems and to 
include consideration of thermal fluctuations and their 
affect on the precessional frequency would be an interesting 
subject for future study. 
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Figure captions 
 
Figure 1. A flower state of cobalt pillar and a twisted flower state of Permalloy pillar, both with diameter of 50 nm and 
height of 150 nm.  B stands for the spins at the bottom of a pillar, M for middle, and T for top in the x-y plane.   
 
Figure 2. Imaginary susceptibility at two different aspect ratios (AS) for cobalt pillars. 
 
Figure 3. Imaginary susceptibility at two different aspect ratios (AS) for Permalloy pillars. 
 
Figure 4. Peak position of high-frequency modes of the dynamic susceptibility as obtained from the micromagnetics 
(cobalt (rectangular symbols) and Permalloy (circular symbols) pillars).  The solid line is the prediction of Kittel’s 
equation for a spheroid. 
 
Figure 5. Spatial spins for a pillar with the aspect ratio of 6.  The image on the left is for cobalt, and on the right for 
Permalloy.   The spin configuration is in the equilibrium. 
 
Figure 6. Simulation results (rectangular symbols) and Kittel’s equation (solid line) for cobalt spheroids as a function of 
aspect ratio. 
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